
HAL Id: hal-01320646
https://hal.inria.fr/hal-01320646

Submitted on 28 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of firewall configuration errors with updatable
tree

Tarek Abbes, Adel Bouhoula, Michaël Rusinowitch

To cite this version:
Tarek Abbes, Adel Bouhoula, Michaël Rusinowitch. Detection of firewall configuration errors with
updatable tree. International Journal of Information Security, Springer Verlag, 2016, 15 (3), pp.301-
317. �10.1007/s10207-015-0290-0�. �hal-01320646�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49377837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01320646
https://hal.archives-ouvertes.fr

International Journal of Information Security manuscript No.
(will be inserted by the editor)

Detection of Firewall Configuration Errors with Updatable
Tree

Tarek Abbes · Adel Bouhoula · Michaël Rusinowitch

Received: date / Accepted: date

Abstract The fundamental goals of security policy are
to allow uninterrupted access to the network resources
for authenticated users and to deny access to unauthen-

ticated users. For this purpose, firewalls are frequently
deployed in every size network. However, bad configura-
tions may cause serious security breaches and network

vulnerabilities. In particular, conflicted filtering rules
lead to block legitimate traffic and to accept unwanted
packets. This fact troubles administrators who have to

insert and delete filtering rules in a huge configuration
file.

We propose in this paper a quick method for manag-

ing a firewall configuration file. We represent the set of
filtering rules by a firewall anomaly tree (FAT). Then,
an administrator can update the FAT by inserting and

deleting some filtering rules. The FAT modification au-
tomatically reveals emerged anomalies and helps the
administrator to find the adequate position for a new

added filtering rule. All the algorithms presented in the
paper have been implemented and computer experi-
ments show the usefulness of updating the FAT datas-

tructure in order to quickly detect anomalies when deal-
ing with a huge firewall configuration file.

T. Abbes
Higher Institute of Electronic and Communication of Sfax,
Tunisia
Tel.: +216-21240520
E-mail: abbes.tarek@gmail.com

A. Bouhoula
Higher School of Communication of Tunis, Tunisia
E-mail: adel.bouhoula@supcom.rnu.tn

M. Rusinowitch
Laboratory of Research in Computer Science and its Appli-
cations, France
E-mail: rusi@loria.fr

Keywords Firewall · Configuration update · Con-
flicts · Tree

1 Introduction

The Internet, and all its accompanying complications,
has become integral to our lives. The security prob-
lems besetting the Internet are legendary and have been

daily annoyances to many users. A firewall prevents the
dangers of the Internet from spreading to the internal
network. It offers many advantages such as restrict-

ing outgoing and incoming connections at a controlled
point and preventing known malwares. Hence, the fire-
wall is considered a core element in network security.

However, as Rubin at al. stated in [29], “The single
most important factor of your firewall’s security is how
you configure it.”.

Firewalls are generally placed at the frontier be-

tween a private network, a demilitarized zone (DMZ)
and the public network. They control the traffic from
and toward these different zones by means of a set of

filtering rules called access control list or ACL. The
rules order is very important in ACL since it is tightly
coupled with the intended security policy.

As the network services and communication means

evolve, the number of ACL entries continuously raises.
As a consequence, there are more conflicts between fil-
tering rules. El-Shaer reports in [2] that all tested fire-

wall configurations performed by different administra-
tors, include many anomalies. Among the participants,
9 of them are expert. Moreover, Wool confirms in 2010

his main study’s findings in 2004 that firewalls are still
poorly configured, and a rule set’s complexity is still
positively correlated with the number of detected con-

figuration errors. Finally, previous security facts out-

line the success of some worms and virus like Blaster

[12], Sapphire [26] and Conficker [11] which are easily
blocked with a well managed firewall. The number of
suspect ports used by known trojans and reported on

simovits site [13] reaches 878.

Therefore, the process of configuring the firewall be-

comes difficult and error prone. A new inserted rule may
overlap with an existing one, which leads to a conflict
or a redundancy depending on the rules actions (accept

or deny). On one hand, rules are considered conflicted,
if they define distinct actions. This type of anomaly
leads to block an authorized network traffic or to allow

unwanted packets. On the other hand, rules are redun-
dant if they execute the same actions. The increase of
the redundancy cases affects the firewall performance.

We propose in this paper a static analysis method to
deal with the firewall anomalies problem. Our approach

intends to detect anomalies in a firewall configuration
file on one side, and to determine the consequences of
adding or deleting filtering rules on the other side. The

main idea is to represent the filtering rules on a min-
imal tree called firewall anomaly tree (FAT), then to
supervise leaves. If there are several rules sharing the

same path on the tree then we detect anomalies.

The advantages of our approach are the following.
First of all, the filtering rules have a variable number
of fields (dimensions) to match the packets. Secondly,

unlike related works that are presented in Section II,
our approach does not process the fields in a prede-
fined fixed order. Instead, it selects fields whose values
can differentiate between filtering rules. In this case, we

simplify the FAT construction. The third benefit is the
possibility to dynamically update the FAT by adding
or deleting filtering rules. In this way, the administra-

tor tests the modification of a firewall configuration.
Even more, the FAT suggests to the administrator the
adequate position to insert new rules.

Our previous work in [1] allows the FAT construc-

tion using an inference system, however without being
able to update the Tree in case of a modification in
the configuration file. In order to resolve this problem,

our current work enhances the node datastructure and
proposes a set of new algorithms to maintain the FAT.

The rest of this paper is organized as follows. Sec-
tion 2 starts with an analysis of some related work. We
present in Section 3 a framework for classifying firewall

anomalies. We explain this classification with one exam-
ple. Section 4 shows our preprocessing phase on firewall
filtering rules. Then, we present in Section 5 a set of al-

gorithms for constructing and updating the FAT. We
devote Section 6 to detect and prevent firewall anoma-
lies. We expose in Section 7 the experimental results.

Finally we conclude the paper in Section 8.

2 Related works

Over the past few years, the study of firewall anomalies

has received a large attention. Hamed and Al-Shaer give
in [3] a comprehensive classification of security policy
conflicts that might exist in a single or several security

devices. Qian et al. present in [27] another framework
to automate ACL analysis. They formally define the re-
lations between 2 rules. Then they give sufficient condi-

tions to detect redundancy and inconsistency. Ferraresi
et al. [18] develop a new firewall anomalies classification
of based on the severity concept. Besides, they propose

two automatic conflict resolution algorithms.

In the context of anomalies detection, Al-Shaer et al.

construct in [4] a policy tree to represent filtering rules
and simultaneously highlight common paths which de-
note anomalies. The nodes in the tree represent some

protocols fields, that come in a fixed order (protocol,
source address, etc.), while edges are labeled by the
values taken by these protocols fields. Hence, two dif-

ferent addresses with the same prefix are twice depicted
despite the common part. The discovery of anomalies
is done on the basis of pairs of filtering rules, which can

be a long process in case of a long firewall configuration
file. The authors extend their work in [5] to reveal pol-
icy anomalies in distributed firewalls. They propose a

software tool called the “Firewall Policy Advisor” that
simplifies the management of filtering rules.

In several related works, the binary decision tree
is optimized to get a binary decision diagram (BDD).
Yuan et al. present FIREMAN, a toolkit for modeling

and analyzing firewall [33]. The authors define some suf-
ficient conditions to detect 3 types of misconfigurations
that are policy violation (with respect to a white and

a black lists), inconsistency (shadowing, generalization
and correlation cases) and inefficacy (redundancy and
verbosity situations). Besides, Gouda and Lui employ

the BDD to design a consistent, complete and compact
firewall configuration [21]. They present a sequence of 5
algorithms going from reducing BDD until generating

a simplified equivalent BDD. Again, the nodes repre-
sent protocols fields, while edges are the fusion a sev-
eral value ranges to obtain a reduced firewall configu-

ration. In another work, Liu et al. [25] give an effec-
tive SQL-like query language, called “Structured Fire-
wall Query Language” (SFQL), for describing firewall

queries. They also propose an algorithm for processing
queries, that employs as core datastructure, the BDD.
Hu et al. [23] use the BDD datastructures to convert a

list of rules into a set of disjoint network spaces. They
adopt a grid representation in order to identify policy
anomalies and resolve them. Rezvani et al. [28] present

two detection algorithms and a tool based on BDD in

2

order to discover firewall anomalies. Besides, they give

two algorithms useful to resolve anomalies and decrease
the number of rules without changing the policy.

Jeffrey et al. show in [24] that extra complex datas-
tructures provided by BDDs are not necessary for ana-

lyzing only the firewall configuration. It suffices to em-
ploy search algorithms for Boolean satisfiability (SAT
solvers). The authors ensure two properties in the fire-

wall configuration: reachability (no shadowed rule) and
no cyclicity (absence of loops). Ben Youssef et al. [10]
verify the conformance of firewall configurations with

respect to the security policies using a satisfiability solver
modulo theories (SMT). They extend their work in or-
der to support the case of distributed firewalls [9].

Cuppens et al. present in [16,17] an audit process to
manage intra-firewall policy anomalies. By using rela-

tionships between the attributes of filtering rules (such
as coincidence, disjunction, and inclusion), they succeed
to detect and remove the configuration anomalies.The

datastructure used in their work is a linked-list of ini-
tial size n, where n is the number of filtering rules.
Each element is an associative array with the strings

condition, decision, shadowing, and redundancy as keys
to access each necessary value. The authors expand
their approach to detect anomalies in network security

policies deployed over firewalls and network intrusion
detection systems [6]. Their approach has the advan-
tage to analyze the whole set of rules and not only the

relationship between two rules. Their implementation
scales well with the increase of rules despite a theoret-
ical complexity close to O(mn) where m is the number

of attributes, and n is the number of rules.

Joaquin Garcia et al. develop in [19] a management
tool called Mirage for the analysis and the deployment
of network security policies. They conduct two types of

analysis, a bottom-up analysis of already deployed net-
work security equipments and a top-down refinement
of a security policy towards the network equipments

configurations. The two strategies allow the discovery
and/or the prevention of inconsistencies in a single or
between several network security components.

Basile et al. [8] propose a formal model to represent

the policy in many security devices. Their formalism
allows the identification and the removal of inconsis-
tencies and anomalies. Besides, the modeled policy can

be translated toward distinct resolutions strategies (e.g.
First, Last or Most Specic matching) without chang-
ing the policy semantics. Eronen et al. propose in [15]

an expert system to analyze firewall rules. The system
knowledge base is expressed with a Prolog based pro-
gramming language. The inference engine uses a con-

straint logic programming approach to determine which

rules are candidates under specified conditions. The ex-

istence of many candidates rules may reveal anomalies.
The works cited above consider the numeric value of

each protocol field and can be viewed as High-level ap-

proaches. Low-level packet filters decompose each value
into a bit string. This approach have also received a lot
of attention during the last decade. Gupta gives in [22]

an extensive survey on such techniques. Eppstein et al.
present a geometric approach that represents n 2-tuples
filtering rules as n prioritized rectangles [14]. The de-

tection of conflicts is performed O(n3/2) in time and
O(n) in space. Baboescu and George et al. use a multi-
dimensional binary tree to represent filtering rules [7].

Thanasegaran et al. [32] try to reduce the high mem-
ory and computation time consumption required by a
geometrical approach. They propose a topological ap-

proach called BISCAL (Bit-vector based spatial calcu-
lus) to detect the conflicts in the firewall policies. The
main idea is to perform a space division on each di-
mension then to compute some characteristic vectors

and their Cartesian product.
We can conclude from this study that different ap-

proaches have been proposed to detect firewall anoma-

lies. The tree data structure is first employed in [4,5],
then the BDD is widely used [21,23,25,28,33]. Some of
these works adopt a high level strategy in order to re-

veal conflicts. They use the concept of disjunction and
inclusion of value ranges. These operations have to be
implemented in an efficient way. Other works opt for

a binary representation. As mentioned in [30], an opti-
mization to this scheme consists in using multibit trees.
If we have n filtering rules having a maximum size of W

bits and a stride with length k bits , then the complex-
ity of the lookup is O(Wk). However the memory con-
sumption increases exponentially with k and is equal to

O(2knW
k). Srinivasan et al. [31] use dynamic program-

ming to determine, for a given prefix distribution, the
optimal strides that minimize the memory consumption

and guarantee a worst-case search time. Optimization
is useful if the entries of the firewall configuration do
not change at all or change very little.

In our work we pursue an intermediate-level ap-
proach by processing each field, byte per byte (k = 8).
Besides, we sort the bytes looking for a rapid mismatch

between filtering rules. Finally, our approach is scalable
and allows the FAT update.

3 Firewall Anomalies specification

We define in this section the different forms of anoma-
lies between firewall rules. For this purpose, we formal-
ize a firewall ltering rule, then we introduce the notion

of “domain”.

3

3.1 Firewall filtering rule domain

A firewall filtering rule applies an action (accept, drop,
etc.) on a network packet if a set of conditions are satis-

fied. These conditions, grouped in a header part, specify
generally the belonging of some fields of the packet, to
an interval or a set of values. If the firewall is stateful,

the conditions are related to previous events such as a
prior establishment of a TCP connection [20].

Definition 1 (Filtering Rule) A filtering rule R as-
signs an action A to a header H composed by a list of

conditions. Formally it has the form:

R : ⟨f1 ∈ D1⟩ ∧ . . . ∧ ⟨fm ∈ Dm⟩ ⇒ ⟨action = a⟩

We define R[fi] the set Di, and R[action] the action a.

We mean by a firewall filtering domain, the set of
packets that are matched by the rule. Formally, we
have:

Definition 2 (Domain) Let R be a filtering rule hav-

ing the form: ⟨f1 ∈ D1⟩ ∧ . . .∧ ⟨fm ∈ Dm⟩ ⇒ ⟨action =
a⟩. We define Dom(R) as the set {(x1, x2, . . . , xm) | ∀i ∈
[1..m] : xi ∈ Di}.

3.2 Firewall anomalies cases

The firewall anomalies appear when several rules match
the same packet. We identify an incoherence when two

overlapped rules define distinct actions. If these rules
have the same action, we speak about redundancy. We
can explain anomalies by the intersection of firewall fil-

tering rules domains. We schematize in Fig. 1 all pos-
sible intersection cases. We suppose that rule Ri comes
before rule Rj whose domain is shaded. The intersec-

tions can be:

– Partial: the first rule Ri matches only some pack-

ets matched by the second rule Rj and Rj has the
same relation with Ri (Fig 1-c). In this case, we
have either a partial redundancy (Ri and Rj define

the same action) or a correlation (Ri and Rj define
distinct actions). Formally we have:

Dom(Ri) ∩Dom(Rj) ̸= ∅
Dom(Ri) ̸⊂ Dom(Rj)
Dom(Ri) ̸⊃ Dom(Rj)

– Complete: Ri and Rj share the same domain (Fig

1-b). We have either a full redundancy (Ri and Rj

define the same action) or a full incoherence (Ri and
Rj define distinct actions). Formally we have:

{
Dom(Ri) = Dom(Rj)

}

Same action

èUp redundancy
Different actions
è Generalization

Same action
èDown

redundancy

Different

actions è
Shadowing

Same action
è partial

redundancy

Different actions

è Correlation

Absence of Anomalies Same action

è full redundancy
Different actions
è full incoherence

Ri

Ri

Ri

Ri

Ri
 Rj Rj

 Rj Rj

Rj

Ri
 Rj

Rj Ri

(case a)

(case b)

(case c) (case d)
(case e)

Fig. 1 Firewall filtering rules anomalies

– Complete for the up domain: the second rule Rj

matches all packets already matched by the first rule

Ri (Fig 1-d). If Ri and Rj define the same action,
the anomaly is called up redundancy, else it is a
generalization. Formally we have:{
Dom(Ri) (Dom(Rj)

}
– Complete for the down domain: the first rule Ri

matches all packets matched by the second rule Rj

(Fig 1-e). This is a serious anomaly case since the
second rule is unnecessary. If Ri and Rj define the
same action, the anomaly is called down redundancy,

else it is a shadowing. Formally we have:{
Dom(Rj) (Dom(Ri)

}
Example 1 We show in Table 1 an example of a firewall
configuration. IP addresses are represented using the
CIDR notation. We can observe 6 types of anomalies :

– R1 is up redundant to R2.
– R1 and R4 are partial redundant.
– R2 and R3 are correlated.

– R3 is a generalization of R1.
– R4 is down redundant to R2.
– R4 is shadowed by R3.

Table 1 Firewall configuration

N (addr, port) src (addr, port) dst action
R1 (192.168.1.0/24, 80) (10.0.0.0/8, *) accept
R2 (192.168.0.0/23,80) (*, *) accept
R3 (192.168.0.0/22,80) (10.0.0.0/8, *) deny
R4 (192.168.0.0/23,80) (10.0.0.0/9, *) accept

4

4 Firewall filtering rules preprocessing

We are interested in this section in representing firewall
filtering rules in an adequate form. As noted in section
3, firewall anomalies are due to overlaps between filter-

ing rules. Besides, we notice that that if two rules do
not intersect in one dimension then they are coherent.
Thus, we will transform our firewall filtering rules in

such a manner that we start looking for no intersec-
tions. The idea is to first consider fields having single
values over intervals.

4.1 Firewall filtering rules normalization

Our strategy involves representing all the fields of the
filtering rules into a unique tree with a constant step

equal to one byte. We suppose that the header part of
a filtering rule can be expressed using 4 types of value.

1. a bit string prefix (e.g. src ip = 192.168.0.0/23)
2. a simple value (e.g. dst port ∈ {80})
3. a set of values (e.g. dst port ∈ {80, 110})
4. an interval (e.g. dst port ∈ [0..1024])

Whatever the value types used in the header part of

a filtering rule, we transform the latter into a sequence
of couples called masked bytes and having the form
(byte,mask)b. The mask identifies the number of fixed

bits in the byte. Thus, (0, 8)b is equivalent to the single
value 0, (0, 7)b represents the set {0,1} and (0, 0)b is
equivalent to the interval [0..255]. We can distinguish

two types of masked bytes:

– A Complete masked byte with a mask equal to 8. It
represents a unique value and creates less overlaps

with other sets of values. For simplicity, we call it a
complete byte.

– A partial masked byte with a mask length lower

than 8. It is equivalent to a range, so it causes over-
laps between rules. We call it a partial byte.

As an example we take the field “Source IPv4 ad-
dress” which is coded into 4 bytes. We have four possi-
ble transformations:

1. The bit string prefix 192.168.0.0/25 (type 1) is rep-
resented as (192, 8)b, (168, 8)b, (0, 8)b, (0, 1)b,.

2. The simple value 192.168.0.1 (type 2) is represented
as (192, 8)b, (168, 8)b, (0, 8)b, (1, 8)b.

3. The set of values {192.168.0.2, 192.168.0.3, 192.168.0.4}
is transformed into (192, 8)b, (168, 8)b, (0, 8)b, (2, 7)b
and (192, 8)b, (168, 8)b, (0, 8)b, (4, 8)b.

4. The interval [192.168.0.32..192.168.0.63] is transformed

into (192, 8)b, (168, 8)b, (0, 8)b, (32, 3)b.

4.2 Firewall filtering rules path

The normalization of the filtering rules converts them to
sequences of masked bytes. In order to easily determine

anomalies, we arrange these sequences, thus we obtain
rules paths. Indeed, our goal is to plot firewall filter-
ing rules on a tree called “Firewall Anomaly Tree” or

FAT. We determine overlaps between rules if there are
at a final node more than one candidate rule. The FAT
branches are labeled by masked bytes. The complexity

of the construction is due to the partial bytes (mask
<8) since they represent ranges and may overlap with
each other. However if such overlap occurs in one di-

mension (source IP address), it may not be the case in
another dimension (source port) due to distinct com-
plete bytes. Therefore, we postpone the processing of
the partial bytes over the complete bytes. The rule path

construction introduces some disorder in the sequence
of masked bytes. In order to maintain the original po-
sitions of bytes, we associate to each byte a couple of

integers called position. Besides, we call an “element”
the combination of a masked byte and its position.

Definition 3 (position) A position associated to a
byte is a couple of (dim, ord)o where dim refers to a
field, ord represents the byte order in the field and o

denotes a position.

Definition 4 (element) An element is a couple of a
masked byte and a position having the form:

((byte,mask)b, (dim, ord)o)

Example 2 The first element of rule R1 depicted in Ta-

ble 1 is ((192, 8)b, (1, 1)o).

To obtain a unique rule path for each filtering rule,
we introduce a partial order that organizes the sequence

of elements.

Definition 5 (Partial order 4) let two elements e1
= ((v1,m1)b, (d1, o1)o) and e2 = ((v2,m2)b, (d2, o2)o).
We define the partial order 4 as

e1 4 e2 iff

•m2 < m1 = 8 or

•((m1 = m2 = 8) or (m1 < 8 and m2 < 8))
and (d1 < d2) or

•((m1 = m2 = 8) or (m1 < 8 and m2 < 8))

and (d1 = d2) and (o1 < o2)

Intuitively, the relation 4 implements our strategy
to first consider complete bytes. We use it in the fol-

lowing to define the path of a filtering rule.

Definition 6 (Rule path) The path of a filtering rule
“R” is a well ordered sequence of elements using the

partial order 4. It is noted rule path(R).

5

Example 3 Using Table 1, we have rule path(R4)=

((192,8)b,(1,1)o), ((168,8)b,(1,2)o), ((10,8)b,(2,1)o),
((0,8)b,(3,1)o), ((80,8)b,(3,2)o), ((0,7)b,(1,3)o),
((0,1)b,(2,2)o)); At the dimension 3, we have a source

port that needs 2 bytes and is equal to 80.

5 Construction and update of Firewall
Anomaly Tree

In order to detect firewall misconfigurations, we are

based on a tree representation called Firewall Anomaly
Tree (FAT). The main idea is to plot the paths of the
filtering rules on a tree, then to inspect common paths

which reveal the presence of overlaps. We devote this
section to firstly define the FAT datastructure and then,
the algorithms to update the tree.

5.1 Tree Datastructure

The FAT datastructure is mainly composed of intercon-
nected nodes. A node represents one position extracted
from the path of one or several filtering rules. Besides

it includes some output edges used to interconnect chil-
dren nodes.

Definition 7 (Node) A node N is an n-tuple (id, pos,
edge[0..256], type, P, S, T, bptr, bval) where:

– id is a node identifier

– pos is the current position used to issue output edges
from N

– type is the node type which can be F (Final) for

leaves nodes and C (Complete), P (Partial) or PC
(Partial Complete) for intermediate nodes. The type
C is chosen if all the labels of the output edges are

complete bytes, P (partial) if all the labels are par-
tial and PC in the other cases

– edge [0..256] is an array representing output edges

from N
– P is a set of candidate filtering rules, called primary

rules

– S is a set of filtering rules such that Dom(S) !
Dom(P). We call them secondary rules

– T is a set of filtering rules such that Dom(P) ∩
Dom(T) ̸= ∅ and Dom(P) ̸⊂ Dom(T) and Dom(T)
̸⊃ Dom(P). We call them tertiary rules

– bptr is a back pointer to the parent node of N

– bval is the edge label between N and its parent node.

In particular the root node has an identifier 1, a set
P containing all filtering rules, two empty sets S and

T and void values btpt and bval. The fields pos and

edge have to be computed using auxiliaries functions

(subsection 5.2).
The identifier “id” and the sets “P”, “S” and “T”

are useful to find anomalies. To compute these sets, we

need to have a link to parent node (“bptr”). Besides,
the “pos” and the “edge” table are useful to construct
the FAT.

5.2 Auxiliaries functions

In order to construct a child node, we have to create
a new node (using getNewNode function) and assign a

new identifier to the id field (using getNewID function).
The fields bptr and bval can be easily computed if we
know the edge from the parent node to the child node.

The remaining fields are calculated by the following
auxiliaries functions. We classify them into three cat-
egories: “computing the node’s position”, “calculating

the edges’ labels and the node’s type” and “computing
the candidate rules”.

5.2.1 Computing the node’s position

We introduce two functions to compute a node position.
The minpos function is only used on the root node in
order to extract the first position given a set of rules.

The nextpos function is employed on the other nodes in
order to compute for a set of rules, the position that
follows the previous one.

Definition 8 (minpos function) Let SR be a set of

filtering rules. We define theminpos function to extract
the first position from the rule paths in SR.
minpos(SR) = {(dim0, ord0)o | ∃Ri ∈ SR and ∃e0 =

((byte0,mask0)b, (dim0, ord0)o) ∈ rule path(Ri) such
that ∀Rj ∈ SR, ∀e ∈ rule path(Rj), e0 4 e}

The nextpos function takes a set of rules and a po-
sition as arguments. It computes the next position if it
exists, otherwise it returns an empty set ∅.

Definition 9 (nextpos function) Let SR be a set of

filtering rules and pos1 a position extracted from an el-
ement e1. The nextpos function computes the position
that follows pos1. Formally, nextpos(SR, pos1) =

• (dim2, ord2)o if ∃Ri ∈ SR and ∃e2 = ((byte2,mask2)b,
(dim2, ord2)o) ∈ rule path(Ri) | ∀Rj ∈ SR,
∀e ∈ rule path(Rj), if e1 4 e, then e1 4 e2 4 e

• ∅ otherwise

Example 4 Using the rules depicted in Table 1, we have:

– minpos({R1,R2,R3,R4})=(1,1)o
– nextpos({R4},(1,2)o)=(2,1)o
– nextpos({R1,R4},(1,2)o)=(1,3)o
– nextpos({R1,R4},(2,2)o)=∅

6

5.2.2 Calculating the edges’ labels and the node’s type

We define the proj function in order to extract from a
set of filtering rules (precisely set P of primary candi-
date rules) and at a given position, all possible bytes.

Returned values will define labels of the output edges
from the current node (the field edge[] in a node datas-
tructure).

Definition 10 (proj function) Let SR be a set of fil-

tering rules and (dim, ord)o a position. Then the proj
function is defined as follows:
proj(SR, (dim, ord)o) = {(byte,mask)b | ∃R ∈ SR and

∃e = ((byte,mask)b, (dim, ord)o) ∈ rule path(R)}

Example 5 proj({R1,R2,R3,R4},(1,1)o)={(192,8)b};

Following the projection, we can decide the type of
the node. In fact, if we obtain an empty set of masked
bytes, we assign the type F (or “Final”) to denote a leaf

node. If all masked bytes returned by the proj function
are complete, then the node has the type C (or “Com-
plete”). However, if the masked bytes are partial, we

attribute the type P (or “Partial”). In the other cases
we have a mixture of complete and partial bytes, and
we assign the type PC. In this situation, we will only

consider the complete bytes in order to issue output
edges. The processing of partial bytes is postponed in
other nodes connected by an edge labeled ϵ.

5.2.3 Computing the candidate rules

We define other auxiliaries functions to compute the
sets of candidates rules P, S and T in a node. The set P
denotes to the primary candidate rules. It is calculated

using the cand function.

Definition 11 (cand function) Let SR be a set of
filtering rules, (dim, ord)o a position and (byte,mask)b
a masked byte. The cand function is defined as :

cand(SR, (dim, ord)o, (byte,mask)b) = {R | R ∈ SR
and ∃e = ((byte,mask)b, (dim, ord)o) ∈ rule path(R)}

We employ two functions to compute the sets S and
T in a Node. Given an edge label l (having the form
(byte,mask)b) and a position, we use the subcand func-

tion to find all rules whose masked bytes are subset of l.
The supcand function is used to calculate the candidate
rules whose masked bytes are superset of l. Formally,

subcand and supcand functions are defined as follows:

Definition 12 (subcand and supcand functions)
Let SR be a set of filtering rules, (dim, ord)o a position
and l = (byte,mask)b a masked byte then:

• subcand(SR, (dim, ord)o, (byte,mask)b) = {R | R ∈

SR and ∃e1 = ((byte1,mask1)b, (dim, ord)o) ∈
rule path(R)such that (byte1,mask1)b ⊂ (byte,mask)b}
• supcand(SR, (dim, ord)o, (byte,mask)b) = {R | R ∈
SR and ∃e2 = ((byte2,mask2)b, (dim, ord)o) ∈
rule path(R)such that (byte2,mask2)b ⊃ (byte,mask)b}

Example 6
cand({R1,R2,R3,R4},(1,1)o,(192,8)b)={R1,R2,R3,R4};
subcand({R2,R3},(1,3)o, (0,6)b) = {R2};
supcand({R1,R2,R3,R4},(1,3)o, (1,8)b) = {R2,R3,R4}

5.3 Development of nodes

We define a function “Develop” that is, when applied

to a node, will generate all children nodes. Recursively,
each created child node is developed using the same
function until reaching the final nodes (leaves). Since

each node represents a single position from a candidate
filtering rule, final nodes correspond to last positions of
the candidate rules paths.

The Develop function is described in Algorithm 1.
It is composed of four main phases: compute position,
projection, typing and unfolding. If the projection gives

a mixture of complete and partial bytes, the node type
is PC and we only consider complete bytes (Algorithm
1-Instruction α). The processing of partial bytes is post-

poned in other nodes (Algorithm 1-part β). Besides,
Algorithm 1 uses the function Candidate (Algorithm 2)
which combines the auxiliaries functions cand, supcand,

subcand previously defined.
The development of the root node is sufficient to

construct the FAT, and therefore to detect anomalies

using Algorithm 10 discussed in Subsection 6.1. The
FAT construction is rapid since several rules are pro-
cessed simultaneously at the same position. Besides, we

can stop early the FAT construction if we encounter a
node having one candidate rule (Algorithm 1-Instruction
γ). In this case, we don’t have conflicts between pri-

mary, secondary and tertiary rules. We call this strat-
egy “Cut”. It simplifies the FAT but prevents its up-
date. However, often administrators need to update the

firewall configuration in order to react against recent
threats and adapt to new services. We present in the
next Subsections two operations for adding and elimi-

nating filtering rules on an existing FAT. For this pur-
pose, we will define two functions insert() and delete().

5.4 Firewall rule insertion

We describe in Algorithm 3 the insert() function which
traverses an existing FAT in order to include the path of
a new filtering rule. Hence, the administrator can build

the FAT by inserting one by one the filtering rules.

7

Function Develop

Input: Node=(−,−,−,−, P, S, T, bptr, bval)
Where Node has the form:
(d, pos, type, edge[], P, S, T, bptr, bval)
Output: Firewall Anomaly Tree (FAT)

begin
Let id= Node.id ; pos=Node.pos ; type =
Node.type ; edge [] = Node.edge[] ; P = Node.P ;
S = Node.S ; T = Node.T ; bptr = Node.bptr ;
bval=Node.bval

id= getNewId()
/ *** Phase 1: Compute position ***/
if (bptr == Null) then pos=minpos(P) else
pos=nextpos(P, bptr.pos)

/ *** Cut Strategy (γ) when no need to

update the FAT ***/
if (| P ∪ S ∪ T |== 1) then pos=FINAL (γ)
if (pos ̸= FINAL) then

/ *** Phase 2: Projection ***/

V=Proj(P, pos)
/ *** Phase 3: Typing ***/

if (V is complete) then
type=C

else
if (V is partially complete) then

type=PC
V= V-{masked bytes} (α)

else
type=P

end

end
/ *** Phase 4: Unfolding ***/

Let V = {val1, . . . , valn}
for 1 ≤ i ≤ n do

NewNodei = getNewNode()
edge[hash(vali)]=NewNodei
NewNodei.bptr = Node
NewNodei.bval = vali
Candidate (NewNodei)
Develop (NewNodei)

end
if (type==PC) then

/*PART β: Postpone partial bytes*/
NewNoden+1 = newnode()
Node.edge[256]=NewNoden+1

NewNoden+1.bptr = Node
NewNoden+1.bval = ϵ

NewNoden+1.P = P \
∪

1≤i≤n

NewNodei.P

NewNoden+1.S=S
NewNoden+1.T=T
Develop (NewNoden+1)

end

else
type=F

end

end

Algorithm 1: Node development

Function Candidate

Input: Node=(−,−,−,−,−,−,−, bptr, bval)
Where Node has the form:
(id, pos, type, edge[], P, S, T, bptr, bval)
Output: Node=(,−,−,−, P, S, T, bptr, bval)

begin
Let prev=Node.bptr; bP=prev.P; bS=prev.S;
bT=prev.T; bval=Node.bval; bpos=prev.pos

Node.P=Cand(bP, bpos, bval)
Node.S=Supcand(bP ∪ bS, bpos, bval)
Node.T={Subcand(bS ∪ bT, bpos, bval) ∪
Supcand(bT, bpos, bval) }

end

Algorithm 2: Computing candidate rules

Algorithm 3 describes the insert() function. The

main challenge is to find on the FAT, the adequate po-
sition where to include the path of the new firewall rule
noted NR. For this purpose, we extract the first posi-

tion of the rule NR (noted rpos). Besides we traverse
the FAT, node by node, starting from the root node
and using the elements extracted from rule path(NR).

The position of the visited current node of the FAT is
noted cpos. We can distinguish three parts in Algorithm
3 depending on the values of rpos and cpos. For more

clarity, the algorithm of each part is given separately.

In the first case, rpos is smaller than cpos (Case A in
Algorithm 3). We construct a new node and we insert
it before the current node of the FAT (Algorithm 4).

We employ the function develop() to include the rule
path.

In the second case, rpos is greater than cpos (Case
B in Algorithm 3). We take the edge ϵ from the current

node of the FAT. If it does not exist, we construct it
(Algorithm 5) and we employ the function develop() to
include the rule path.

In the final case, rpos is equal to cpos (Case C in

Algorithm 3). We pursue the traversing of FAT as long
as we find an output edge from the current node of FAT
with a label equals to the masked byte of the new rule

NR. If the condition does not hold, we construct a new
node interconnected to the current node by a new edge
labeled with the masked byte of NR at the position rpos

(Algorithm 6). Then, we employ the function develop()
to add the rule path.

Besides, we have to update the nodes of the exist-
ing FAT by incorporating, when it is feasible, the new

added rule NR as a candidate rule. On the one hand, a
new rule NR is a primary rule in the nodes whose paths
are prefixes of the new rule path. This insertion is done

in the first instructions of the Algorithms 5 and 6 (In-
struction ρ). On the other hand, a new rule NR is con-
sidered as a secondary or a tertiary candidate rule in a

node up node, respectively if the masked byte of NR in-

8

Function insert

Input: NR ; Root
Output: Updated FAT
begin

prev = NULL
current=Root
if (current==NULL) then

Root=getNewNode ()
Root.P={NR}
Root.bptr=NULL
Develop (Root)

else
stop=0
foreach elt of rule path(NR) do

rpos=elt.pos ; cpos=current.pos

/* rule position is smaller than current
node position */
if (rpos < cpos) then

/*see Case A*/
end

/* rule position is greater than current
node position */
if (rops > cpos) then

/*see Case B*/
end

/* rule position is equal to current node
position */
if (rpos == cpos) then

/*see Case C*/
end
if (stop ==1) then exit ()

end

end

end

Algorithm 3: Rule insertion in existing FAT

Case A of FAT update

begin
NewNode=getNewNode ()
if (prev̸=NULL) then

/* case A.1 */
prev.edge[current.bval]=NewNode
NewNode.bptr=prev
NewNode.bval=current.bval

else
/* case A.2 */
Root= NewNode

end
NewNode.edge[ϵ]=current
current.bptr=NewNode
current.bval = ϵ
Candidate (NewNode)
Develop (NewNode)
stop=1

end

Algorithm 4: Case A : rpos < cpos

Case B of FAT update

begin
current.P = current.P ∪ {NR} (ρ)
prev = current
if (current.edge[ϵ] ̸= NULL) then

/* case B.1 */
current = current.edge[ϵ]

else
/* case B.2 */
NewNode=getNewNode ()
current.edge[ϵ] = NewNode
NewNode.bptr=NewNode
NewNode.bval=ϵ
Candidate (NewNode)
Develop (NewNode)
stop=1

end
update (prev,NR)

end

Algorithm 5: Case B : rpos > cpos

Case C of FAT update

begin
current.P = current.P ∪ {NR} (ρ)
prev=current
if (current.edge[elt.val] ̸= NULL) then

/* case C.1 */
current = current.edge[elt.val]

else
/* case C.2 */
NewNode=getNewNode ()
current.edge[elt.val] = NewNode
NewNode.bptr=current
NewNode.bval=elt.val
Candidate (NewNode)
Develop (NewNode)
stop=1

end
update (prev,NR)

end

Algorithm 6: Case C : rpos = cpos

cludes or is included in the input edge label of up node.
The update() function is described in algorithm 7.

We present in Fig. 2 the FAT update upon the inser-

tion of three filtering rules R5, R6 and R7. The header
parts of the filtering rules have four dimensions, source
and destination addresses and source and destination

ports. Let us note that tcp and udp ports are repre-
sented in 2 bytes. We employ Algorithm 6 for adding
rule R5 since we match the case rpos=cpos=(1,1)o. The

insertion of R6 requires the application of Algorithm 5
because we find the case rpos = (2,1)o > cpos=(1,1)o.
Finally, the filtering rule R7 shows an example of rpos

= (1,4)o < cpos=(2,1)o, hence the use of Algorithm 4.

9

Fig. 2 FAT update

5.5 Firewall rule elimination

We present in this Subsection the procedure to elim-
inate a firewall filtering rule DR from the FAT. The

main goal is to remove the rule path of DR which is pro-
vided by Algorithm 8. The delete() function traverses
the FAT using the elements of rule path(DR). At each

visited node, if there are no other filtering rules shar-
ing the rule path with DR, then we assign to that node
the type F which marks the end of the path. If the

condition does not hold, we only remove DR from the
primary candidates rules set of the node.

Besides, we have to remove the identifier of the rule

DR, from the sets of secondary and tertiary candidate
rules of all nodes in the FAT. For this purpose, we use
the function clean, described in Algorithm 9 and is first

invoked in Algorithm 8.

6 Firewall Anomalies discovery and complexity

We are interested in this section, in detecting and pre-
venting firewall anomalies, essentially those considered
severe (full redundancy, shadowing and down redun-

dancy). The FAT construction allows the administrator
discovering all anomalies. The prevention is triggered
when inserting a new filtering rule. It gives the admin-

istrator the suitable place, where to add a new rule in
order to avoid severe anomalies.

6.1 Firewall anomalies detection

In order to determine firewall anomalies, we have to in-
spect the leaf nodes of the FAT. Redundant rules are

discovered if there are several primary candidate rules
in a leaf node. The set of secondary candidate rules
contains filtering rules whose domains include the do-

main of the primary candidate rule. The rules order is

10

Function update

Input: Node ; NR

begin
foreach val such that (Node.edge[val]̸=NULL)
do

/*Adding NR as a secondary candidate rule*/
if NR ∈ Node.P ∪ Node.S then

if proj (NR,Node.pos)⊃ val then
up node = Node.edge[val]
up node.S= up node.S ∪ { NR }
update (up node,NR)

end

end

/*Adding NR as a tertiary candidate rule*/
if NR ∈ Node.S ∪ Node.T then

if proj (NR,Node.pos)⊂ val then
up node = Node.edge[val]
up node.T= up node.T ∪ { NR }
update (up node,NR)

end

end

end

end

Algorithm 7: Update FAT nodes

important for deciding the type of the anomaly. If the
identifier of a secondary candidate rule is lower than
the identifier of the primary rule, we detect a shadow-

ing or down redundancy depending on the rules actions
However, if a secondary candidate rule comes after the
primary rule, we encounter a generalization or an up

redundancy. Eventually, the domain of tertiary candi-
date rule overlaps with that of the primary rule. Hence,
we detect a correlation or a partial redundancy depend-

ing on the rules actions. We present in Algorithm 10 a
detailed description of the anomalies detection process.

6.2 Firewall Anomalies Prevention

The anomalies prevention is ensured when inserting a
new rule NR. The inspection of the FAT’s leaf nodes

shows that NR appears only one time as a primary
candidate rule (discussion 1). Besides, NR may occur
as a secondary (discussion 2) or tertiary (discussion 3)

candidate rule in other leaf nodes. In the following, our
discussion is based on the sets P, S, T of primary, sec-
ondary and tertiary candidate rules of a leaf node.

– Discussion 1 = NR ∈ P : if card(P) > 1 then NR is
full redundant to other rules in P and it is useless. If

card(P) = 1, the domain of NR is included in the
domains of the rules present in S. To avoid shad-
owing and down redundancy, NR must come before

the rules in S. Formally, order(NR) < min(order(S)).

Function delete

Input: Root ; DR

begin
current=Root
foreach elt of rule path(DR) do

current.P= current.P - {DR}
if (current.P = ∅) then

current.edge[DR.elt.val]=NULL
current.type=F
exit ()

else
if (current.pos==DR.elt.pos) then

if (current.type==P) then
foreach val’ such that
current.edge[val’]̸=NULL do

if (val’(DR.elt.val) then
c node=current.edge[val’]
clean (c node)

end

end

end
current=current.edge[DR.elt.val]

else
/* current.pos < DR.elt.pos */
foreach val’ such that
current.edge[val’]̸=NULL do

if (val’̸= ϵ) then
c node=current.edge[val’]
clean (c node)

end

end
if (|current.edge[ϵ].P|==1) then

current.edge[ϵ]=NULL
else

current=current.edge[ϵ]
end

end

end

end

end

Algorithm 8: Elimination of a rule from the FAT

– Discussion 2 = NR ∈ S: In this situation, the do-
main ofNR embraces the domains of the rules present

in P . To avoid shadowing and down redundancy, the
rule NR must come after the rules in P. Formally,
order(NR) > max(order(P)).

– Discussion 3 = NR ∈ T : We have in this situa-
tion, a correlation or a partial redundancy between
NR and the rules in P . Let us assume that P =
{R1, ..., Rk} where Ri are sorted by their order of

appearance in the configuration file. We note by
Domi the domain formed by {R1, ..., Ri}, i.e.Domi =
i∪

j=1

Dom(Rj). We have to find the smallest i∗ ∈

{1..k} such thatDom(NR) ⊂ Dom∗
i . To avoid shad-

owing and down redundancy, NR must appear be-

fore rule R∗
i , which means that order(NR) < i∗.

11

Function clean

Input: Node ; DR

begin
if DR ∈ Node.S then

Node.S = Node.S -{DR}
end
if DR ∈ Node.T then

Node.T = Node.T -{DR}
end
foreach val such that Node.edge[val]̸=NULL do

/* will stop at leaf node */
clean (Node.edge[val])

end

end

Algorithm 9: Clean FAT nodes

begin
foreach leaf node L in the FAT do

if | L.P ∪ L.S ∪ L.T |> 1 then
foreach p in L.P do

foreach p⋆ in L.P do
if order(p⋆) < order(p) then

if action(p⋆)=action(p) then
p is full redundant to p⋆

else p is full incoherent to p⋆

end

end
foreach s ∈ L.S do

if order(s) < order(p) then
if action(s)=action(p) then
p is down redundant to s
else p is shadowed by s

else
if action(s)=action(p) then
p is up redundant to s
else s is a generalization to p

end

end
foreach t ∈ T do

if action(t)=action(p) then p is
partial redundant to t
else p is a correlation of t

end

end

else No anomaly

end

end

Algorithm 10: Anomalies discovery with FAT

6.3 Soundness and Completeness

Theorem 1 (Soundness) Our detection algorithms
are sound.

Proof Let R1 and R2 be two conflicting rules. Accord-
ing to Algorithm 10, R1 and R2 are candidates rules in
a leaf node, elt be Ln. We suppose that R1 ∈ Ln.P and

R2 ∈ Ln.P ∪ Ln.S ∪ Ln.T . We distinguish 3 cases:

– {R1, R2} ⊂ Ln.P . According to Algorithm 2 which

uses the function cand() (Definition 11) we deduce
that:
• {R1, R2} ⊂ (Ln.prev).P = Ln−1.P

• R1 and R2 share the same byte at Ln−1.pos.
By using the recurrence, we conclude that R1 and
R2 share all the bytes from the root node to the

node Ln. Hence, R1 and R2 are redundant.
– R1 ∈ Ln.P and R2 ∈ Ln.S. According to Algorithm

2 which uses the function supcand() (Definition 12)

we deduce that:
• R1 ∈ (Ln.prev).P = Ln−1.P andR2 ∈ Ln−1.P∪
Ln−1.S

• The masked byte of R1 at Ln−1.pos is included
in the masked byte of R2 at the same position.

By using the recurrence, we conclude thatDom(R1) (
Dom(R2). Hence, the anomaly exists.

– R1 ∈ Ln.P and R2 ∈ Ln.T . According to Algorithm
2 which uses the function subcand() (Definition 12)

we deduce that:
• R1 ∈ (Ln.prev).P = Ln−1.P andR2 ∈ Ln−1.P∪
Ln−1.S ∪ Ln−1.T

• The masked byte of R1 at Ln−1.pos includes the

masked byte of R2 at the same position.
By using the recurrence, we conclude thatDom(R1)∩
Dom(R2) ̸= ∅. Hence, the anomaly exists. ⊓⊔

Theorem 2 (Completeness) Our detection algorithms

are complete.

Proof The completeness of our detection algorithms is

achieved thanks to the partial order (Definition 5). All
bytes of the filtering rules are sorted according to their
dimensions (fields) and types (masked or complete). So

all rules are represented in the FAT.

The Develop() method (Algorithm 1) finishes when

the current position is “FINAL”. Besides, the insert()
method (Algorithm 3) defines 3 cases (A, B and C), all
of them use the function Develop(). Finally, the delete()

(Algorithm 4) converges since it eliminates some nodes
and candidate filtering rules from a finite Tree. ⊓⊔

6.4 Complexity Study

We analyze in this Subsection, the complexity of our
two construction strategies. We assume that the firewall

configuration file contains n rules with m dimensions. If
we subdivide each dimension into several blocks with a
size of one byte, we can obtain up to d blocks per rule.

Concerning space complexity, it is linear O(n), since (1)
each path must have at least one primary candidate rule
(2) each rule is a primary candidate rule on a unique

path on the FAT (3) edges are defined based on masked

12

bytes of primary candidate rules. We devote the rest of

this Subsection to compute time complexity.

Develop Strategy

Using Algorithm 1, we notice that the construction time
depends on three operations: the computation of the
next position , the projection with the node typing and

the unfolding (the loop “for”). We model this period
time by fd(n) where d is the number of positions to
be processed and n is the number of primary candidate

rules.

tdevelop strategy = fd(n)
= tposition calculation + tprojection&typing + tunfolding
= n+ n+ α[tcandidate + fd−1(

n
α)]

α is the number of child nodes derived from the node
under processing. It varies between 1 and n. The maxi-

mum entropy (disorder) is obtained when α is equal to
2. tcandidate is the time needed to execute Algorithm 2
on each child node. It depends on all candidates rules

(primary, secondary and tertiary) at the parent node.
Their numbers decrease when developing the nodes. For
this reason, we note tcandidate by Ci where i is the level

of the development.

tdevelop strategy = fd(n) = 2.n+ 2[C1 + fd−1(
n
2)]

= 2.n+ 2[C1 + 2.(n2) + 2[C2 + fd−2(
n
4)]]

= 2.n.log2n+ (
∑log2n

i=1 2i.Ci) + n.fd−log2n(1)

= 2.n.log2n+(
∑log2n

i=1 2i.Ci)+n.[2+fd−log2n−1(1)]

= 2.n.log2n+ (
∑log2n

i=1 2i.Ci) + n.[2.(d− log2n)]

tdevelop strategy = 2.n.d+(
∑log2n

i=1 2i.Ci) = O(n.log2n)

Let us note that we can reduce the amount 2.n.d by
choosing a block size larger than a byte. However, we

obtain a larger Ci since we get more candidates rules,
due to overlaps, at each stride.

Insert Strategy

We assume having a FAT composed of n filtering rules.

We would like to add a new filtering rule numbered
n+ 1. We have to employ Algorithms 3, 4, 5, 6 and 7.
There are at most d positions on The FAT. We note by
a(d) the time needed to find the right position where we

will develop the new rule. Besides, we refer by u(n), the
time period to update candidates rules on the existing
FAT of n rules. Analytically, we have:

tinsert n+1 = taccess + tdevelop + tupdate n

= a(d) + fd−a(d)(1) + u(n)
= a(d) + 2.(d− a(d)) + u(n)

tinsert n+1 = 2.d+ u(n)− a(d) = O(n)

If we construct the whole FAT using the insert strat-

egy, we obtain the following complexity:

tinsert strategy =
∑n

i=1 tinsert i

tinsert strategy = 2.n.d+
∑n−1

i=0 (u(i)− a(d)) = O(n2)

We notice that adding a new rule on an existing
FAT is fast. If we neglect the amount 2.d−a(d), the pe-

riod time for inserting a new rule depends essentially on
u(n). In addition, the two construction strategies share
the same amount 2.n.d. They differ on the way to com-

pute candidates rules. This operation is less solicited
with the develop strategy (n.log2n instead of n2).

7 Experimental results

We develop the set of algorithms presented in this paper
using the C language. These algorithms do not impose

a specific number or type of fields in the filtering rules.
On the contrary, we employ the concept of rule path
that represents a concatenation of an arbitrary number

of bit blocks. These blocks are extracted from the at-
tributes of the filtering rules and are sorted to avoid, as
much as possible, the processing of overlaps. Due to its

flexibility, we think that our approach can be general-
ized to many other problems (packet routing, signature
based intrusion detection, etc.).

We conduct our experiments on a laptop Intel Core
i3 processor, 4GB RAM, running Microsoft Windows
Seven. We perform two types of experiments. First of

all, we execute our program on a short size firewall con-
figuration supposed to contain all anomalies types. Our
objective is to ensure the detection of all incoherences.

Afterwards, we carry out several experiments with a
variable size configuration file. We evaluate the behav-
ior of our verification tool in overload conditions.

7.1 Detection results on a short configuration

In order to verify the results of our algorithms, we en-

hance the configuration file given in Fig. 2, by 3 rules
R8, R9 and R10. Table 2 summarizes all firewall filter-
ing rules.

We provide in Fig. 3 a summary of our firewall con-
figuration analysis. Our algorithm reveals 22 anomalies,

among them there are 2 shadowing and 3 down redun-
dancies considered as severe errors. We report in Table
3 a detailed listing about these anomalies. We notice

that R4 and R7 are not useful, they are shadowed by
R3. In addition the default filtering rule (R10) produces
a lot of minor anomalies having the types generalization

or up redundancy.

13

Table 2 Simple Firewall configuration

N Src Dest Src Dest Action
Addr. Addr. Port Port

R1 192.168.1.0/24 10.0.0.0/8 80 * Accept

R2 192.168.0.0/23 * 80 * Accept

R3 192.168.0.0/22 10.0.0.0/8 80 * Deny

R4 192.168.0.0/23 10.0.0.0/9 80 * Accept

R5 193.0.0.0/8 10.0.0.0/8 * * Accept

R6 * 11.0.0.0/8 * * Accept

R7 192.168.1.1/32 10.0.0.0/8 80 * Accept

R8 10.0.0.0/8 172.16.0.0/12 80 * Accept

R9 193.0.0.0/25 * 80 * Deny

R10 * * * * Deny

Fig. 3 Program execution on a simple configuration file

Table 3 Anomalies in a simple firewall configuration

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 UR PR

R2 C

R3 G C UR

R4 DR S

R5

R6 UR

R7 DR DR S PR

R8

R9 C PR UR

R10 G G G G G G

Keys: C: Correlation; S: Shadowing; G: Generalization

UR: Up Redundancy; DR: Down Redundancy; PR: Partial Redundancy

7.2 Detection results on a large configuration

We get several filtering rules from 21 firewalls that are
deployed in different institutes and universities. The
size of the configuration files varies between 15 and 112

rules. Some firewalls are deployed between the perime-
ter network (DMZ) and the outside network, while oth-
ers are implemented between internal network segments.

We find the two operation modes: routed and trans-
parent modes. The configurations aim to enforce net-
work policies. They authorize some ordinary data traf-

fic (http, smtp, ssh,...) and some control traffic (routing
protocols, vpn protocols, snmp,...). They also secure the
boundaries between different zones, and filter malicious

softwares, undesirable applications, and abnormal traf-

fic (spoofing, dos,...). We rewrite local IP addresses in

these configuration files to appear protecting the same
network. Then, we combine the filtering rules to obtain
a huge configuration file, able to evaluate our approach

in overload conditions.
We construct our FAT by two possible ways. The

first method takes all filtering rules and applies the

develop() function with the Cut strategy. The second
method constructs the FAT, rule by rule, using the in-
sert() function. During our experiments, we supervise

the number and the nature of discovered anomalies, the
FAT construction time and the memory consumption.

In Fig. 4, we inspect the variation of discovered

anomalies with respect to the number of filtering rules.
We notice that the number of incoherences in a firewall
rises rapidly with the complexity of configuration. We

detail in Fig. 5 the nature of these anomalies. We no-
tice that the partial intersection of two rules domains
is the main cause leading to correlation and partial re-
dundancy. Shadowing and down redundancy, which are

considered as severe faults in a configuration, may also
appear in a huge firewall configuration.

Fig. 4 Anomalies increase with respect to filtering rules

Fig. 5 Nature of discovered anomalies

We measure in a second phase of our evaluation, the
FAT construction using the two aforementioned meth-

ods (Fig. 6). As expected, the develop() method is faster

14

since it processes in one step, all candidate rules on each

node at a given position. However when using the in-
sert() method we have to visit the same node, as many
times as the new inserted rules, are candidate in that

node. The develop() method fits a static firewall config-
uration. Nevertheless, it is better to rely on the second
construction method if the content or the number of

filtering rules frequently changes . Indeed, Fig. 6 shows
that the update of a FAT representing 2000 rules, takes
only 0,59 seconds.

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500

E
x

e
cu

o

n
 T

im
e

 (
s)

Number of filtering rules

Time (s) with Develop Method Time (s) with Insert Method Time (s) for adding one rule

Fig. 6 Time execution for FAT construction and update

Our final experiment evaluates the memory con-
sumption needed to represent the FAT (Fig. 7). While
the two construction methods requires almost the same

amount of memory, we can notice that the develop method
has a small advantage. This is due to the application of
Cut strategy in the first construction process. In fact,

Fig. 8 shows the number of nodes generated by the two
methods and the number of Cut strategy invocations.

Fig. 7 Memory consumption with the two construction
methods

8 Conclusion

The efficiency of a firewall depends on the defined se-

curity policy. However, a detailed configuration implies

Fig. 8 Nodes generation with the two construction methods

the presence of many filtering rules which increases the
risk of incoherence. A manual verification of a firewall

configuration seems to be difficult. Administrators have
to rely on automatic tools to check up and maintain
their firewalls.

We propose in this paper a set of algorithms to rep-

resent filtering rules in a tree datastructure called FAT
(Firewall Anomaly Tree) and to update it according to
the evolution of the firewall configuration. Our strategy

for building the tree does not process separately the
value each field of the filtering rules. Instead, the value
is divided into a set of complete bytes, and a partial byte

that represents an interval. Our strategy postpones the
processing of the partial bytes over the complete bytes.
Besides, the construction can be achieved by treating

all rules together, or one by one. On one hand, we show
that the first method is faster and it is more suitable
for a first verification of a firewall configuration. On

the other hand, the second method is appropriate for
continuously monitoring the configuration file since it
allows a fast tree update. By means of FAT, the ad-

ministrator can discover all anomalies and choose the
adequate position to insert a new filtering rule.

As a future work, we can apply our strategy to dis-

cover anomalies between multiple firewalls or with het-
erogeneous security equipments (Intrusion Detection /
Prevention System, Honey Pot, Security gateway). Our

second objective is to exploit the tree datastructure to
find an adequate permutation that reduces the number
of incoherences.

References

1. T. Abbes, A. Bouhoula, and M. Rusinowitch. An infer-
ence system for detecting firewall filtering rules anoma-
lies. In Proceedings of the 2008 ACM symposium on Ap-
plied computing, SAC ’08, pages 2122–2128, 2008.

2. E. Al-Shaer and H. Hamed. Modeling and management
of firewall policies. IEEE Transactions on Network and
Service Management, vol. 1, no. 1, pages. 2-10, 2004.

15

3. E. Al-Shaer and H. Hamed. Taxonomy of conflicts in net-
work security policies. IEEE Communications Magazine,
vol. 44, no. 3, pages 134-141, March 2006.

4. E.S. Al-shaer and Hazem H. Hamed. Firewall policy ad-
visor for anomaly discovery and rule editing. In Proceed-
ings of IFIP/IEEE Eighth International Symposium on
Integrated Network Management, pages 17–30, 2003.

5. E.S. Al-shaer and Hazem H. Hamed. Discovery of policy
anomalies in distributed firewalls. In Proceedings of IEEE
INFOCOMM, pages 2605–2616, 2004.

6. J.G. Alfaro, N. Cuppens-Boulahia, and F. Cuppens.
Complete analysis of configuration rules to guarantee re-
liable network security policies. International Journal of
Information Security, vol. 7, no. 2, pages 103-122, March
2008.

7. F. Baboescu and G. Varghese. Fast and scalable conflict
detection for packet classifiers. In Proceedings of the 10th
IEEE International Conference on Network Protocols,
ICNP ’02, pages 270–279, Washington, DC, USA, 2002.
IEEE Computer Society.

8. C. Basile, A. Cappadonia, and A. Lioy. Network-
level access control policy analysis and transformation.
IEEE/ACM Transactions on Networking (TON), vol.
20, no. 4, pages 985-998, August 2012.

9. N. BenYoussef and A. Bouhoula. Automatic conformance
verification of distributed firewalls to security require-
ments. In Proceedings of the 2010 IEEE Second Interna-
tional Conference on Social Computing, SOCIALCOM
’10, pages 834–841, 2010.

10. N. BenYoussef, A. Bouhoula, and F. Jacquemard. Au-
tomatic verification of conformance of firewall configu-
rations to security policies. In Proceedings of the 14th
IEEE Symposium on Computers and Communications,
ISCC 2009, pages 526–531, 2009.

11. CERT Coordination Center. Conficker worm tar-
gets microsoft windows systems. http://www.us-
cert.gov/cas/techalerts/TA09-088A.html, April 2009.

12. CERT Coordination Center. CERT Ad-
visory CA-2003-20 W32/Blaster worm.
http://www.cert.org/advisories/CA-2003-20.html,
August 2003.

13. Simovits Consulting. Trojan list sorted on trojan port.
http://www.simovits.com/trojans/trojans.html.

14. D. Eppstein and S. Muthukrishnan. Internet packet filter
management and rectangle geometry. In Proceedings of
the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 827–835, Philadelphia, PA, USA, 2001.

15. P. Eronen and J. Zitting. An expert system for analyzing
firewall rules. In Proceedings of the 6th Nordic Workshop
on Secure IT Systems (NordSec 2001), pages 100–107,
2001.

16. N. Cuppens-Boulahia F. Cuppens and J.G. Alfaro. De-
tection and removal of firewall misconfiguration. In Pro-
ceedings of the International Conference on Communi-
cation, Network and Information Security, IASTED’05,
volume 1, pages 154–162, 2005.

17. N. Cuppens-Boulahia F. Cuppens and J.G. Alfaro. Mis-
configuration management of network security compo-
nents. In Proceedings of the 7th International Sympo-
sium on System and Information Security, pages 154–
162, 2005.

18. S. Ferraresi, S. Pesic, L. Trazza, and A. Baiocchi. Auto-
matic conflict analysis and resolution of traffic filtering
policy for firewall and security gateway. In Proceeding of
the IEEE International Conference on Communications,
ICC ’07, pages 1304–1310, 2007.

19. J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and
S. Preda. Mirage: a management tool for the analysis and
deployment of network security policies. In Proceedings of
the 5th international Workshop on data privacy manage-
ment, and 3rd international conference on Autonomous
spontaneous security, pages 203–215, 2011.

20. M. Gouda and A. Liu. A model of stateful firewalls and
its properties. In Proceedings of the IEEE International
Conference on Dependable Systems and and Networks,
pages 128–137, 2005.

21. M. Gouda and X. Liu. Firewall design: Consistency, com-
pleteness, and compactness. In Proceedings of the 24th
International Conference on Distributed Computing Sys-
tems, ICDCS’04, pages 320–327, 2004.

22. P. Gupta and N. McKeown. Algorithms for packet clas-
sification. IEEE Network Magazine of Global Internet-
working, vol. 15, no. 2, pages 24-32, 2001.

23. H. Hu, G.L Ahn, and K. Kulkarn. Detecting and resolv-
ing firewall policy anomalies. IEEE Transactions on De-
pendable Secure Computing, vol. 9, no. 3, pages 318-331,
May 2012.

24. A. Jeffreyand and T. Samak. Model checking firewall
policy configurations. In Proceedings of the IEEE Inter-
national Symposium on Policies for Distributed Systems
and Networks, POLICY ’09, pages 60–67, 2009.

25. A. Lui and M. Gouda. Firewall policy queries. IEEE
Transactions on Parallel and Distributed Systems, vol.
20, no. 6, pages 766-777, 2009.

26. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stani-
ford, and N. Weaver. The spread of the sapphire/slammer
worm. http://www.caida.org/publications/papers/
2003/sapphire/sapphire.html, 2003.

27. J. Qian. Acla: A framework for access control list (acl)
analysis and optimization. In Proceedings of the IFIP
TC6/TC11 International Conference on Communica-
tions and Multimedia Security Issues of the New Cen-
tury, page 4, 2001.

28. M. Rezvani and R. Aryan. Analyzing and resolving
anomalies in firewall security policies based on propo-
sitional logic. In Proceedings of 13th IEEE International
Multitopic Conference, INMIC 2009, pages 1–7, 2009.

29. A.D. Rubin, D. Geer, and M.J. Ranum. Web Security
Sourcebook: A Complete Guide to Web Security Threats
and Solutions. Wiley Computer Publishing, 1997.

30. M. A. Ruiz-Sanchez, E . W. Biersack and W. Dabbous
Survey and taxonomy of IP address lookup algorithms.
In Journal IEEE Network: The Magazine of Global In-
ternetworking, vol. 15, Issue 2, page 8-23, March 2001.

31. V. Srinivasan, V. and G. Varghese Fast address lookups
using controlled prefix expansion. In Journal ACM
Trans. Comput. Syst., vol. 17, no. 1, page 1-40, February
1999.

32. S. Thanasegaran, Y. Yin, Y. Tateiwa, Y. Katayama, and
N. Takahashi. A topological approach to detect conflicts
in firewall policies. In Proceedings of the IEEE Inter-
national Symposium on Parallel Distributed Processing,
IPDPS 2009, pages 1–7, 2009.

33. L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mo-
hapatra. Fireman: A toolkit for firewall modeling and
analysis. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, SP ’06, pages 199–213, 2006.

16

