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Abstract—This paper shows that context-aware applications
commonly make implicit assumptions about a sensor infras-
tructure. Because context-awareness critically relies on these
assumptions, the developer typically need to ensure their
validity by encoding them in the application code, polluting
it with non-functional concerns. This defensive programming
approach can be avoided by formulating these assumptions
aside from the application, thus factorizing them as an explicit
model of the sensor infrastructure. This model can be expressed
as a set of rules and can be checked automatically and
continuously to ensure the reliability of a sensor infrastructure,
both at installation time and during normal functioning. The
usefulness of our approach is demonstrated in the domain of
assisted living for seniors. We applied it to sensor data collected
in the context of a 9-month field study of an assisted living
platform, deployed at the home of 24 seniors. We show that
several kinds of sensor malfunctions could have been identified
upon their occurrence, thanks for our continuous checking, and
resolved.
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I. INTRODUCTION

As pervasive computing applications get intertwined with
users’ daily activities, context awareness becomes a key en-
abling feature to make these applications acceptable to users.
For example, in a smart home, context awareness allows an
application to remind the user of an activity [1], only when it
has been forgotten; it triggers an alert for an open door, only
when nobody is in the surroundings; it calls upon the user for
a hot cooker, only when it has been unattended for a while.
To pervade the user’s life, the context-awareness of activity-
supporting applications must be reliable. This property is
essential to minimize false positives in detecting situations
that require the user attention. Indeed, inaccurate context
awareness leads to notification fatigue in users, preventing
technology adoption.

The reliability of a context-aware, pervasive computing
application is defined by the reliability of the system as
a whole [2]. In pervasive computing, the system mainly
consists of the software and hardware layers. Software relia-
bility has been studied for the pervasive computing domain;
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simulation-based approaches have been proposed (e.g., [3])
to test the software extensively before deploying it. These
approaches allow context-aware scenarios of applications to
be tested in-vitro, simulating interactions of the user with
the environment (e.g., an open door, a presence in a room, a
switched-on appliance). Despite the rigor and thoroughness
applied to this testing phase, the resulting software reliability
holds to the extent that the underlying hardware layer is itself
reliable.

The reliability of the hardware layer of a pervasive
computing system depends on a number of factors. At a
unitary level, it depends on the reliability of a sensor, which
could at first amount to whether the sensor is functioning
properly. But in fact, when it is context aware, an application
relies on a number of requirements regarding sensors [2].
Conceptually, a sensor is viewed as playing a role in the
application logic: it measures the environment, including the
interactions of the user with their environment. As such, the
sensor is assumed to be placed at an appropriate location to
measure interactions accurately (direction, frequency, non-
interference, etc.) [4]. When determining a context depends
on a combination of interactions, the developer builds an
implicit model of the roles to be played by a combination of
sensors [5]. For example, a contact sensor for the entrance
door can be conceptually coupled with a motion detector,
covering the entrance area. An application can use these
dependent sensors as follows: if the entrance door is open,
but the presence of the user is detected nearby, then no alert
should be delivered. If this implicit dependency model is
violated because of a faulty motion detector, the context
awareness of the application is compromised, resulting in
notifications erroneously alerting about the entrance door
left open and unattended, even when the user stands in the
entrance area.

To address reliability at the sensor level, a developer typ-
ically introduces code to test whether their implicit model is
valid. This strategy consists of translating implicit rules into
conditional statements dispatched throughout the application
code. These rules contribute to ensure that sensor readings
are in conformance with the implicit model. For example,
let us assume that a kitchen is equipped with contact sensors
for specific cabinet doors and a motion detector. Then,



a cabinet door should not be detected as being opened
without first detecting a presence in the kitchen. If that
situation occurs, it means that the implicit model is violated.
A number of reasons could then be invoked (placement,
malfunction) and should lead to an intervention to solve the
problem. Detecting these situations is a key to the reliability
of context-aware pervasive computing applications in the
wild [6].

This paper addresses the challenge of making reliable the
detection of user activities defined by interactions of user
with their environment. This range of context awareness is of
the utmost importance for a range of applications supporting
daily life activities of a user in their home. Our approach
consists of making explicit the model of roles played by
sensors. This model is defined by declaring rules that
contribute to ensuring that sensors function in conformance
with their expected roles. These conformance rules take the
form of relations that are checked by a Prolog program. This
program runs alongside the pervasive computing system; it
intercepts sensor readings and continually checks whether
they conform to the model of sensor roles, raising an error
if they do not.

We implemented our approach with a complete system
combining 1) a pervasive computing platform, 2) sensors and
actuators for the home, and 3) a Prolog-based verification
layer. This implementation has been applied to the domain of
assisted living for older adults. We used deployments made
in the home of older adults to validate our tool. Specifically,
we demonstrated that our tool can detect a number of
anomalies in deployments, ranging from misplacement to
obstruction or fall.

Our approach has many benefits, impacting all the stake-
holders of a smart home. Programmers can make their
application requirements on sensors explicit as they develop
their application, while preventing their code from being
polluted with conditional statements. This achieves a sepa-
ration of concerns that contributes to ease the development
of pervasive computing applications. Also, when a sensor
is shared among different applications, its declared role
can be matched against a new application requirement.
Furthermore, the model of sensor roles can be shared with
the individual installing the sensors. This could be done by
providing them with an appropriate representation for the
conformance rules to guide in the placement of the sensors.

This paper makes the following contributions.
• We propose an approach to improving the reliability of

context-aware applications dedicated to activity moni-
toring.

• A concept of model of sensor roles is introduced to cap-
ture application requirements concerning sensors, and
continuously checked alongside running applications.

• This model of sensor roles can be factorized across
applications, shared among stakeholders, and leveraged
for platform evolution.

• We present a tool that implements our approach in an
assisted living platform.

• We validate our tool on real deployments in the home
of older adults, demonstrating the effectiveness of our
approach.

The paper is organized as follows. Section II describes a
case study used for introducing and illustrating our approach.
Section III analyzes the application needs in terms of sens-
ing abstractions and their implicit assumptions about these
abstractions. Section IV proposes a model for making these
assumptions explicit and checkable automatically. Section V
presents the architecture we propose for continuously check-
ing the model conformance during execution, or offline. Sec-
tion VI describes some experimental results validating our
approach on data accumulated during an activity monitoring
field study. Section VII further discusses some benefits of
our approach. Section VIII relates our approach to other
research works, and Section IX concludes.

II. CASE STUDY

To illustrate our approach, we present the monitoring
of two kitchen activities as a case study. This case study
is simple but complete, using several types of sensors to
recognize different types of user interactions in the kitchen
environment.

Activity monitoring is strongly dependent on the popula-
tion targeted by the assistive applications [7]. For example,
older adults may simply need to be reminded of daily
tasks [8], whereas people with intellectual disabilities (e.g.,
Down syndrome) may need to be monitored through key
steps of a task [9].

To determine which activities to monitor and how to
monitor them, we need expertise on the targeted population
from such professionals as ergonomists and occupational
therapists. In our example, an expert is able to decide
which activities must be monitored in the kitchen. Starting
from this set of activities, the expert then defines which
interactions with the environment need to be detected for
each activity of interest. Typically, the expert will ask users
to mimic the steps they perform during an activity [8]. Once
the key interactions related to each activity of interest have
been identified, we need to define which sensors are relevant
to measure these interactions. This phase has been studied
by Beckmann et al. [6]. They present practical guidelines
for installing sensors in the home and assess them with a
field study.

Let us assume that the expert suggested to monitor the
breakfast preparation to issue a reminder to the user when
this activity is missed and to monitor the cooker to ensure
it is safely operated.

A. Breakfast activity monitoring

To monitor the breakfast activity, the domain expert
provides typical scenarios performed by users. One of them



involves a user (1) making coffee using an electric coffee
maker, (2) taking a cup from a specific cabinet or the
dishwasher, and (3) taking milk from the fridge. From this
scenario, one can isolate the interactions to be recognized:
(1) turning on the coffee maker, (2) opening a cabinet door,
and (3) opening the fridge door. To detect these interactions,
an electric sensor is used to measure electric consumption
associated with the coffee maker: sensing electric consump-
tion means that the coffee maker is turned on. Interactions
with the fridge door and a cabinet door are both detected
using contact sensors. For simplicity, we omit putting a
contact sensor on the dishwasher and assume that the action
of taking a cup may not be detected.

B. Cooker safety

Monitoring the cooker for safety depends primarily on
detecting the cooker usage and the nearby user, keeping an
eye on the cooking process. An electric sensor is used to
detect whether the cooker is turned on. To determine whether
the user is nearby, a motion sensor can be positioned to
monitor presence within a strategic perimeter around the
cooker (typically the kitchen).

C. Making explicit an implicit model

To summarize, the activities to be monitored in our
case study rely on recognizing five interactions with the
environment of the kitchen: opening a cabinet door, opening
a fridge door, turning on a coffee maker, turning on a cooker,
and detecting presence in the kitchen.

Let us now sketch, in the context of our case study, the last
step of our proposed method: making explicit the implicit
model that ensures the reliability of the detected interactions.
We know that each interaction measured in the kitchen must
be preceded by a presence detection. Conversely, if an in-
teraction is measured without being preceded by a presence
detection in the kitchen, the sensors involved are assumed
to be malfunctioning. These rules contribute to ensuring that
the sensor infrastructure functions in conformance with the
model of roles.

III. APPLICATION REQUIREMENTS

The aim of activity-supporting applications is to provide
monitoring and assistive services to the user. The services
rely on a set of interaction measurements in the environment,
as illustrated by our case study presentation.

However, there is often a gap between the raw data,
delivered by the sensors, and the conceptual view of an
environment interaction, required by the application de-
veloper. For example, a contact sensor produces boolean
values, defining an open/close status. This status needs to be
combined with the specific location (and/or identifier) of the
sensor to make an interaction meaningful for the application.
Furthermore, multiple sensors may need to be combined to

detect a situation. For example, several motion detectors may
be needed to detect presence in an L-shaped room.

Our approach aims to abstract over the physical layout of
sensors needed to detect a conceptual situation. To do so,
we introduce the notion of roles required by an application.

A. Role

From the application viewpoint, a role defines interaction
information that can be directly used by the application
logic; it consists of a type of interaction (e.g., presence) and
the location of the interaction (e.g., the kitchen). From a
physical viewpoint, a role defines requirements that must be
fullfilled by one or more sensors to detect a given interaction.
As a result, roles are placed between the application and
the physical layout of sensors, as depicted in Fig. 1. To
be in conformance with a role, the sensors must be layed
out properly in terms of positioning and direction, for
example. As illustrated previously, detecting presence in
an L-shaped kitchen requires at least two motion sensors,
appropriately directed so that each part of the kitchen be
covered, without picking up motion in adjacent spaces (e.g.,
the hallway outside the kitchen). As can be noticed, roles
allow a separation of concerns between the application and
the physical layout of sensors.

B. Semantics of roles

In fact, the semantics of a role amounts (1) to detecting
an interaction with the environment, producing a value true,
and (2) to detecting the end of this interaction, producing a
value false.

A role is thus a function defined over time and ranging
over boolean values. When an interaction is detected at a
given time, it produces true, until it is no more detected, at
which time is produces false.

In practice, note that to provide this timed event seman-
tics to the application, the implementation of a role must
filter out atypical sequences of sensor readings (noise). For
example, the role layer of a contact sensor, when provided
with two consecutive true values (open), will filter out the
second one.

Figure 1. Application requirements and roles



IV. INFRASTRUCTURE MODEL

The sensors installed in a home form an infrastructure
that supports the roles required by the deployed applications.
The reliability of the context awareness of this infrastructure
critically depends on the correctness of role implementa-
tions.This reliability goes beyond unitary tests for each role.
To address the reliability of the sensing infrastructure, we
propose to build a checkable model of this infrastructure.
Not only does this model take into account individual roles,
but it also considers their conformance with respect to a set
of global rules about the sensor infrastructure.

A. Role events domain

The first step to make explicit the infrastructure model as
a set of rules is to provide the domain of objects that rules act
upon: the role events. A role event consists of three elements:
(1) an interaction that occurred (2) at a given location, (3)
during a specific period of time. First, let us examine the
notion of period. It is defined as an interval bounded by two
timestamps. That is,

Period =N2

For p ∈ Period, p =< t1, t2 > and t1 < t2

A period can thus be seen as a set of increasing time
values, from t1 to t2, with an increment of 1 second – finer
granularity is not useful in practice. As such, we use the
basic operations on sets to operate on periods, including
⊆,⊇.

Second, a role event consists of an interaction that oc-
curred during a period. The set of interactions is defined by
Inter (e.g., Presence, Opening, Use). Last, a set of locations,
Loc, specifies the locations of interest in the home (e.g.,
Kitchen, Bathroom, Bedroom). Role events are thus defined
as follows.

e ∈ Event = Inter×Loc×Period

As the infrastructure of sensors monitors the home, it
produces a log of readings that is structured as a stream of
role events, defined above. The log of role events is defined
as log ∈ Log = P(Event)

B. Formulating rules

Now that logs of role events have been defined and can be
manipulated, let us focus on the rules of the infrastructure
model. These rules are expressed as a set of logical formulas
in the first-order predicate calculus. We introduce these rules
by examining three examples from our case study.

Kitchen presence. We define a rule that makes explicit the
dependency of the sensors in the kitchen. In essence, we
want to express the fact that any detected interaction, which
is not motion, must be surrounded by motion interaction.
In doing so, we express the fact that the motion sensor
of the kitchen encompasses any other interactions in the
kitchen (e.g., cabinet door, coffee maker). Once expressed,

this semantics ensures the consistency of the sensor readings
in the kitchen.

Our kitchen-presence rule takes a role event situated in
the kitchen and a log; it is defined as follows.

∀ < i,Kitchen, p > ∈ Log, i 6= Presence ⇒
∃ < Presence,Kitchen, p′ > ∈ Log, p⊆ p′

Left-open doors. We assume that for assisted living purposes,
doors equipped with contact sensors must not remain open
beyond a given period of time, noted MAX . Such a rule
typically applies to the fridge door and the entrance door
because they must not remain open for too long. The MAX
time can vary depending on the user preferences and the
door type.

This rule takes an opening role event and a log; it is
defined as follows.

∀ < Opening, l, p > ∈ Log⇒ #p < MAX

Notice that a door left open may mean that the associated
sensor is malfunctioning, or that the user has in fact forgotten
this door and it is not monitored by an application triggering
a safety notification. For example, the cabinet door in our
case study is only monitored for reminding the user to
prepare their meal, not for reminding them that it is left
open.

No ubiquity. Some conformance rules can be specific to
a given application area. For example, our research in
pervasive computing is partly dedicated to independent
living of single seniors. This situation can give rise to
the following conformance rule: a presence role cannot be
detected simultaneously in two locations. The no-ubiquity
rule is defined as follows.

∀ < Presence, l, p > ∈ Log⇒
@ < Presence, l′, p′ > ∈ Log, l 6= l′∧ p′∩ p 6= /0

In practice, defining conformance rules provides detailed
guidelines to install and position sensors in the physical
world. For example, the kitchen-presence rule requires the
presence to be recognized in the entire kitchen. Once a
home is installed, the rules ensure the compliance of the
installation to the model.

V. ARCHITECTURE

In this section, we propose an architecture to continu-
ously verify that an installation is in conformance with its
infrastructure model. Then, we briefly describe our prototype
implementation of this architecture, which has been used to
validate our method experimentally.

A. Architecture

Globally, our proposed architecture consists of abstracting
over raw sensor readings with the role layer, fueling both
the relevant applications with high-level values, and the
log of role events used by the conformance rules of the



infrastructure model. This architecture is depicted in Fig. 2.
As can be noticed, role events are processed concurrently by
the relevant applications and the log component. In doing so,
the conformance rules can be executed on the fly to raise
errors as they occur. Alternatively, the rules can be executed
offline to diagnose problems when an operator is available
for maintenance.

Beyond maintenance, logs of role events can also be very
valuable for analysis purposes in the case of assisted living
of seniors. Indeed, these logs allow to perform longitudinal
analyses of user activities that can reveal aspects of cognitive
decline due to aging. Such analyses will typically prompt
professionals to adapt, remove or install new assistive appli-
cations to address the evolving needs of the users.

As well, application developers can also leverage logs
of role events to adjust the application logic to the reality
of user daily life. For example, one may adjust thresholds
triggering notifications to prevent user fatigue. Also, a log
of role events may be used by the developer to replay a
sequence of interactions to debug an application that has
crashed or behaved incorrectly.

B. Implementation

This section focuses on the components needed to imple-
ment the conformance rules. Our implementation revolves
around Prolog because it allows to naturally express our
rules and efficiently performs conformance checking.

Rules.
Conformance rules are implemented as Prolog predicates,

as well as operators to manipulate role events. More pre-
cisely, inter e/2, locat e/2, and period e/2 allow to access
the interaction, the location, and the period of an event,
respectively, or to check their equality to a given constant.
Operator subset e/2 checks whether the period of an event
is included in the period of another event.

As depicted in Fig. 3, the Prolog predicate pres-
ence kitchen/1 checks the rule on the log of role events,
represented as a list, and returns the list of events that
violate the rule. A helper predicate presence kitchen/2 with

Figure 2. Architecture

two arguments is used for examining each event in the log
while passing around the complete log. For each role event
E in the log, which is not a presence and which happens
in the kitchen, the helper predicate checks the rule using
the presence/2 predicate; if this fails, it adds the current
event to the list of violating events. The presence/2 predicate
searches for a presence role event in the kitchen, whose
period encompasses E, using operator subset e/2; if no such
event is found in the whole log, the rule fails. Note that the
implementation given above is naive because it scans the
complete event log for each event to be checked, so it has
quadratic running time. The actual implementation searches
a reduced log (by filtering only events in the kitchen) and is
linearized (by considering each presence event in the kitchen
and filtering out all the events included by it).

Role parser. Because the pervasive computing platform used
to validate our method did not provide the role abstract
layer, we simulated this layer in our implementation of the
architecture using a “role parser”. This component builds a
log of role events by processing the log of sensor readings
and associated information (sensor type, location, state,
and timestamp). The role parser is implemented as a C++
module.

Rule engine.
This module processes the log of role events produced by

the role parser, and calls the Prolog interpreter to execute
each rule. As a result, when a rule fails, the rule engine

% Checks rule on all the log. Takes the whole log.
% Returns list of violating events.
presence_kitchen(Log,LVE):-

presence_kitchen(Log,Log,LVE).

% Checks rule on all the log (helper predicate).
% Takes remaining log to check and the whole log.
% Returns list of violating events.
presence_kitchen([],_,[]).
presence_kitchen([E|T],Log,[E|LVE]):-

not inter_e(E, ’Presence’),
locat_e(E,’Kitchen’),
not presence(E,Log),!,
presence_kitchen(T,Log,LVE).

presence_kitchen([_|T],Log,LVE):-
presence_kitchen(T,Log,LVE).

% Checks rule on a kitchen non-presence event.
% Takes event to check and the remaining log.
presence(E, [E1|_]) :-

period_e(E,P),
inter_e(E1,’Presence’),
locat_e(E1,’Kitchen’),
period_e(E1,P1),
subset_p(P,P1),!.

presence(E, [_|T]) :-
presence(E,T).

Figure 3. presence kitchen Prolog predicate



identifies the role events involved and provides a list of non-
conformant role events along with the corresponding failing
rules. This module is also implemented as a C++ module.

VI. VALIDATION

We first briefly present the experiment that we used to
collect real log data. We then defined conformance rules
for a model of roles dedicated to assisted living of seniors.
Finally, we applied the rules to the logs to assess their ability
to detect conformance violations.

A. HomeAssist experiment

The HomeAssist project1 aims to prolong independent
living for single seniors in their home by providing them
an assisted living platform with applications supporting their
daily activities. Experts in occupational therapy and psychol-
ogy and aging have defined which activities to monitor then
and a set of environment interactions to be measured.

In this project, two kinds of applications were provided:
(1) applications for monitoring daily activities and assist
the user when they are missed, and (2) safety applications
to secure the home (e.g., entrance door left open). A field
study was conducted by recruiting 24 older participants and
deploying our assisted living platform for a period of 9
months. This present work uses the sensor data collected
during the HomeAssist project to validate our approach.

B. Model

The sensor setting of HomeAssist allows to detect twelve
points of interaction with the environment. Presence in-
teractions are measured with motion detectors, opening
interactions are measured with contact sensors, and elec-
tric appliance uses are measured with electric consumption
sensors. The HomeAssist setting and the related roles are
summarized in Table I.

For practical reasons, our approach was not put into
practice when HomeAssist started. Instead, we retrofitted

Room Role Sensor

Kitchen

Coffee maker in use EM
Cabinet door open CS
Fridge door open CS
Microwave in use EM
Presence CS

Entrance Door open CS
Presence MD

Bathroom Shower in use MD
Presence MD

Bedroom Dressing open CS
Bedside lamp in use EM
Presence MD

EM = Electric Meter, CS = Contact Sensor, MD = Motion Detector.

Table I
HOMEASSIST ROLES

1
http://phoenix.inria.fr/research-projects/homeassist

HomeAssist with our approach. As a result, our model was
used to retroactively check the conformance of each partici-
pant’s home by executing the rules on the logs accumulated
during the experiment. In an ongoing field study, our work
will be part of the deployed platform.

Considering the field study and our roles, we specified the
conformance rules that made explicit the setting of our field
study. Namely, participants lived alone (No ubiquity rule)
and some interactions with the environment had to follow a
typical pattern (Left-open doors). Other conformance rules
were agnostic to the purpose of the study and could be gen-
eralized to any setting. This situation applies to the Presence
inclusion rule and its refinements, Presence intersection and
Presence requirement.

Let us now further examine these rules.

No ubiquity. Recall that this rule ensures that a presence role
is not detected simultaneously in two locations. In practice,
depending on the reactivity of the motion sensors used to
implement presence detection, some minor overlapping may
occur and need to be ignored. Typically, a presence detector
signals absence with some latency, allowing the user to be
detected in some other room. This situation results in a
presence detected simultaneously in two different locations,
during a short time.

Left-open doors. This rule ensures that an Opening role
period does not last more than a maximum duration (3 hours
in our setting). Notice that this rule applies to the log of role
events and does not consider how assistive applications may
react to such situation. For example, HomeAssist includes
an application that monitors the entrance door and notifies
the user when the door is left open and unattended, for a
few minutes (the duration is customized for each user). In
practice, when applied to the logs of our field study, this
rule detected in almost all cases installation problems. One
of the reasons is that the participants were routinized in
their activities [10] and did not show any significant decline
during the field study.

Presence inclusion. Each room in which interactions need
to be detected was equipped with a motion detector. Hence,
we generalized the Kitchen presence rule as follows: any
interaction at a given location, which is not Presence, must
be included in a Presence role at the same location.

Presence intersection. Presence inclusion may be too con-
strained to apply to some situations. Sometimes, we just
need to enforce that Presence and some other interaction
have a non-empty intersection when they are located in
the same area. Such a rule addresses the home entrance,
equipped with a contact sensor for the entrance door and
a motion detector for the entrance area. Indeed, whether
the user opens the door from outside or inside, Presence
and Open role events have a non-empty intersection of time
periods.



Presence requirement. To check whether a motion detector
is still active, even though mispositioned, we introduce the
following rule: every role, which is not Presence, must be
accompanied by a Presence role event at the same location.
This Presence must occur at the same time plus or minus
10 minutes. This rule makes explicit the fact that a motion
sensor is always coupled with one or more other sensors in
our setting. When this rule is violated, it is likely that the
presence detector is not working properly because it is still
registered but not emitting any information.

C. Methodology

We collected the log data in the home of 24 participants,
aged 80 on average and living alone. Logs covered a
period of 9 months. But, due to technical problems (e.g.,
Internet access, sensor gateway, server), some periods of
time had to be ignored; these problems can be directly
detected at the platform level. The logs of HomeAssist were
further cleaned up by eliminating the non-conformant role
events that could be detected by a simple system-heartbeat
monitoring. Indeed, every sensor emits a heartbeat signal,
whose absence is automatically detected by the lower layers
of the platform and signalled as a sensor failure.

We had a plan for each partipant’s home and the layout of
the sensors. This information was used to diagnose problems
when conformance violations occurred in the logs. Another
resource used to investigate violatios was the tracking sheets
filled by professionals administering questionnaires to each
participant during the field study.

D. Experimental results

Our goal in pruning the logs of HomeAssist was to show
that our approach could detect anomalies, beyond what
simple fault tolerant mechanisms could do.

We defined a model for HomeAssist that allows to
raise two main types of anomalies: 1) permanent non-
conformance refers to a rule systematically violated, indi-
cating some permanent mismatch between the infrastructure
and the model; 2) emerging non-conformance corresponds
to a rule that usually checks, but occasionally fails. Let us
now examine instances of these anomalies.

Permanent non-conformance.
In one home, Opening interactions occurred for the

kitchen cabinet door but the Presence inclusion rule and the
Presence intersection rule always failed. Still, the Presence
requirement rule never failed indicating that the cabinet door
was opened but was not surrounded a Presence interaction in
the kitchen; Presence was detected at unrelated times. The
investigation of these situations revealed that this cabinet
was not located in the kitchen, but rather in an attendant
room, as shown in Fig. 4. Clearly, this constitutes an issue in
the model. Consequently, we fixed the model by removing
the presence inclusion and presence intersection rules for
this installation’s model.

Figure 4. Installation issues

In the same home, another issue was identified: the
presence inclusion rule always failed on the fridge opening
rule, but the presence intersection rule did not. Even if the
fridge was located in the kitchen, the motion detector used
to measure presence in the kitchen was not directed so as to
cover the entire kitchen, as shown in Fig. 4. This problem
is due to an incorrect installation in this case and would
simply require the placement of motion sensor to be fixed.
However, because we retrofitted HomeAssist in our work,
this operation could not be done.

The same situation was observed in two other homes
where a kitchen cabinet equipped with a contact sensor were
located outside the kitchen.

Typically, these problems arise when assisted living plat-
forms are to be deployed at a large scale. In this context,
installations are performed by professionals, not the re-
searchers that designed the platform and possess an implicit
knowledge about how to do it right. In our case, even for 24
homes, some installations were performed by non-computer
science members of our group that missed some implicit
rules.

If our tool had been running during the deployment
stage, it would have detected installation anomalies early,
that is, during installation or in the first days of operation.
Alternatively, as the deployments occurred, additional rules
can refine the model to account for unforeseen specificities
(e.g., L-shape kitchen). Once the installation or the model
has been fixed, the model helps detecting anomalies that did
not occur at installation time, but after functioning normally
during some time.

Emerging non-conformance.
A pattern of temporary mismatch was observed in the

kitchen in five homes at different periods of time. During a
few days, the Presence inclusion rule was violated because of
an absence of presence in the kitchen due to a faulty motion
detector. In all cases, the presence intersection and presence
requirement rules were also violated during these periods.
The latter rule showed that no presence role was recognized
during the 20 minutes surrounding the violation. Results of



theses rules provide helpful information to find the cause
of the detected issue. It is thus reasonable to surmise that
the cause of the failure is a temporary malfunction of the
presence role. This suggests that the motion detector may
have been temporarily obstructed or directed incorrectly.

A similar situation occurred for the entrance of two other
homes: the door was opened but no presence was detected.

A left-open door was observed in four homes in vari-
ous locations such as the fridge, the cupboard cabinet, or
a wardrobe (i.e., door left open more than three hours).
According to the tracking sheets of HomeAssist, the cor-
responding users were questioned after a few days because
of some misbehaviors of applications relying on this inter-
action. They indicated that the contact sensors felt down.
The installations were fixed by the intervention of a member
of our group. If our model had been available during the
experiment, these incidents would have been reported, and
thus fixed, more promptly. This reactivity is a key for
context-aware applications. It makes the difference between
an application that is useful and one that harasses the user
with irrelevant notifications.

VII. DISCUSSION

The previous section showed that an explicit model of
an infrastructure is able to detect system malfunctions at
installation time or during normal operation. As suggested
by some of our examples, once a failure is detected, several
diagnosis techniques can be used for identifying the failing
role(s).

First, if several rules are violated at the same time,
where the rules are checking overlapping sets of sensors,
this suggests that the failing role should first be searched
in the intersection of these sets. For instance, when the
presence intersection rule fails at the same time on the
kitchen presence role for different non-presence interaction
(fridge, cabinet, etc.), this indicates with high probability
that the failing role is that of Presence in the kitchen.

Secondly, designing refined versions of a given rule that
check a set of sensors or subsets of it, may be useful
to direct the search of the failing role or malfunctioning
sensor. This idea is illustrated in our model for HomeAssist.
There is a chain of three rules Ri expressing increasingly
relaxed assertions: presence inclusion, presence intersection,
and presence requirement. All these rule are of the type
p→ qi for (i = 1..3) where the premise p is identical but
the conclusion qi is increasingly weaker. Thus, there is an
implication relation along the chain, R1 → R2 → R3, or
conversely, when one of the rules fails, stronger rules also
do. Based on rule analysis, one can derive a binary decision
tree such as the one in Fig. 5 for helping the diagnosis.

When studying some of the systematic mismatches be-
tween the installation and a correct model, one may le-
gitimately ask: How come these installation issues were
undetected by conventional tests at installation time? For

Figure 5. Binary decision tree for helping the diagnosis

instance, the fridge or cabinets placed outside the kitchen
would have necessarily failed any test of the breakfast
monitoring application. This argument is valid: all installed
applications were indeed tested in every home at installation
time. However, the experimental protocol allowed partici-
pants to choose which applications to activate, based on their
needs and preferences. As a result, the breakfast monitoring
application was not installed in several homes, hence the
undetected installation anomalies. If our model had been
used at installation time, the installations could have been
certified as conform to the model, validating all applications
based on this model.

The usefulness of our tool for continuously checking the
conformance of an infrastructure goes beyond the context
of our field study. First, an infrastructure model provides
a reference model for applications available from an online
catalog, such as an Appstore: an application can be installed
as long as it conforms to the infrastructure model. Secondly,
from a practical perspective, checking the model at installa-
tion time may reduce the need for testing all the deployed
application on a given installation, provided that the model
completely covers the applications assumptions.

VIII. RELATED WORK

Programming models for sensor networks. Much research
has been devoted to simplifying the programming of appli-
cations over a sensor infrastructure, by defining adequate
programming models. Sugihara and Gupta [11] present a
comprehensive survey of such approaches. Low-level models
simplify the programming of each network node, sepa-
rately using very small operating systems or virtualization
support. High-level models allow to program the whole
sensor network as a global system, either 1) using query
languages, similar to those used in databases for querying
sensor data, 2) writing functional programs to hide the node
state manipulations, or 3) extending existing programming
languages to address the distributed programming of sensors.
While our work also aims to simplify the programming
of applications over a network infrastructure, our model of
the infrastructure is not intended for programming, but for
testing the platform as a global entity. Thus, our infrastru-
cuture model is complementary to the programming models
of these approaches.

Semantic sensors. Another common approach to abstracting
sensor-based applications from details, such as handling fail-
ures or dealing with low-level measurements, aims to pro-



vide higher-level sensor abstractions. Semantic Streams [12]
allow applications to make semantic queries, such as “detect
a vehicle”, instead of directly querying low-level magne-
tometers that exceed a given threshold. The implementation
is based on Prolog and allows composing sensors and
inference units. Stemming from a software engineering,
Software Sensors [13] abstract each hardware sensor as a
service implemented in a middleware on top of Jini, a Java-
based distributed systems architecture. This approach allows
multiple sensors to be combined in a flexible way. There also
exist standards for exposing sensors as Web services, such as
the Sensor Web Enablement (SWE) standard, promoted by
the OGC consortium [14], for improving the interoperability
of these services in terms of various aspects (representing
measurements, discovering sensors, streaming data from
sensors, etc.).

These semantic sensor abstractions conceptually corre-
spond to roles in our framework. We also recognize the
importance of an abstraction layer over raw sensor mea-
surements and characteristics, building our model at this
level of abstraction. In effect, any of the semantic sensor
abstractions can be used to implement our notion of role.
When retrofitting HomeAssist in our approach, we simulated
the semantic sensor layer using Prolog rules, similar to the
implementation of Semantic Streams [12], discussed earlier.

Based on the SWE standard cited above, the Seman-
tic Sensor Web [15] adds semantic metadata, leveraging
ontologies and inference rules (also standardized by the
W3C). For instance, a declarative inference rule, expressed
in the Semantic Web Rule Language may define a sensor for
blizzard conditions, built on top of sensors for temperature,
wind, and precipitation. Our approach also uses declarative
inference rules over abstracted sensors (our roles), but with
a different goal: verifying the coherence between different
sensors data. To the best of our knowledge, this approach
has not been used for conformance checking with respect to
a model of sensors.

Sensor placement. There has been research efforts to check
sensor placement. Hong et al. proposed a method based
on empirical mode decomposition (EMD) to automatically
follow the placement of sensors in the rooms of a build-
ing [16], in a context where sensors may be replaced
and the physical configuration of the building may evolve.
Despite the fact that a home is at a different scale than a
building, this method may be helpful to build a model of
sensors in an evolving home, but cannot provide information
about the conformance between sensors measurements and
applications requirements.

Murao et al. aim to determine the best position of
wearable sensors to monitor activity [17]. Their proposed
evaluation function allows to evaluate a sensor position with
respect to both its recognition accuracy and its sensor wear-
ability. Because of the constraints they impose, a lot users

do not accept wearable sensors to measure daily activities.
Surie et al. validate a network of sensors by comparing
activity performance recognition from a network of sensors
with data produced by a wearable camera [18]. Even though
it provides information on the infrastructure’s reliability, this
approach is not scalable because analyzing videos is a time-
consuming operation. Furthermore, cameras are viewed as
too intrusive to be used in many environments. Research on
activity recognition has been done by Philipose et al.. Their
approach consists to place RFID tags on relevant everyday
objects. Thus, interaction recognition is made using an RFID
glove [19]. This may avoid sensor positioning issues, but
may introduce false positive due to the RFID reception range
with respect to the proximity between tagged objects.

Do-it-yourself smart homes. Much research work concerns
smart home platforms. The most relevant approaches with
respect to our work are those involving the end user in
the installation and/or maintenance stages of the system
lifecycle. In particular, Kawsar et al. propose a framework
to support deployment of sensors by the end user in a
smart home [20]. Combining this framework with the five
design principles to support end-user sensor installation (see
Beckmann et al. [6]) facilitates the task of a user to position
sensors and configure them independently. However, no tools
are provided to ensure the appropriate positioning of the
sensors and to check their reliability.

Sadoun et al. [21] start from natural language descriptions
of an installation and its operation scenarios to derive
a model of the environment. This model consists of an
OWL domain ontology and inference rules in SWRL. Using
automatic rule inference, the consistency of the model and
the conformance of described operation scenarios with the
model can be checked. This checking may signal both
incoherent scenarios and incoherence in the installation
description itself. The main difference with our work is that
their approach only checks the installation description, and
not its functioning in the wild. Thereby, their inference rules
do not reason about time intervals, which is a key notion
for many of our rules, such as no-ubiquity and presence
dependency.

IX. CONCLUSION

We have shown that context-aware applications commonly
make implicit assumptions about the sensor infrastructure.
These assumptions typically translate into conditional state-
ments that pollute applications code with non-functional
concerns. This defensive programming approach can be
avoided by expressing these assumptions aside from the
application code and factorizing them as an explicit model
of the sensor infrastructure. We have expressed this model
as a set of rules that can be checked automatically and con-
tinuously to ensure the reliability of a sensor infrastructure.
Not only does the violation of such rules promptly alerts



about an installation malfunction, but it also contributes to
diagnose the problem.

Our approach has been implemented in the context of
an assisted living platform, running a set of applications
dedicated to assist senior users. Our tool was applied to real
sensor data collected during a 9-month field study, consisting
of 24 participants aged 80 on average. The results show
that some latent installation mistakes could have been found
at installation time, using our model. Furthermore, several
sensor problems that occurred during operation could have
been detected on the fly and repaired more promptly to
ensure the reliability of context-awareness applications.

In future work, we will apply our method in a larger de-
ployment consisting in hundreds of installations. This setting
will allow us to quantify in more detail the improved reac-
tivity in detecting emerging infrastructure issues, remotely
diagnosing the underlying failure, and repairing the platform
on-site. Another future work will consist of proposing log
visualisation techniques and tools that contribute to identify
new rules for the model by recognizing regular event patterns
and anomalies.
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J. Roux, Y. Lachapelle, V. Godin-Tremblay, and B. N’Kaoua,
“Analysis of how people with intellectual disabilities organize
information using computerized guidance,” Disability and
Rehabilitation: Assistive Technology, 2016.

[10] V. Bergua, J. Bouisson, J.-F. Dartigues, J. Swendsen, C. Fab-
rigoule, K. Pérès, and P. Barberger-Gateau, “Restriction in
instrumental activities of daily living in older persons: As-
sociation with preferences for routines and psychological
vulnerability,” The International Journal of Aging and Human
Development, 2013.

[11] R. Sugihara and R. K. Gupta, “Programming models for
sensor networks: A survey,” ACM Trans. Sen. Netw., 2008.

[12] K. Whitehouse, F. Zhao, and J. Liu, Wireless Sensor Net-
works: Third European Workshop, EWSN 2006, Zurich,
Switzerland. Proceedings. Springer, 2006, ch. Semantic
Streams: A Framework for Composable Semantic Interpre-
tation of Sensor Data.

[13] E. Lin, Software Sensors: Design and Implementation of a
Programming Model and Middleware for Sensor Networks.
University of California, San Diego, 2004.

[14] M. Botts, G. Percivall, C. Reed, and J. Davidson, GeoSen-
sor Networks: Second International Conference, GSN 2006.
Springer, 2008, ch. OGC Sensor Web Enablement: Overview
and High Level Architecture.

[15] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sensor web,”
IEEE Internet Computing, 2008.

[16] D. Hong, J. Ortiz, K. Whitehouse, and D. Culler, “Towards
automatic spatial verification of sensor placement in build-
ings,” in Proceedings of the 5th ACM Workshop on Embedded
Systems For Energy-Efficient Buildings, ser. BuildSys’13.
ACM, 2013.

[17] K. Murao, H. Mogari, T. Terada, and M. Tsukamoto, “Eval-
uation function of sensor position for activity recognition
considering wearability,” in Proceedings of the 2013 ACM
Conference on Pervasive and Ubiquitous Computing Adjunct
Publication, ser. UbiComp ’13 Adjunct. ACM, 2013.

[18] D. Surie, O. Laguionie, and T. Pederson, “Wireless sensor net-
working of everyday objects in a smart home environment,”
in Intelligent Sensors, Sensor Networks and Information Pro-
cessing. IEEE, 2008.

[19] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Fox,
H. Kautz, and D. Hahnel, “Inferring activities from interac-
tions with objects,” Pervasive Computing, IEEE, 2004.

[20] F. Kawsar, T. Nakajima, and K. Fujinami, “Deploy spon-
taneously: Supporting end-users in building and enhancing
a smart home,” in Proceedings of the 10th International
Conference on Ubiquitous Computing. ACM, 2008.

[21] D. Sadoun, C. Dubois, Y. Ghamri-Doudane, and B. Grau,
“An ontology for the conceptualization of an intelligent envi-
ronment and its operation,” in Artificial Intelligence. IEEE,
2011.


