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MEASURE CONTRACTION PROPERTIES OF CARNOT GROUPS

RIZZI LUCA

Abstract. We prove that any corank 1 Carnot group of dimension k + 1 equipped with
a left-invariant measure satisfies the MCP(K, N) if and only if K ≤ 0 and N ≥ k + 3.
This generalizes the well known result by Juillet for the Heisenberg group Hk+1 to a
larger class of structures, which admit non-trivial abnormal minimizing curves.

The number k + 3 coincides with the geodesic dimension of the Carnot group, which
we define here for a general metric space. We discuss some of its properties, and its
relation with the curvature exponent (the least N such that the MCP(0, N) is satisfied).
We prove that, on a metric measure space, the curvature exponent is always larger than
the geodesic dimension which, in turn, is larger than the Hausdorff one. When applied
to Carnot groups, our results improve a previous lower bound due to Rifford. As a
byproduct, we prove that a Carnot group is ideal if and only if it is fat.

1. Summary of the results

Let (X, d) be a length space, that is a metric space such that d(x, y) = infγ `(γ) for all
x, y ∈ X, where `(γ) denotes the length of γ and the infimum is taken over all rectifiable
curves from x to y. Throughout this article we assume that (X, d) has negligible cut loci,
i.e. for any x ∈ X there exists a negligible set C(x) and a measurable map Φx : X \C(x)×
[0, 1] → X, such that the curve γ(t) = Φx(y, t) is the unique minimizing geodesic from x
with y. Moreover, let µ be a Borel measure such that 0 < µ(B(x, r)) < +∞ for any r > 0,
where B(x, r) is the metric ball of radius r centered in x. A triple (X, d, µ) satisfying the
assumptions above is called a metric measure space. Any complete Riemannian manifold,
equipped with its Riemannian measure, provides an example.

For any set Ω, we consider its geodesic homothety of center x ∈ X and ratio t ∈ [0, 1]:

(1) Ωt := {Φx(y, t) | y ∈ X \ C(x)}.

For any K ∈ R, define the function

(2) sK(t) :=


(1/
√
K) sin(

√
Kt) if K > 0,

t if K = 0,
(1/
√
−K) sinh(

√
−Kt) if K < 0.

Definition 1 (Ohta1 [16]). Let K ∈ R and N > 1, or K ≤ 0 and N = 1. We say that
(X, d, µ) satisfies the measure contraction property MCP(K,N) if for any x ∈M and any
measurable set Ω with with 0 < µ(Ω) < +∞ (and with Ω ⊂ B(x, π

√
N − 1/K) if K > 0)

(3) µ(Ωt) ≥
∫

Ω
t

[
sK(td(x, z)/

√
N − 1)

sK(d(x, z)/
√
N − 1)

]N−1

dµ(z), ∀t ∈ [0, 1],

where we set 0/0 = 1 and the term in square bracket is 1 if K ≤ 0 and N = 1.
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2 MEASURE CONTRACTION PROPERTIES OF CARNOT GROUPS

In this setting, the measure contraction property is a global control on the evolution
of the measure of Ωt. The function sK comes from the exact behavior of the Jacobian
determinant of the exponential map on Riemannian space forms of constant curvature K
and dimension N , where (3) is an equality. On a complete n-dimensional Riemannian
manifold M equipped with the Riemannian measure, the MCP(K,n) is equivalent to
Ric ≥ K. (see [16]). Thus, the measure contraction property is a synthetic replacement
for Ricci curvature bounds on more general metric measure spaces, and is actually one
the weakest. It has been introduced independently by Ohta [16] and Sturm [21]. See
also [20, 21, 13] for other (stronger) synthetic curvature conditions, including the popular
geometric curvature dimension condition CD(K,N). An important property, shared by
all these synthetic conditions, is their stability under (pointed) Gromov-Hausdorff limits.

It is interesting to investigate whether the synthetic theory of curvature bounds can
be applied to sub-Riemannian manifolds. These are an interesting class of metric spaces,
that generalize Riemannian geometry with non-holonomic constraints. Even though sub-
Riemannian structures can be seen as Gromov-Hausdorff limits of sequences of Riemannian
ones with the same dimension, these sequences have Ricci curvature unbounded from
below (see example in [17]). In general, this is due to the fact that the limit (X, d) of a
convergent Gromov-Hausdorff sequence of complete, n-dimensional Riemannian manifolds
with curvature bounded below has Hausdorff dimension dimH(X) ≤ n (see [9, Section
3.10]), but the Hausdorff dimension of sub-Riemannian structures is always strictly larger
than their topological one. For this reason a direct analysis is demanded.

In this paper we focus on Carnot groups. In the following, any Carnot group G is
considered as a metric measure space (G, d, µ) equipped with the Carnot-Carathéodory
distance d and a left-invariant measure µ. The latter coincides with the Popp [15, 7] and
with the Hausdorff one [1], up to a constant rescaling. All of them coincide with the
Lebesgue measure when we identify G ' Rn in a set of exponential coordinates.

1.1. The Heisenberg group. In [10], Juillet proved that the 2d+ 1 dimensional Heisen-
berg group H2d+1 does not satisfy the CD(K,N) condition, for any value of K and N .
On the other hand, it satisfies the MCP(K,N) if and only if K ≤ 0 and N ≥ 2d+ 3.

The number N = 2d + 3, which is the lowest possible dimension for the synthetic
condition MCP(0, N) in H2d+1, is surprisingly larger than its topological dimension (2d+1)
or the Hausdorff one (2d+ 2). This is essentially due to the fact that, letting Ω = B(x, 1),
we have Ωt ⊂ B(x, t) strictly, and
(4) µ(Ωt) ∼ κ1t

2d+3, while µ(B(x, t)) ∼ κ2t
2d+2,

for t→ 0+ and some constants κ1 and κ2, see [10, Remark 2.7].

1.2. Corank 1 Carnot groups. Our first result is an extension of the MCP results of
[10] to any corank 1 Carnot group. Observe that these structures have negligible cut loci.

Theorem 2. Let (G, d, µ) be a corank 1 Carnot group of rank k. Then it satisfies the
MCP(K,N) if and only if K ≤ 0 and N ≥ k + 3.

Remark 1. We stress that, in general, corank 1 Carnot groups admit non-trivial abnormal
minimizing curves (albeit not strictly abnormal ones). In particular they are not all ideal.

1.3. The geodesic dimension. The geodesic dimension was introduced in [3] for sub-
Riemannian structures. We define it here in the more general setting of metric measure
spaces (which, we recall, are assumed having negligible cut loci).

Definition 3. Let (X, d, µ) be a metric measure space. For any x ∈ X and s > 0, define

(5) Cs(x) := sup
{

lim sup
t→0+

1
ts
µ(Ωt)
µ(Ω) | Ω measurable, bounded, 0 < µ(Ω) < +∞

}
,
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where Ωt is the homothety of Ω with center x and ratio t as in (1). We define the geodesic
dimension of (X, d, µ) at x ∈ X as the non-negative real number

(6) N (x) := inf{s > 0 | Cs(x) = +∞} = sup{s > 0 | Cs(x) = 0},

with the conventions inf ∅ = +∞ and sup ∅ = 0.

Roughly speaking, the measure of µ(Ωt) vanishes at least as tN (x) or more rapidly, for
t→ 0. The two definitions in (6) are equivalent since s ≥ s′ implies Cs(x) ≥ Cs′(x).

Remark 2. N (x) does not change if we replace µ with any commensurable measure (two
measures µ, ν are commensurable if they are mutually absolutely continuous, i.e. µ � ν
and ν � µ, and the Radon-Nikodym derivatives dµ

dν , dν
dµ are locally essentially bounded).

The geodesic dimension N (x) is a local property. In fact, for sufficiently small t > 0,
the set Ωt lies in an arbitrarily small neighborhood of x. The next theorem puts it in
relation with the Hausdorff dimension dimH(B) of a subset B ⊆ X (see [5] for reference).

Theorem 4. Let (X, d, µ) be a metric measure space. Then, for any Borel subset B

(7) sup{N (x) | x ∈ B} ≥ dimH(B).

The next result appears in [3, Proposition 5.49], and we give a self-contained proof. A
measure on a smooth manifold is smooth if it is defined by a positive smooth density.

Theorem 5. Let (X, d, µ) be a metric measure space defined by an equiregular sub-Rieman-
nian or Riemannian structure, equipped with a smooth measure µ. Then

(8) N (x) ≥ dimH(X) ≥ dim(X), ∀x ∈ X,

and both equalities hold if and only if (X, d, µ) is Riemannian.

Remark 3. For an equiregular (sub-)Riemannian structure, the Hausdorff measure is com-
mensurable with respect to any smooth one [14]. This is no longer true in the non-
equiregular case [8]. By choosing the Hausdorff measure instead of a smooth one, one
obtains, a priori, a different geodesic dimension N (x).

Remark 4. The positivity assumption on µ is essential to describe the equality case. For
example, if X = R with the Euclidean metric and µ = x2dx, we have N (x) = 1 for x 6= 0
and N (x) = 3 for x = 0. Clearly dx and x2dx are not commensurable.

1.4. A lower bound for the MCP dimension. If (X, d, µ) satisfies the MCP(K,N),
then N ≥ N (x) at any point. We give here a general statement for metric measure spaces
(which, we recall, are always assumed to have negligible cut loci).

Theorem 6. Let (X, d, µ) be a metric measure space, with geodesic dimension N (x), that
satisfies the MCP(K,N), for some K ∈ R and N > 1 or K ≤ 0 and N = 1. Then

(9) N ≥ sup{N (x) | x ∈ X}.

The following definition was given originally in [17] for Carnot groups.

Definition 7. Let (X, d, µ) be a metric measure space that satisfies the MCP(0, N) for
some N ≥ 1. Its curvature exponent is

(10) N0 := inf{N > 1 | MCP(0, N) is satisfied}.

When (X, d, µ) does not satisfy the MCP(0, N) for all N ≥ 1, we set N0 = +∞.

If N0 < +∞, then the MCP(0, N0) is satisfied. Theorem 6 implies that N0 ≥ N . It
may happen that N0 > N strictly, as in the following example.
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Example 1 (Riemannian Heisenberg). Consider the Riemannian structure generated by
the following global orthonormal vector fields, in coordinates (x, y, z) ∈ R3:

(11) X = ∂x −
y

2∂z, Y = ∂y + x

2∂z, Z = ∂z.

Being a Riemannian structure, N = 3. In [17] it is proved that, when equipped with the
Riemannian volume, it satisfies the MCP(0, 5). With the same computations it is easy to
prove that the MCP(0, 5−ε) is violated for any ε > 0, so its curvature exponent is N0 = 5.

1.5. Back to Carnot groups. In [17] Rifford studied the measure contraction properties
of general Carnot groups. It may happen that N0 = +∞, that is the MCP(0, N) is never
satisfied. However, if the Carnot group is ideal (i.e. it does not admit non-trivial abnormal
minimizing curves), we have the following result.

Theorem 8 (Rifford [17]). Let (G, d, µ) be a Carnot group. Assume it is ideal. Then it
satisfies the MCP(0, N) for some N > 1. In particular its curvature exponent N0 is finite.

The proof of the above result is based on a semiconcavity property of the distance for
ideal structures, which does not hold in general. Nevertheless, Theorem 2 shows that the
above statement can hold even in presence of non-trivial abnormal minimizers. In general,
nothing is known on the finiteness of N0, but we have the following lower bound.

Theorem 9 (Rifford [17]). Let (G, d, µ) be a Carnot group. Assume it is geodesic with
negligible cut loci. Then its curvature exponent N0 satisfies

(12) N0 ≥ NR := Q+ n− k,

where Q is the Hausdorff dimension, n is the topological one, and k is the rank of the
horizontal distribution.

For Carnot groups, the geodesic dimension N (x) = N is clearly constant. In particular
N0 ≥ N , by Theorem 6. This lower bound improves (12), as a consequence of the following.

Theorem 10. A Carnot group is ideal if and only if it is fat2. In this case, N = NR. If
a Carnot group has step s > 2, then N > NR.

Remark 5. Since fat Carnot groups do not admit non-trivial abnormal curves, the first part
of Theorem 10 can be restated as follows: a Carnot group admits a non-trivial abnormal
curve if and only if it admits a non-trivial abnormal minimizer (see Section 2).

Example 2 (Engel group). Consider the Carnot group in dimension 4, generated by the
following global orthonormal left-invariant vector fields in coordinates (x1, x2, x3, x4) ∈ R4

(13) X1 = ∂1, X2 = ∂2 + x1∂3 + x1x2∂4.

The Engel group is a metric space with negligible cut loci (see Remark 7). It has rank
2, step 3, dimension 4 and growth vector (2, 3, 4). Its Hausdorff dimension is Q = 7.
The geodesic dimension is N = 10 (see Section 7.4), while NR = 9. This is the lowest
dimensional Carnot group where N > NR.

Checking whether the Engel group satisfies the MCP(0,N ) should be possible, at least
in principle, as expressions for the Jacobian determinant are known [6].

2A sub-Riemannian structure (M,D, g) is fat if for all x ∈M and X ∈ D, X(x) 6= 0, then Dx+[X,D]x =
TxM . It is ideal if it is complete and does not admit non-trivial abnormal minimizers.
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1.6. Open problems. As a consequence of the formula forN (x) in the (sub-)Riemannian
setting (see Section 7), for any corank 1 Carnot group we have
(14) N = k + 3.
Thus, Theorem 2 can be restated saying that for any corank 1 Carnot group, the curvature
exponent is equal to the geodesic dimension. Moreover, for H2d+1, this gives N = 2d+ 3,
and coincides with the “mysterious” integer originally found by Juillet.

The class of corank 1 Carnot groups includes non-ideal structures (see Remark 1). We
do not know whether other non-ideal Carnot groups enjoy some MCP(0, N). It is not
even known whether general Carnot groups have negligible cut loci (this is related with
the Sard conjecture in sub-Riemannian geometry [19, 11]). However, if they do, it is
natural to expect the curvature exponent to be equal to the curvature dimension.

Conjecture. Let (X, d, µ) be a Carnot group. Assume that it has negligible cut loci. Then
the geodesic dimension coincides with the curvature exponent.

Preliminary results (using sub-Riemannian curvature techniques, in collaboration with
D. Barilari) seem to provide evidence to the above claim for some step 2 Carnot groups.

Structure of the paper. In Section 2 we collect some preliminaries of sub-Riemannian
geometry and Carnot groups. In Section 3 we characterize the minimizers of corank 1
Carnot groups. In Section 4, 5, 6 we prove Theorems 2, 4, 6 respectively. In Section 7 we
recall the formula for the geodesic dimension on general sub-Riemannian structures, we
prove Theorem 5 and we discuss the Engel example. In Section 8 we prove Theorem 10.

Acknowledgments. I warmly thank D. Barilari for many fruitful discussions, and the
anonymous referee for many useful comments. This research was supported by the ERC
StG 2009 “GeCoMethods”, contract n. 239748, by the iCODE institute (research project
of the Idex Paris-Saclay), and by the ANR project “SRGI” ANR-15-CE40-0018. This re-
search benefited from the support of the “FMJH Program Gaspard Monge in optimization
and operation research” and from the support to this program from EDF.

2. Sub-Riemannian geometry

We present some basic results in sub-Riemannian geometry. See [2, 18, 15] for reference.

2.1. Basic definitions. A sub-Riemannian manifold is a triple (M,D, g), where M is a
smooth, connected manifold of dimension n ≥ 3, D is a vector distribution of constant
rank k ≤ n and g is a smooth metric on D. We always assume that the distribution is
bracket-generating. A horizontal curve γ : [0, 1]→M is a Lipschitz continuous path such
that γ̇(t) ∈ Dγ(t) for almost any t. Horizontal curves have a well defined length

(15) `(γ) =
∫ 1

0

√
g(γ̇(t), γ̇(t))dt.

The sub-Riemannian (or Carnot-Carathéodory) distance is defined by:
(16) d(x, y) = inf{`(γ) | γ(0) = x, γ(1) = y, γ horizontal}.
By the Chow-Rashevskii theorem, under the bracket-generating condition, d : M×M → R
is finite and continuous. A sub-Riemannian manifold is complete if (M,d) is complete as
a metric space. In this case, for any x, y ∈ M there exists a minimizing geodesic joining
the two points. In place of the length `, one can consider the energy functional as

(17) J(γ) = 1
2

∫ 1

0
g(γ̇(t), γ̇(t))dt.

It is well known that, on the space of horizontal curves with fixed endpoints, the minimizers
of J(·) coincide with the minimizers of `(·) with constant speed. Since ` is invariant by
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reparametrization (and in particular we can always reparametrize horizontal curves in such
a way that they have constant speed), we do not loose generality in defining geodesics as
horizontal curves that are locally energy minimizers between their endpoints.

2.2. Hamiltonian. We define the Hamiltonian function H : T ∗M → R as

(18) H(λ) = 1
2

k∑
i=1
〈λ,Xi〉, λ ∈ T ∗M,

for any local orthonormal frame X1, . . . , Xk for D. Here 〈λ, ·〉 denotes the dual action of
covectors on vectors. The cotangent bundle π : T ∗M → M is equipped with a natural
symplectic form σ. The Hamiltonian vector field ~H is the unique vector field such that
σ(·, ~H) = dH. In particular, the Hamilton equations are

(19) λ̇(t) = ~H(λ(t)), λ(t) ∈ T ∗M.

If (M,d) is complete, any solution of (19) can be extended to a smooth curve for all times.

2.3. End-point map. Let γu : [0, 1] → M be an horizontal curve joining x and y. Up
to restriction and reparametrization, we assume that the curve has no self-intersections.
Thus we can find a smooth orthonormal frame X1, . . . , Xk of horizontal vectors fields,
defined in a neighborhood of γu. Moreover, there is a control u ∈ L∞([0, 1],Rk) such that

(20) γ̇u(t) =
k∑
i=1

ui(t)Xi(γu(t)), a.e. t ∈ [0, 1].

Let U ⊂ L∞([0, 1],Rk) be the open set such that, for v ∈ U , the solution of

(21) γ̇v(t) =
k∑
i=1

vi(t)Xi(γv(t)), γv(0) = x,

is well defined for a.e. t ∈ [0, 1]. Clearly u ∈ U . We define the end-point map with base x
as Ex : U →M that sends v to γv(1). The end-point map is smooth on U .

2.4. Lagrange multipliers. We can see J : U → R as a smooth functional on U (we are
identifying U with a neighborhood of γu in the space of horizontal curves starting from
x). A minimizing geodesic γu is a solution of the constrained minimum problem
(22) J(v)→ min, Ex(v) = y, v ∈ U .
By the Lagrange multipliers rule, there exists a non-trivial pair (λ1, ν), such that
(23) λ1 ◦DuEx = νDuJ, λ1 ∈ T ∗yM, ν ∈ {0, 1},
where ◦ denotes the composition and D the (Fréchet) differential. If γu : [0, 1] → M
with control u ∈ U is an horizontal curve (not necessarily minimizing), we say that a
non-zero pair (λ1, ν) ∈ T ∗yM × {0, 1} is a Lagrange multiplier for γu if (23) is satisfied.
The multiplier (λ1, ν) and the associated curve γu are called normal if ν = 1 and abnormal
if ν = 0. Observe that Lagrange multipliers are not unique, and a horizontal curve may
be both normal and abnormal. Observe also that γu is an abnormal curve if and only if
u is a critical point for Ex. In this case, γu is also called a singular curve. The following
characterization is a consequence of the Pontryagin Maximum Principle [4].

Theorem 11. Let γu : [0, 1] → M be an horizontal curve joining x with y. A non-zero
pair (λ1, ν) ∈ T ∗yM × {0, 1} is a Lagrange multiplier for γu if and only if there exists a
Lipschitz curve λ(t) ∈ T ∗γu(t)M with λ(1) = λ1, such that

• if ν = 1 then λ̇(t) = ~H(γ(t)), i.e. it is a solution of Hamilton equations,
• if ν = 0 then σ(λ̇(t), Tλ(t)D⊥) = 0,

where D⊥ ⊂ T ∗M is the sub-bundle of covectors that annihilate the distribution.
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In the first (resp. second) case, λ(t) is called a normal (resp. abnormal) extremal. Nor-
mal extremals are integral curves λ(t) of ~H. As such, they are smooth, and characterized
by their initial covector λ = λ(0). A geodesic is normal (resp. abnormal) if admits a nor-
mal (resp. abnormal) extremal. On the other hand, it is well known that the projection
γλ(t) = π(λ(t)) of a normal extremal is locally minimizing, hence it is a normal geodesic
(see [2, Chapter 4] or [15, Theorem 1.5.7]). The exponential map at x ∈M is the map

(24) expx : T ∗xM →M,

which assigns to λ ∈ T ∗xM the final point π(λ(1)) of the corresponding normal geodesic.
The curve γλ(t) := expx(tλ), for t ∈ [0, 1], is the normal geodesic corresponding to λ,
which has constant speed ‖γ̇λ(t)‖ =

√
2H(λ) and length `(γ|[t1,t2]) =

√
2H(λ)(t2 − t1).

Definition 12. A sub-Riemannian structure (M,D, g) is ideal if it is complete and does
not admit non-trivial abnormal minimizers.

Definition 13. A sub-Riemannian structure (M,D, g) is fat (or strong bracket-generating)
if for all x ∈M and X ∈ D, X(x) 6= 0, then Dx + [X,D]x = TxM .

The definition of ideal structures appears in [17, 18], in the equivalent language of sin-
gular curves. We stress that fat sub-Riemannian structures admit no non-trivial abnormal
curves (see [15, Section 5.6]). In particular, complete fat structures are ideal.

2.5. Carnot groups. A Carnot group (G, ?) of step s is a connected, simply connected
Lie group of dimension n, such that its Lie algebra g = TeG is stratified of step s, that is

(25) g = g1 ⊕ . . .⊕ gs,

with

(26) [g1, gj ] = g1+j , ∀1 ≤ j ≤ s, gs 6= {0}, gs+1 = {0}.

The group exponential map expG : g→ G associates with V ∈ g the element γV (1), where
γV : [0, 1] → G is the integral line, starting at γV (0) = e, of the left invariant vector
field associated with V . Since G is simply connected and g is nilpotent, expG is a smooth
diffeomorphism. Thus, the choice of a basis of g induces coordinates on G ' Rn, which
are called exponential coordinates.

Let D be the left-invariant distribution generated by g1, with a left-invariant scalar
product g. This defines a sub-Riemannian structure (G,D, g) on the Carnot group. For
x ∈ G, we denote with Lx(y) := x ? y the left translation. The map Lx : G → G is a
smooth isometry. Any Carnot group, equipped with the Carnot-Carathéodory distance
d and the Lebesgue measure µ of G = Rn is a complete metric measure space (X, d, µ).
Haar, Popp, Lebesgue and the top-dimensional Hausdorff measures are left-invariant and
proportional.

3. Corank 1 Carnot groups

A corank 1 Carnot group is a Carnot groups of step s = 2, with dim g1 = k and
dim g2 = 1. In exponential coordinates (x, z) on Rk × R, they are generated by the
following set of global orthonormal left-invariant frames

(27) Xi = ∂xi −
1
2

k∑
j=1

Aijxj∂z, i = 1, . . . , k,

where A is a k × k skew symmetric matrix. Observe that

(28) [Xi, Xj ] = Aij∂z, i, j = 1, . . . , k.
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Let 0 < α1 ≤ . . . ≤ αd be the non-zero singular values of A. In particular, dim kerA =
k − 2d. Up to an orthogonal change of coordinates, we can assume that

(29) A =


0

α1J
. . .

αdJ

 , J =
(

0 1
−1 0

)
.

The first zero block has dimension k − 2d, while each other diagonal block is 2 × 2. We
split the coordinate x = (x0, x1, . . . , xd), where x0 ∈ Rk−2d and xi ∈ R2, for i = 1, . . . , d.

If A has trivial kernel (in particular, k is even), we are in the case of a contact Carnot
group, and there are no non-trivial abnormal minimizers. However, when A has a non-
trivial kernel, then non-trivial abnormal minimizers appear. To prove Theorem 6, we need
a complete characterization of the minimizing geodesics on a general corank 1 Carnot
group. We extend the results of [1], where the case of a non-degenerate A is considered.

3.1. Characterization of minimizers. On any corank 1 sub-Riemannian distribution,
all minimizing geodesics are normal (this is true for any step 2 distribution). In particular,
they can be recovered by solving Hamilton equations. By left-invariance, it is sufficient
to consider geodesics starting from the identity e = (0, 0). Any covector λ ∈ T ∗eG has
coordinates (px, pz), where we split px = (p0

x, p
1
x, . . . , p

d
x).

Lemma 14. The exponential map expe : T ∗eG→ G of a Corank 1 Carnot group is
(30) expe(p0

x, p
1
x, . . . , p

d
x, pz) = (x0, x1, . . . , xd, z),

where, for all i = 1, . . . , d we have
x0 = p0

x,(31)

xi =
(sin(αipz)

αipz
I + cos(αipz)− 1

αipz
J

)
px,(32)

z =
d∑
i=1
‖pix‖2

αipz − sin(αipz)
2αip2

z

.(33)

If pz = 0, one must consider the limit pz → 0, that is expe(px, 0) = (px, 0).

Remark 6 (Abnormal geodesics). A non-zero covector λ = (px, pz) such that Apx = 0, that
is of the form (p0

x, 0, . . . , 0, pz) corresponds to an abnormal geodesic. A way to see this is
to observe that there is an infinite number of initial covectors giving the same geodesic
(34) expe(tp0

x, 0, . . . , 0, tpz) = (tp0
x, 0, . . . , 0, 0), ∀pz ∈ R.

A direct analysis of the end-point map shows that abnormal geodesic are all of this type.

Proof. Let hx = (h1, . . . , hk) : T ∗G → Rk and hz : T ∗G → R, where hi(λ) := 〈λ,Xi〉, for
i = 1, . . . , k and hz(λ) := 〈λ, ∂z〉. Thus, H = 1

2‖hx‖
2. Hamilton equations are

(35) ḣz = 0, ḣx = −hzAhx, ẋ = hx, ż = −1
2h
∗
xAx,

where, without risk of confusion, the dot denotes the derivative with respect to t. We have
(36) hz(t) = pz, hx(t) = e−pzAtpx.

The equations for (x, z) can be easily integrated, using the block-diagonal structure of A.
Split hx = (h0

x, h
1
x, . . . , h

d
x), with h0

x ∈ Rk−2d and hix ∈ R2 for i = 1, . . . , d. We obtain
(37) h0

x(t) = p0
x, hix(t) = [cos(αipzt)I − sin(αipzt)J ]pix,

where I is the 2× 2 identity matrix. Integrating the above on [0, t], we obtain

(38) x0(t) = p0
xt, xi(t) =

(sin(αipzt)
αipz

I + cos(αipzt)− 1
αipz

J

)
pix.
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Finally, for the coordinate z we obtain

z = −1
2

∫ 1

0
h∗x(s)Ax(s)ds = −1

2

d∑
i=1

∫ 1

0
hix(s)∗αiJxi(s)ds(39)

= 1
2pz

d∑
i=1
‖pix‖2

∫ 1

0
(1− cos(αipzs)) ds =

d∑
i=1
‖pix‖2

(
αipz − sin(αipz)

2αip2
z

)
. �

Lemma 15. The Jacobian determinant of the exponential map is
(40)

J(px, pz) = 22d

α2p2d+2
z

d∑
i=1
‖pix‖2

∏
j 6=i

sin
(
αjpz

2

)2
sin
(
αipz

2

)(
sin
(
αipz

2

)
− αipz

2 cos
(
αipz

2

))
,

where α =
∏d
i=1 αi is the product of the non-zero singular values of A. If pz = 0, the

formula must be taken in the limit pz → 0. In particular J(px, 0) = 1
12
∑d
i=1 ‖pix‖2α2

i .

Proof. For any matrix with the following block structure

(41) M =
(
B v
w∗ θ

)
,

where the only constraint is that θ ∈ R is a one-dimensional block, we have

(42) det(M) = θ det(B)− v∗cof(B)w,

where cof denotes the matrix of cofactors. More in general, let

(43) M =


B0 v0

B1 v1
. . . ...

Bd vd
w∗0 w∗1 . . . w∗d θ

 ,

where B0, . . . , Bd are square blocks of arbitrary (possibly different) dimension, θ ∈ R and
vi, wj are column vectors of the appropriate dimension. In this case we have

(44) det(M) = θ
d∏
i=0

detBi −
d∑
i=0

∏
j 6=i

detBj

 v∗i cof(Bi)wi.

If Bi = aiI+ biJ , then cof(Bi) = Bi. If we also assume that B0 = 1, v0 = w0 = 0, we have

(45) det(M) = θ
d∏
i=1

detBi −
d∑
i=1

∏
j 6=i

detBj

 v∗iBiwi.
From Lemma 14, the differential of the exponential map has the above form, with

B0 = ∂x0

∂p0
x

= 1, Bi = ∂xi

∂pix
= sin(αipz)

αipz
I + cos(αipz)− 1

αipz
J,(46)

vi = ∂xi

∂pz
= αipz cos(αipz)− sin(αipz)

αip2
z

Ipix + 1− cos(αipz)− αipz sin(αipz)
αip2

z

Jpix,(47)

wi = ∂z

∂pix
= αipz − sin(αipz)

αip2
z

pix,(48)

θ = ∂z

∂pz
=

d∑
i=1
‖pix‖2

(2 sin(αipz)− αipz − αipz cos(αipz)
2αip3

z

)
.(49)
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The result follows applying formula (45) and observing that, for i = 1, . . . , d, we have

det(Bi) = 4 sin2(αipz/2)
(αipz)2 ,(50)

v∗iBiwi = α2
i ‖pix‖2

(αipz)5 (αipz − sin(αipz))(αipz sin(αipz) + 2 cos(αipz)− 2). �

Lemma 16 (Characterization of the cotangent injectivity domain). Consider the set

(51) D :=
{
λ = (px, pz) ∈ T ∗eG such that |pz| <

2π
αd

and Apx 6= 0
}
⊂ T ∗eG.

Then expe : D → expe(D) is a smooth diffeomorphism and C(e) := G\expe(D) is a closed
set with zero measure.

Proof. Since all geodesic are normal and (G, d) is complete, each point of G is reached
by at least one minimizing normal geodesic γλ : [0, 1] → G, with λ = (px, pz) ∈ T ∗eG.
If |pz| > 2π/αd and Apx 6= 0, then γλ is a strictly normal geodesic (i.e. not abnormal)
with a conjugate time at t∗ = 2π/αd|pz| < 1. Strictly normal geodesics lose optimality
after their first conjugate time (see [2]), hence γλ(t) is not minimizing on [0, 1]. On the
other hand, if Apx = 0, for any value of pz we obtain the same abnormal geodesic (see
Remark 6). It follows that expe : D̄ → G is onto (the bar denotes the closure). Thus,
expe : D → expe(D) is onto and C(e) = G \ expe(D) = expe(∂D) has zero measure.

We now prove that, if λ ∈ D, then γλ : [0, 1] → G is the unique geodesic joining its
endpoints. In fact, assume that there are two covectors λ = (px, pz) and λ̄ = (p̄x, p̄z) ∈ D,
such that expe(λ) = expe(λ̄). Since the two geodesics have the same length, ‖px‖ =
`(γλ) = `(γλ̄) = ‖p̄x‖. Using Lemma 14, we have p0

x = p̄0
x and

(52) ‖xi‖2 = 4‖pix‖2 sinc(αipz)2 = 4‖p̄ix‖2 sinc(αip̄z)2, ∀i = 1, . . . , d,

where sinc(w) = sin(w)/w is positive and strictly decreasing on [0, π). Since Apx, Ap̄x 6= 0,
there exist two non-empty set of indices I, Ī ⊂ {1, . . . , d} such that, for i ∈ I (resp. Ī) we
have ‖pix‖2 6= 0 (resp. ‖p̄ix‖2 6= 0). Since αipz, αip̄z < π, by (52), we have I = I ′.

Assume now that p̄z > pz. Then by (52) ‖p̄ix‖2 > ‖pix‖2 for all i ∈ I. In particular

(53) ‖p̄x‖2 = ‖p̄0
x‖2 +

∑
i∈I
‖p̄ix‖2 > ‖p0

x‖2 +
∑
i∈I
‖pix‖2 = ‖px‖2,

which is a contradiction. Analogously if p̄z < pz, with reversed inequalities. Thus pz = p̄z.
Using now the equations for the coordinate xi of Lemma 14 we observe that

(54)
[sin(αipz)

αipz
I + cos(αipz)− 1

αipz
J

]
(p̄ix − pix) = 0, ∀i = 1, . . . , d.

The 2× 2 matrix on the left hand side is invertible (since if αipz < π), hence also p̄x = px.
Thus expe : D → expe(D) is invertible.

Finally, no point λ ∈ D can be critical for expe. In fact, from Lemma 15 we have
that J(px, pz) =

∑d
i=1 ‖pix‖2fi(pz), where each fi(pz) > 0 for pz < 2π/αd. In particular

J(px, pz) = 0 if and only if Apx = 0. But this closed set was excluded from D. �

Corollary 17. For any x ∈ G, let C(x) := LxC(e), where Lx : G → G is the left-
translation. There exists a measurable map Φx : G \ C(x)× [0, 1]→ G, given by

(55) Φx(y, t) = Lx expe(t exp−1
e (L−1

x y)),

such that Φx(y, t) is the unique minimizing geodesic joining x with y.

The next key lemma and its proof are a simplified version of the original concavity
argument of Juillet for the Heisenberg group [10, Lemma 2.6].
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Lemma 18. Let g(x) := sin(x)− x cos(x). Then, for all x ∈ (0, π) and t ∈ [0, 1],

(56) g(tx) ≥ tNg(x), ∀N ≥ 3.

Proof. The condition N ≥ 3 is necessary, as g(x) = x3/3 +O(x4). It is sufficient to prove
the statement for N = 3. The cases t = 0 and t = 1 are trivial, hence we assume t ∈ (0, 1).
By Gronwall’s Lemma the above statement is implied by the differential inequality

(57) g′(s) ≤ 3g(s)/s, s ∈ (0, π).

In fact, it is sufficient to integrate the above inequality on [tx, x] ⊂ (0, π) to prove our
claim. The above inequality reads

(58) f(s) := (3− s2) sin(s)− 3s cos(s) ≥ 0, s ∈ (0, π).

To prove it, we observe that f(0) = 0 and f ′(s) = s(sin(s)− s cos(s)) ≥ 0 on (0, π). �

Corollary 19. For all (px, pz) ∈ D, we have the following inequality

(59) J(tpx, tpz)
J(px, pz)

≥ t2, ∀t ∈ [0, 1].

Proof. Apply Lemma 18 to the explicit expression of J from Lemma 15, and then use the
standard inequality sin(tx) ≥ t sin(x), valid for all x ∈ [0, π] and t ∈ [0, 1]. �

4. Proof of Theorem 2

The proof combines the arguments of [10] and the computation of the Jacobian deter-
minant of [1] for contact Carnot groups, extended here to the general corank 1 case.

4.1. Step 1. We first prove that the MCP(0, N) holds for N ≥ k+ 3. By left-translation,
it is sufficient to prove the inequality (3) for the homothety with center equal to the
identity e = (0, 0). Let Ω be a measurable set with 0 < µ(Ω) < +∞.

By Lemma 16, up to removing a set of zero measure, Ω = expe(A) for some A ⊂ D ⊂
T ∗eG. On the other hand, by Corollary 17, we have

(60) Ωt = expe(tA), ∀t ∈ [0, 1],

where tA denotes the set obtained by multiplying by t any point of the set A ⊂ T ∗eG (an
Euclidean homothety). Thus, for all t ∈ [0, 1] we have

µ(Ωt) =
∫

Ωt

dµ =
∫
tA
J(px, pz)dpxdpz(61)

= tk+1
∫
A
J(tpz, tpz)dpxdpz ≥ tk+3

∫
A
J(px, pz)dpxdpz = tk+3µ(Ω),(62)

where we used Corollary 19. In particular µ(Ωt) ≥ tNµ(Ω) for all N ≥ k + 3.

4.2. Step 2. Fix ε > 0. We prove that the MCP(0, k + 3 − ε) does not hold. Let
λ = (px, 0) ∈ D. By Lemma 15, and recalling that J > 0 on D, we have

(63) J(tpx, 0) = t2J(px, 0) < t2−εJ(px, 0), ∀t ∈ [0, 1].

By continuity of J and compactness of [0, 1], we find an open neighborhood A ⊂ D of λ
such that J(tλ) < t2−εJ(λ), for all t ∈ [0, 1]. In particular, for Ω = expe(A), we obtain

(64) µ(Ωt) < tk+3−εµ(Ω), t ∈ [0, 1].
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4.3. Step 3. To prove that MCP(K,N) does not hold for K > 0 and any N > 1, we
observe that spaces verifying this condition are bounded, while G ' Rn clearly is not.
Finally, assume that (G, d, µ) satisfies MCP(K,N) for some K < 0 and N < k + 3. Then
the scaled space (G, ε−1d, ε−Qµ) (where ε > 0 and Q = k + 2 is the Haudorff dimension
of (G, d)) verifies MCP(ε2K,N) for [16, Lemma 2.4]. But the two spaces (G, d, µ) and
(G, ε−1d, ε−Qµ) are isometric through the dilation δε(x, z) := (εx, ε2z). In particular
(G, d, µ) satisfies the MCP(εK,N) for all ε > 0, that is

(65) µ(Ωt) ≥
∫

Ω
t

[
sεK(td(x, z)/

√
N − 1)

sεK(d(x, z)/
√
N − 1)

]N−1

dµ(z), ∀t ∈ [0, 1].

Taking the limit for ε → 0+, we obtain that (G, d, µ) satisfies the MCP(0, N) with N <
k + 3, but this is false by the previous step (these are the same arguments of [10]). �

5. Proof of Theorem 4

Assume that B is bounded. In particular, µ(B) < +∞. For any k > 0 let Hk denote
the k-dimensional Hausdorff measure on (X, d). Let k < dimH(B), then Hk(B) = +∞.
By [5, Theorem 2.4.3], there exists an x ∈ B such that

(66) lim sup
t→0+

µ(B(x, t))
tk

< +∞.

Let Ω be a bounded measurable set with 0 < µ(Ω) < +∞, and let Ωt be its homothety
with center x. We have Ω ⊂ B(x,R) for some R > 0, and Ωt ⊆ B(x, tR). In particular

(67) lim sup
t→0+

1
tk−ε

µ(Ωt)
µ(Ω) ≤ lim sup

t→0+

1
tk−ε

µ(B(x, tR))
µ(Ω) = 0, ∀ε > 0.

Since this holds for any bounded Ω, we have Ck−ε(x) = 0 for all k < dimH(B) and ε > 0.
By definition of geodesic dimension N (x) = sup{s > 0 | Cs(x) = 0} ≥ k. Thus, for any
k < dimH(B) we have found x ∈ B such that N (x) ≥ k, which implies the statement.

If B is not bounded, consider the increasing sequence of bounded sets Bj := B∩B(x, j),
with j ∈ N, and observe that dimH(Bj) is a non-decreasing sequence for j →∞. �

6. Proof of Theorem 6

By contradiction, assume that N < sup{N (x) | x ∈ M}. In particular there exists
x ∈ X such that N (x) > N . Let Ω ⊂ X be a bounded, measurable set such that
0 < µ(Ω) < +∞, and with Ω ⊂ B(x, π

√
N − 1/K) if K > 0. By the MCP(K,N) we have

(68) µ(Ωt)
µ(Ω) ≥

1
µ(Ω)

∫
Ω
t

[
sK(td(x, z)/

√
N − 1)

sK(d(x, z)/
√
N − 1)

]N−1

dµ(z), ∀t ∈ [0, 1].

We have Ω ⊂ B(x,R
√
N − 1) for some sufficiently large R (with R < π/

√
K if K > 0).

Consider the functions sK(tδ)/sK(δ), for δ ∈ (0, R). By explicit inspection using (2) we
find a constant AK,R > 0 (independent on δ) such that
(69) sK(tδ)/sK(δ) ≥ AK,Rt, ∀t ∈ [0, 1], ∀δ ∈ (0, R).
Thus we have

(70) µ(Ωt)
µ(Ω) ≥

1
µ(Ω)

∫
Ω
AN−1
K,R t

Ndµ(z) = AN−1
K,R t

N , ∀t ∈ [0, 1].

Let N (x)−N = 2ε > 0. We have

(71) lim sup
t→0+

1
tN (x)−ε

µ(Ωt)
µ(Ω) ≥ lim

t→0+

AN−1
K,R

tN (x)−ε−N = lim
t→0+

AN−1
K,R

tε
= +∞.
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In particular CN (x)−ε(x) = +∞, where Cs(x) is defined in (5). This is a contradiction
since N (x) = inf{s > 0 | Cs(x) = +∞}. �

7. Formula for the geodesic dimension

We recall some of the results of [3] and we prove that the definition of geodesic dimension
given in this paper coincides with the one of [3] for sub-Riemannian structures.

7.1. Flag of the distribution and Hausdorff dimension. Let (M,D, g) be a fixed
(sub-)Riemannian structure. The flag of the distribution at x ∈ M is the filtration of
vector subspaces D1

x ⊆ D2
x ⊆ . . . ⊆ TxM defined as

(72) D1
x := Dx, Di+1

x := Dix + [D,Di]x,

where [D,Di]x is the vector space generated by the iterated Lie brackets, up to length
i+ 1, of local sections of D, evaluated at x. We denote with sx the step of the distribution
at x, that is the smallest (finite) integer such that Dsx

x = TxM .
We say that D is equiregular if dimDix are constant for all i ≥ 0. In this case the step

is constant and equal to s. The growth vector of the distribution is

(73) (d1, . . . , ds), di := dimDi.

Theorem 20 (Mitchell [14]). Let (M,D, g) an equiregular (sub-)Riemannian structure.
Then its Hausdorff dimension is given by the following formula:

(74) dimH(M) =
s∑
i=1

i(di − di−1), d0 := 0.

7.2. Flag of the geodesic and geodesic dimension. Let γλ : [0, ε)→M be a normal
geodesic, with initial covector λ, and x = γ(0). Let T ∈ Γ(D) any horizontal extension of
γ, that is T (γ(t)) = γ̇(t) for all t ∈ [0, ε). The flag of the geodesic is the filtration of vector
subspaces F1

λ ⊆ F2
λ ⊆ . . . ⊆ TxM defined by

(75) F iλ := span{LjT (X)|x | X ∈ Γ(D), j ≤ i− 1} ⊆ TxM, i ≥ 1,

where L denotes the Lie derivative. By [3, Section 3.4], this definition does not depend
on the choice of the extension T , but only on the germ of γ(t) at t = 0. In particular, it
depends only on the initial covector λ ∈ T ∗xM . We define the geodesic growth vector as

(76) Gλ := (k1, . . . , ki, . . .), ki := dimF iλ.

We say that γλ is ample (at t = 0) if there is a smallest integer m ≥ 1 such that Fmλ = TxM .
In this case the growth vector is constant after its m-th entry, and m is called the geodesic
step. Different initial covectors may give different growth vectors (possibly associated with
non-ample geodesics when γ is abnormal). The maximal geodesic growth vector at x is

(77) Gmaxx := (kmax1 , . . . , kmaxi , . . .), kmaxi := max{dimF iλ | λ ∈ T ∗xM}.

Theorem 21. The set Ax ⊂ T ∗xM of initial covectors such that the corresponding geodesic
is ample, and its growth vector is maximal is an open, non-empty Zariski subset.

In particular, the generic normal geodesic starting at x has maximal growth vector and
the minimal step m(x). For a fixed x ∈M , consider the following number:

(78) N (x) =
m(x)∑
i=1

(2i− 1)(kmaxi − kmaxi−1 ), kmax0 := 0.
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Theorem 22. Let (M,D, g) be a sub-Riemannian manifold, equipped with a smooth mea-
sure µ. Assume that, as a metric measure space (M,d, µ), has negligible cut loci. Let
x ∈ M , and let Ω be any measurable, bounded subset with 0 < µ(Ω) < +∞. Then there
exists a constant C(Ω) > 0 such that

(79) µ(Ωt) ∼ C(Ω)tN (x), t→ 0+.

Equation (78) is the definition of geodesic dimension given in [3]. As a consequence of
Theorem 22, it coincides with the one given in this paper, when specified to sub-Rieman-
nian structures. In this case, to compute N (x), it is sufficient to compute the growth
vector for the generic geodesic, and use (78). Theorems 21, 22 are proved in [3], and are
based on a deep relation between the geodesic growth vector and the asymptotics of the
exponential map on a general sub-Riemannian manifold.

7.3. Proof of Theorem 5. If (M,D, g) is Riemannian, for any point x ∈ M we have
Gx = (dim(M)) for any non-trivial initial covector and N (x) = dim(M) = dimH(M).

If (M,D, g) is sub-Riemannian (with k = rankD < n), and equiregular of step s, let
qi := di − di−1, for i = 1, . . . , s and pi := kmaxi − kmaxi−1 , for all i = 1, . . . ,m(x). Observe
that m(x) ≥ s ≥ 2. By Mitchell’s formula (74), and (78), we have

dimH(M) = 1 + · · ·+ 1
q1

+ 2 + · · ·+ 2
q2

+ · · ·+ s+ · · ·+ s
qs

,(80)

N (x) = 1 + · · ·+ 1
p1

+ 3 + · · ·+ 3
p2

+ · · ·+ 2m(x)− 1 + · · ·+ 2m(x)− 1
pm(x)

.(81)

Both sums have a total of n terms, in fact

(82)
s∑
i=1

qi =
s∑
i=1

di − di−1 = ds = n,

m(x)∑
i=1

pi =
m(x)∑
i=1

kmaxi − kmaxi−1 = kmaxm(x) = n.

Moreover q1 = p1 = k < n. The terms of (81), after the k-th, are strictly greater then the
ones of (80). Thus, N (x) > dimH(M) > dim(M). �

7.4. The Engel group. We discuss more in detail the Engel group introduced in Exam-
ple 2. This is the Carnot group, in dimension n = 4, generated by the following global
orthonormal left-invariant vector fields in coordinates (x1, x2, x3, x4) ∈ R4

(83) X1 = ∂1, X2 = ∂2 + x1∂3 + x1x2∂4.

It is a rank 2 Carnot group of step 3, with g1 = span{X1, X2} and

(84) g2 = [X1, X2] = ∂3 + x2∂4, g3 = [X2, [X1, X2]] = ∂4,

where we omit the linear span. In particular, by left-invariance, D1 = g1, D2 = g1 ⊕ g2
and D3 = g1 ⊕ g2 ⊕ g3. The growth vector of the distribution is (2, 3, 4). By Mitchell’s
formula (74) for the Hausdorff dimension we have Q = 2 + 2 + 3 = 7.

Let us compute the geodesic growth vector. As we will see, it is sufficient to choose the
curve γ(t) = etX2(e) (this is a normal geodesic, by Lemma 23). Using the definition, we
obtain F1 = span{X1, X2} and, omitting the linear span,

(85) F2 = [X2, X1] = ∂3 + x2∂4, F3 = [X2, [X2, X1]] = ∂4.

This gives the maximal possible geodesic growth vector, hence

(86) Gmaxx = (2, 3, 4), ∀x ∈ G.

In particular, using (78) we obtain N = 2 + 3 + 5 = 10.
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Remark 7. We stress that the Engel group has negligible cut loci, hence it falls into the
class of metric measure spaces considered in this article. This follows from the fact that
in step 3 Carnot groups all minimizing geodesics are normal and, in particular, the set of
points reached by strictly abnormal geodesics, starting from the origin, has zero measure
(see [22, Theorem 5.4] and [11, Theorem 1.5] for an independent proof).

8. Proof of Theorem 10

Let (G,D, g) be a Carnot group of step s and dimension n. We identify g = TeG (and
its subspaces) with the vector space of left-invariant vector fields. In particular D = g1.

8.1. Step 1: Estimates in the fat case. We remind that a sub-Riemannian structure
(M,D, g) is fat (or strong bracket-generating) if for any x ∈ M and X ∈ D, X(x) 6= 0,
then Dx + [X,D]x = TxM . It is well known that fat structures does not admit non-trivial
abnormal minimizers [2, 15, 18]. If G is a fat Carnot group of rank k, then the geodesic
growth vector of any non-trivial geodesic is

(87) Gmaxx = (k, n), ∀x ∈ G.

By (78) we have N = k+3(n−k) = 3n−2k. On the other hand, the Hausdorff dimension
is Q = k + 2(n− k) = 2n− k. Moreover, from (12), we have NR = Q+ n− k = 3n− 2k.
This proves that on a fat Carnot group N = NR.

To prove the inequality N > NR when G has step s > 2, let Gmax = (k1, k2, . . . , km) be
the maximal geodesic growth vector, with geodesic step m ≥ s > 2. Let qi := di − di−1,
for i = 1, . . . , s and pi := ki − ki−1, for i = 1, . . . ,m. Since d0 = k0 = 0 by convention and
ds = km = n, we have n =

∑s
i=1 qi =

∑m
i=1 pi. Thus, from (78), we obtain

(88) N =
m∑
i=1

(2i− 1)pi =
m∑
i=2

(2i− 2)pi + n.

On the other hand, for NR = Q+ n− k and using Mitchell’s formula (74), we obtain

(89) NR =
s∑
i=1

iqi + n− k =
s∑
i=2

iqi + n.

Arranging the terms as we did in the proof of Theorem 5, we write

N − n = 2 + · · ·+ 2
p2

+ 4 + · · ·+ 4
p3

+ · · ·+ 2m− 2 + · · ·+ 2m− 2
pm

,(90)

NR − n = 2 + · · ·+ 2
q2

+ 3 + · · ·+ 3
q3

+ · · ·+ s+ · · ·+ s
ps

.(91)

Both sums have n− k =
∑m
i=2 pi =

∑s
i=2 qi entries. Since m ≥ s > 2, the entries of (90),

after the p2-th one, are strictly greater than the corresponding ones of (91), and N > NR.

8.2. Step 2: Ideal = Fat. To conclude the proof of Theorem 10, we prove that any ideal
Carnot group is fat. Denote with adX : g→ g the linear map:

(92) adX(Y ) := [X,Y ] = d

dt

∣∣∣∣
t=0

e−tX∗ Y (γX(t)),

where γX(t) = etX(x) is the integral curve of X ∈ g1 starting from x ∈ G.

Lemma 23. Let γX(t) = etX(x) be the integral curve of the left-invariant vector field
X ∈ g1, starting from x. Then γX it is a normal geodesic. It is also an abnormal geodesic
if and only if there exists a non-zero λ ∈ T ∗eG such that

(93) 〈λ, adiX(g1)〉 = 0, ∀i = 0, . . . , s− 1.
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Proof. Let X1, . . . , Xk be a basis of left-invariant vector fields. Clearly, X =
∑k
i=1 uiXi for

a constant control u ∈ L∞([0, 1],Rk). By left-invariance we can set x = e. A well known
formula for the differential of the end-point map [2, 18] DuEe : TuU ' U → Tγ(1)G, gives

(94) DuEe(v) =
∫ 1

0
e

(1−t)X
∗

k∑
i=1

vi(t)Xi(γ(t))dt, ∀v ∈ L∞([0, 1],Rk).

We first prove that γX(t) is a normal geodesic. Consider the covector η ∈ TeG such that
〈η,Xi〉 = ui and 〈η,W 〉 = 0 for all W ∈ g2 ⊕ . . .⊕ gs. Then

(95) 〈(e−X)∗η,DuEe(v)〉 =
∫ 1

0

k∑
i=1

vi(t)〈η, e−tX∗ Xi(γ(t))〉dt = (u, v)L2([0,1],Rk) = DuJ(v).

Thus γX(t) with control u satisfies the normal Lagrange multiplier rule with covector
η1 = (e−X)∗η ∈ T ∗γ(1)G, and is a normal geodesic. By definition γX(t) is also abnormal
if and only if there exists a λ1 ∈ T ∗γ(1)G such that λ1 ◦DuEe = 0. That is, if and only if
there exists λ = (eX)∗λ1 ∈ T ∗eG such that

(96) 0 = 〈λ, e−X∗ DuEe(v)〉 =
∫ 1

0

k∑
i=1

vi(t)〈λ, e−tX∗ Xi(γ(t))〉dt, ∀v ∈ L∞([0, 1],Rk).

This is true if and only if 〈λ, e−tX∗ Y 〉 = 0 for any Y ∈ g1 and t ∈ [0, 1]. Since all the
relevant data are analytic, t 7→ 〈λ, e−tX∗ Y 〉 is an analytic function of t. Hence it vanishes if
and only if all its derivatives at t = 0 are zero, and this condition coincides with (93). �

Lemma 24. Let G be a Carnot group of step s ≤ 2. G is ideal if and only if it is fat.

Proof. The implication fat ⇒ ideal is trivial. Then, assume that g1 is not fat, i.e. there
exists X 6= 0 ∈ g1 such that g1⊕ [X, g1] $ TeG. Hence there exists λ 6= 0 ∈ T ∗eG such that
(97) 0 = 〈λ, g1〉 = 〈λ, adX(g1)〉.
By Lemma 23, γX(t) = etX(e) is a normal and abnormal geodesic. In particular, a
sufficiently short segment of it is a minimizing curve. �

We learned the following fact by E. Le Donne. For the reader’s convenience we provide
a simple proof here, which is similar to the one in [12].

Lemma 25. Let G be a Carnot group of step s ≥ 3. Then there exists a non-zero X ∈ g1
such that the integral curve γX(t) = etX(e) is a normal and abnormal geodesic.

Proof. If there exists a X 6= 0 ∈ g1 such that adX(g1) $ g2, using the same argument of
Lemma 24, we show that γX(t) is abnormal and normal. Let qi := dim gi, for i = 1, . . . , s.
Then assume that, for any X 6= 0 ∈ g1, we have adX(g1) = g2. This implies q2 ≤ q1 − 1.
Consider a basis Y1, . . . , Yq2 of g2 and a basis Z1, . . . , Zq3 of g3. Let λ ∈ T ∗eG such that
〈λ, Zi〉 = 0 if i > 1 and 〈λ, Z1〉 = 1, while 〈λ, gi〉 = 0 for all i 6= 3. Consider the linear
maps Ai := λ ◦ adYi : g1 → R, for i = 1, . . . , q2. We have dim kerAi ≥ q1 − 1. Moreover

dim(kerA1 ∩ kerA2) = dim kerA1 + dim kerA2 − dim(kerA1 + kerA2)(98)
≥ 2(q1 − 1)− q1 = q1 − 2.(99)

After a finite number of similar steps we arrive to
(100) dim(kerA1 ∩ . . . ∩ kerAq2) ≥ q1 − q2 ≥ q1 − (q1 − 1) = 1.
Thus let X 6= 0 ∈ kerA1 ∩ . . . ∩ kerAq2 . We show that γX(t) = etX(e), which is a
normal geodesic, verifies the abnormal characterization of Lemma 23 with covector λ.
Since adiX(g1) ⊆ gi+1, we have 〈λ, adiX(g1)〉 = 0 for all i 6= 2 by construction of λ. Finally,
(101) 〈λ, ad2

X(g1)〉 = 〈λ, adX(g2)〉 = 0,
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where in the last passage we used the fact that adX(g1) = g2, that the latter is generated
by the Yi, and the definition of X. Then γX(t) is abnormal by Lemma 23. �

To conclude the proof, recall that Carnot groups are complete. Since fat structures do
not admit non-trivial abnormal curves [15, Section 5.6], fat ⇒ ideal. Moreover, ideal ⇒
step s ≤ 2 (Lemma 25). On the other hand, ideal and step s ≤ 2 ⇒ fat (Lemma 24). �
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