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ABSTRACT. This article deals with slow-fast systems and is, in some sense, a first approach to a

general problem, namely to investigate the possibility of bifurcations which display a dramatic change

in the phase portrait in a very small (on the order of 10−7 in the example presented here) change

of a parameter. We provide evidence of existence of such a very rapid loss of stability on a specific

example of a singular perturbation setting. This example is strongly inspired of the explosion of

canard cycles first discovered and studied by E Benoît, J.-L. Callot, F. Diener and M. Diener. After

some presentation of the integrable case to be perturbed, we present the numerical evidences for

this rapid loss of stability using numerical continuation. We discuss then the possibility to estimate

accurately the value of the parameter for which this bifurcation occurs.

RÉSUMÉ. Cet article traite de systèmes lents-rapides et constitue en quelque sorte une première

approche pour étudier un problème général, celui d’explorer les possibilités de bifurcations qui pré-

sentent un changement brutal au niveau du portrait de phase pour une très petite variation de pa-

ramètre (de l’ordre de 10
−7 dans l’exemple présenté ici). Nous donnons des preuves de l’existence

d’une perte brutale de stabilité de ce type sur un exemple spécifique dans un cadre de perturbations

singulières. Cet exemple est fortement inspiré de l’explosion de cycles canards initialement décou-

verte par E. Benoît, J.-L. Callot, F. Diener et M. Diener. Après une présentation du cas intégrable que

l’on souhaite perturber, nous apportons une preuve numérique de cette perte brutale de stabilité obte-

nue en utilisant une méthode de de continuation numérique. Nous discutons ensuite de la possibilité

d’estimer précisément la valeur de paramètre pour laquelle cette bifurcation se produit.

KEYWORDS : slow-fast systems, canard solutions, Lambert function, numerical continuation

MOTS-CLÉS : systèmes lents-rapides, solutions canard, fonction de Lambert, continuation numé-

rique
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1. Introduction

Hopf bifurcation has been thoroughly studied in two dimensional vector fields with
one slow and one fast variable; see for instance [6, 15, 19, 23, 24, 29]. This singular ver-
sion of the Hopf bifurcation displays an explosion of cycles as the periodic orbit which
emerges from the Hopf bifurcation grows explosively from an amplitude that is O(ε1/2)
to an amplitude that is O(1) over a range of values of the effective parameter µ of length
O(exp(−c/ε)). This phenomenon involves limit cycles named canards and which have
the peculiar property to follow both attracting and repelling (locally) invariant manifolds.
The explosion of canard cycles has first been detected and studied using non-standard
analysis [5, 6] and asymptotic and numerical analysis [2, 3, 19]. A description by means
of geometric singular perturbation theory, has been provided for the Van der Pol case in
[15]. A treatment of a more general case using the techniques introduced in [15] was
later developped in [29]. The normal form aspect was shown in [7]. J. Guckenheimer
developed a canonical system for singular Hopf bifurcation with two slow variables in
several articles [24, 25]. We consider here the case of one slow variable and analyse a
more general family which involves a global perturbation setting. In this context, one can
carefully keep track of periodic orbits by using both analytical and numerical continua-
tion methods. The combination of canard explosion and homoclinic bifurcation has been
investigated in various frameworks, both in singularly perturbed ODEs [4, 10, 27, 30] and
in context of traveling wave solutions of PDEs [8, 26].

2. Theoretical importance of canard cycles in the perturbation
theory of periodic orbits

Relaxation oscillations are represented by limit cycles which appear in slow-fast sys-
tems at the boundary of classical polynomial Liénard equations:

εx′′ + f(x)x′ + x = λ, (1)

where f(x) is a polynomial. To this equation, one associates the planar vector field:

x′ = y − F (x)
y′ = −ε(x− λ),

(2)

where F (x) =
∫ x

0 f(s)ds. For ε = 0 we have a family of layer equations whose crit-

ical curves are given by y = F (x). A slow-fast cycle of a layer equation is a simple
closed curve, union of regular trajectories (horizontal arcs in the complement of the crit-
ical curve) and arcs on the slow curve (critical arcs) which is a limit-periodic set, from
which limit cycles bifurcate when ε > 0 is small enough. Critical arcs are either attracting
or repelling depending of the sign of F ′(x). A slow-fast cycle is called common if all its
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critical arcs are of same type. Such a slow-fast cycle bifurcates when ε → 0 into a single
hyperbolic cycle. If a slow-fast cycle contains critical arcs of different type, it is called a
canard cycle.

In [20], an example was given of an attracting limit-periodic set that is a polycycle with
an attractive and a repulsive sector, which bifurcates into multiple limit cycle. Canard
cycles can, for the same reason, bifurcate in multiple limit cycles. This allows to find
more limit cycles than expected in Liénard equation [11, 16].

In relation with the study of the Hilbert 16th problem, it is important to further develop
global bifurcation theory inside the class of generalized polynomial Liénard system of
type (m,n):

εẋ = y − 1
2x

2 +
n+1∑

i=0

αi(ε)x
i,

ẏ = −x+ ε
m∑

j=1

βj(ε)x
j ,

(3)

where ε is a small parameter, and αi and βj are bounded parameters.

3. A general perturbation setting

We propose to study pertubation theory of the equation:

εẋ = y − f(x)
ẏ = −f ′(x),

(4)

where f(x) is a polynomial. We assume that all critical points of f(x) (zeros of f ′(x)) are
simple. After translation of coordinates, we can assume that one of the minima of f(x) is
at the origin and thus f(x) = x2

2 +O(x3). By a scaling time and variables appropriately,

(x, y, t) 7→ (ε1/2x, εy, ε1/2t), (5)

the equation is transformed into

ẋ = y − fε(x)
ẏ = −f ′

ε(x).
(6)

This equation is integrable and it possesses the first integral:

Hε : (x, y) 7→ Hε(x, y) = e−y [fε(x)− y − 1] . (7)

In the initial coordinates, we find the first integral

Hε : (x, y) 7→ Hε(x, y) = e−y/ε

[
f(x)− y

ε
− 1

]

. (8)
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This family of integrable slow-fast systems is particularly interesting because there is both
an explicit form of the first integral and furthermore the slow curve is explicitely defined
as {y = f(x)− ε}.

Lemma 1. The critical points of the function H are exactly the points (x0, y0) such that

f ′(x0) = 0 and y0 = f(x0). Critical values of H are h0 = − exp (−f(x0)/ε) < 0. The

critical points of H are Morse points either of center type (for local minima of f(x)) or

of saddle type (for local maxima of f(x)).

Proof. If we choose local coordinates centred at the points (x0, y0 = f(x0):

x = x0 +X
y = f(x0) + Y,

(9)

The Taylor expansion of Hε at the point (x0, y0) yields:

Hε(X,Y ) = e−
f(x0)

ε

[

−1 +
f ′′(x0)

2ε
X2 +

2

ε2
Y 2 + ...

]

(10)

and this shows the lemma.

Note that closed orbits of the Hamiltonian associated with H cannot intersect the slow
curve (which is contained in H = 0). As they must contain a critical point of H in their
interior, they are necessarily all above the slow curve, in the domain union of {H = h <
0}. Furthermore, the Morse lemma shows that all orbits close to a critical point associated
to a minima of f are necessarily closed. The phase portrait of the Hamiltonian of H
displays nested periodic orbits around each critical points of center type. The topological
type of the level sets of {H = h} can change only when h crosses a critical value. Such
critical levels corresponds to homoclinic or heteroclinic loops. In some cases, a nest of
periodic orbits bounded by a heteroclinic loop can be included in another nest of periodic
orbits as seen below.

To simplify the drawings, we choose to represent the level sets of H for ε = 1 in the
example:

εẋ = y − f(x)
ẏ = −f ′(x)

with : f(x) = (x+ 1)x(x − 1)
(
x− 3

2

)
(x− 3).

(11)
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Figure 1. Slow curve {y = f(x)− 1} (in black) and critical curve (in red).
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Figure 2. Three cycles belonging to three different nests.
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Figure 3. The three homoclinic loops which bound each nests.
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Figure 4. Full phase portrait.
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Consider next this second example

εẋ = y − f(x)
ẏ = −f ′(x)

with : f(x) = x2

2 − x4

4 .

(12)

 -3 0 3
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0

2

x

y

••

Figure 5. A nest bounded by a heteroclinic loop

4. The Lambert function and the parametrization of the level
sets of H

Consider the entire function:

f : w 7→ z = wew. (13)

This function is locally invertible near w = 0 and the Lagrange inversion theorem yields
as inverse the series:

W0(z) =

+∞∑

n=1

(−n)n−1

n!
zn. (14)

This convergent series defines the so-called principal branch of the Lambert function [9].
Note that f displays a critical point at w = −1, hence a critical value at z = −1/e.

This implies that the radius of convergence of the series is less than or equal to 1/e. In
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fact, it is exactly equal to 1/e, which is easily seen using the ratio test. The following
lemma can be proved (see [9] p. 23). For the reader’s convenience, we recall the proof.

Lemma 2. The Lambert function displays a square root branching point at the point

z = −1/e. More precisely, if we change variable z into p =
√

2(ez + 1), then there

exists a convergent series on the disc p ∈ D(0,
√
2) such that:

W0(z) = −1 + Φ(p) = −1 + p− 1

3
p2 +

11

72
p3 + ... (15)

Proof. Write z = wew , with w = −1 + u. This displays w = 1
e (−1 + u)eu, hence:

z =
1

e



−1 +
∑

k≥2

(
1

(k − 1)!
− 1

k!

)

uk



 . (16)

If p =
√

2(ez + 1),

z =
p2

2
− 1 = −1 +

u2

2
+ ... (17)

By the local inversion theorem, this yields two possible analytical branches:

u = Φ(p) = p+ ...
u = Φ(−p) = −p+ ...

(18)

Note that the values W0(z) > −1, z ∈ R thus W0(z) = −1 + Φ(p) and the other choice
defines another real branch of the Lambert function that is denoted as W−1:

W0(z) = −1 + Φ(p)
W−1(z) = −1 + Φ(−p).

(19)

The square-root branching point displayed by the main branch of the Lambert function
W0(z) gives birth to another branch W−1(z) which also solves the equation wew = z.
There are indeed infinitely many solutions in the complex to the equation and correspond-
ingly infinitely many complex branches of the Lambert functions. Note that this whole
complex ramification was preceedingly used in relation with a family of Abel equation in
[21]. Here we focus only on the two branches W0 and W−1 which are the only branches
which take real values over the real.

Consider the slow-fast system defined previously:

εẋ = y − f(x)
ẏ = −f ′(x).

(20)

System (20) displays the first integral
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e−y/ε

[
f(x)− y

ε
− 1

]

= h = constant. (21)

Thus trajectories can be split in two parts

y+ = f(x)− ε− εW−1(
h
e e

f(x)/ε),
y− = f(x)− ε− εW0(

h
e e

f(x)/ε).
(22)

To complete the description of the periodic of these systems, we prove the following
proposition:

Proposition 3. Any periodic trajectory intersects transversally the critical curve in ex-

actly two points.

Proof. Consider first a fast trajectory and assume that it could be tangent to the critical
curve. This would yield to two equations

W (he e
f(x)/ε) = 1,

W ′(he e
f(x)/ε)(he e

f(x)/ε)f ′(x)/ε = 0.
(23)

This implies both y = f(x) and f ′(x) = 0 and so this fast trajectory must contain a
stationary point. Consider now a periodic orbit. Its fast part cannot contain a stationary
point and hence it intersects the critical curve transversally. Assume it would intersect the
critical curve in more than two points (hence at least 4 points). Then there would be a
contradiction with the constant sign of ẋ above of the critical curve. So the fast part of
the periodic orbit intersects the critical curve in two points. It is then easily checked that
on the left and on the right of these intersection points the periodic orbit extends with a
slow part which goes between the critical curve and the slow curve y = f(x)− ε without
possible further intersection with the critical curve. The two parts of the periodic orbit,
slow and fast, correspond exactly to the two parametrizations of the level sets of H with
W−1 and W0 respectively.

5. An example of canard-induced loss of stability

We consider the particular case of integrable Liénard equations (depending of a pa-
rameter α):

εẋ = y − x2

2 − αx3

3
ẏ = −x− αx2,

(24)

and the pertubation setting (depending of two more parameters β, µ):

εẋ = y − x2

2 − αx3

3
ẏ = −x− x2(α− β) +

√
εµ.

(25)
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After rescaling this yields:

ẋ = y − x2

2 −√
εαx3

3
ẏ = −x−√

εx2(α− β) + µ.
(26)

Numerical simulations have been done with XPPAUT [18]. They are shown on the two
panels of Fig. 8. For α = 0.395,

√
ε = 0.03125 and β = 0.01, a small canard cycle is

born for µ very small and negative. Then for µ between −0.0003128 and −0.0003127,
there is a cycle explosion where the small cycle jumps to the maximal cycle which dis-
appears across an homoclinic bifurcation. In order to capture the entire bifurcation se-
quence, from the Hopf bifurcation to the homoclinic bifurcation via the canard explosion,
we have used numerical continuation with the software package AUTO. Path-following
methods [28], used in conjunction with boundary-value solvers [12, 13], are very effective
to treat numerically multiple-timescale problems, which are very stiff due to strong repul-
sion in the normal direction to slow manifolds, hence particularly in the canard regime;
see [11] for more details on this topic. To illustrate this point, we show on Fig. 6 the
bifurcation diagram of system (26) with respect to µ (panel (a)) as well as a selection of
canard cycles approaching the (canard) homoclinic connection (panel (b)).
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Figure 6. (a): Bifurcation diagram of system (26) in µ. (b): a few limit cycles on the

explosive branch (in blue) shown in panel (a), approaching the homoclinic connection.
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Figure 7. (a): Small canard cycle for α = 0.395,
√
ε = 0.03125, β = 0.01 and µ =

−0.0003127. (b): Trajectory with same initial condition for µ = −0.0003128.

We propose to try to estimate the bifurcation value of the parameter µ using the tra-
ditional approach to cycle explosion based on asymptotics. We closely follow estimates
proposed by Eckhaus for the case of the van der Pol equation. There are good reasons
to believe that this approach could be adapted because we have in the integrable case an
explicit equation for the slow curve.

It is convenient to write the perturbed system as

εẋ = y − f(x) = y − x2

2 − αx3

3
ẏ = −f ′(x) + δ(x) = −x− αx2 +

√
εµ+ βx2.

(27)

Note that for the unperturbed case, δ(x) = 0, y − f(x) = −ε is a solution (slow curve).
In the perturbed case, δ(x) 6= 0, we can look for a solution φ(x, ε) of the equation:

y − f(x) = −ε+ ε2φ(x, ε), (28)

defined on an interval [x0, x1] so that |x0| ≤ 1
α .

As ẋ = −1+ εφ and εφ̇ = − δ(x)
ε −φf ′(x), the unknown function φ must be solution

of the differential equation:

ε[−1 + εφ]
dφ

dx
= −f ′(x)φ +

δ(x)

ε
. (29)

This equation can be cast into:

φ′(x) =
[
f ′(x)

ε + εφ′(x)
]

φ(x) − δ(x)
ε2

=
[
f(x)
ε + εφ(x)

]′

φ(x) − δ(x)
ε2 .

(30)
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Following Eckaus, to solve this equation, we first solve the associated homogeneous
equation:

φ′(x) =

[
f(x)

ε
+ εφ(x)

]′

φ(x). (31)

This yields,

φ(x) = K exp

(
f(x)− f(x0)

ε
+ ε(φ(x) − φ(x0))

)

. (32)

By a classical method of variation of the constant, we obtain the solution of equation
30 as follows:

φ(x) = e
Q(x)

ε

[

φ(x0)e
−

Q(x0)
ε − 1

ε2

x∫

x0

e−
Q(t)

ε δ(t)dt

]

Q(x) = f(x) + ε2φ(x).

(33)

Following again the approach of Eckhaus, we find that there exists a bounded solution
φ for

β = O(ε)

µ = µc + ε5/2σe−
k2

ε ,
µc = −√

εβ(1 + d)[1 + o(1)]

(34)

for some d ∈ [−2/3, 2/3]. This approximation is consistent with the parameter interval in
which canard solutions are found numerically. Indeed, we find by direct numerical simu-
lation with XPPAUT that canards exist for µ approximately in the interval ]−0.0003128, 0[.
This approximation matches what is obtained with a better precision by using numerical
continuation with AUTO; see Fig. 6 (a). Moreover, we observe that the numerical lower
bound is consistent with the theoretical value

µc = −
√
εβ = −0.0003125.

If we reproduce Eckhaus’ analysis for the van der Pol system

εẋ = y − x2

2 − αx3

3
ẏ = −x+

√
εµ

(35)

we find that

µ = µc + ε3/2σe−
k2

ε ,
µc =

√
εα(1 + o(1)).

(36)

This matches what we obtain by numerical simulation with XPPAUT.
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Figure 8. Canards in the classical van der Pol equation (35). Panel(a): Small canard cycle

for α = 0.395,
√
ε = 0.03125 and µ = −0.0123664. Panel (b): Large canard cycle for

µ = −0123665.

We also verify numerically that the amplitude of the parameter interval in which ca-
nards exist is well approximated by the value

√
εα = 0.0123438.

This first approach gives a first approximation of the parameter interval in which ca-
nard solutions exist but it is not clear that it allows to follow the canard cycle until it
reaches the homoclinic bifurcation. Indeed in the case of the van der Pol system Eckhaus’
analysis is not valid close to the point satisfying 1 + αx = 0. It seems that in the case of
system eq:sytst we do not have this restriction. An interesting fact is that the parameter
interval in which canard solutions exist in the generalized Lambert system (26) is very
small.

We now want to predict for which parameter value the homoclinic bifurcation oc-
curs. This justifies to develop another strategy based on the first-return map and its first
derivative given by an integral of Lambert functions.

Consider the equation

h = e−
y
ε

[
f(x)
ε − y

ε − 1
]

ω = e−
y
ε
y−f(x)

ε dy − e−
−y
ε (−f ′(x)− δ(x))dx

= dh− e−
y
ε δ(x)dx.

(37)

Consider the solution of the full equation passing by the point (0,−ε[1+W−1(he
−1)]).

Let L+(h, β, µ) be the (y-value) first intersection of this trajectory with the axis {x = 0}
following the positive flow. Let L−(h, β, µ) be the intersection point with {x = 0}
of this trajectory following the negative flow. Let γµ,β,h be the closed arc union of the
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arc of trajectory between the two points L+(h, β, µ) and L−(h, β, µ) and the segment
[L−(h, β, µ), L+(h, β, µ)] on the axis x = 0. Then, the following integral:

∫

γµ,β,h

ω =

∫

γµ,β,h

dh−
∫

γµ,β,h

e−
y
ε δ(x)dx, (38)

displays the condition:

L+(h, µ, β)− L−(h, µ, β) = −
∫

γ0

e−
y
ε δ(x)dx +O

(
(
√
µ, β)2

)
. (39)

Recall the parametrization of the level sets of the Hamiltonian

y(x) = f(x)− ε
[

1 +W (he e
f(x)
ε )

]

,

eW (u) = u
W (u)

for W = W−1 or W = W0. This displays:

L+(h,β,µ)−L−(h,β,µ)
h = β

x+(h)∫

x−(h)

x2

[

1

W0(
h
e e

f(x)
ε )

− 1

W−1(
h
e e

f(x)
ε )

]

dx

︸ ︷︷ ︸

I2(h)

+
√
εµ

x+(h)∫

x−(h)

1

W0(
h
e e

f(x)
ε )

− 1

W−1(
h
e e

f(x)
ε )

dx

︸ ︷︷ ︸

I1(h)

+O
(
(
√
µ, β)2

)
.

(40)

It is easy to check that h 6= −1, I1(h), I2(h) 6= 0. So we can apply the implicit
function theorem for finding a cycle by solving the equationL+(h, µ, β)−L−(h, µ, β) =
0. This equation is rather involved but a first approximation for it is obtained by solving

βI2(h) +
√
εµI1(h) = 0. (41)

This can be done using MATHEMATICA or MAPLE, where many possible computations
are possible with the Lambert functions [9].

Because the homoclinic loop in the perturbed system have to be very close to the
homoclinc loop in the Hamiltonian system, we solve equation (41) with the value h =

e−
1

6α2ε (level of the homoclinic loop in the Hamiltonian system). The loss of stability is
found for µ ≃ 0.00031274, which gives an approximation with a very high precision.
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Further developments of this observation are expected and will be the subject of a
follow-up publication.
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