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Abstract: In moving block systems for railway transportation a central controller periodically
communicates to the train how far it can safely advance. On-board automatic protection mecha-
nisms stop the train if no message is received during a given time window.
In this report we consider as reference a typical implementation of moving-block control for metro
and quantify the rate of spurious Emergency Brakes (EBs), i.e. of train stops due to communication
losses and not to an actual risk of collision. Such unexpected EBs can happen at any point on the
track and are a major service disturbance.
Our general formula for the EB rate requires a probabilistic characterization of losses and delays.
We derive an exact formula for the case of homogeneous and independent packet losses and we use
the results of this analysis to design an efficient Monte Carlo method that takes into account corre-
lated losses due to handovers. We validate our approach via discrete-event simulations, including
simulations with ns-3 for which we have developed additional modules for train systems. Our
approach is computationally efficient even when emergency brakes are very rare (as they should
be) and can no longer be estimated via discrete-event simulations.
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Evaluation de Performance du
Contrôle de Train à Canton Glissant

Résumé : Le contrôle du trafic ferroviaire repose sur le principe de base qu’à tout instant au
plus un train peut occuper un tronçon de la voie ferrée. Traditionnellement, ces tronçons (ou
cantons) sont fixes. Dans les systèmes à canton glissant, un ordinateur central à chaque zone
détermine les cantons propres à cette zone. Tous les trains d’une zone doivent périodiquement
communiquer à l’ordinateur central leurs positions actuelles, celui-ci peut alors calculer les limites
à ne pas dépasser pour chaque train. L’information relative à chaque train lui est alors transmise
par voie radio. Le contrôle à canton glissant permet une meilleure exploitation de la voie ferrée
tout en réduisant le cout des équipements le long des rails. Ce type de contrôle est utilisé dans
le système Communication Based Train Control (CBTC) qu’on trouve dans les transports en
commun ferrés et est à l’étude pour la nouvelle génération du European Train Control System pour
les trains à grande vitesse. On considère le cas où la communication entre trains et équipements
au sol se fait par ondes radio. Des mécanismes de protection à bord du train déclenchent un
freinage d’urgence si aucun message de contrôle n’est reçu par le train pendant un certain temps
prédéterminé. Ce type de freinage d’urgence, intempestif, est une source majeure de perturbation
pour le trafic ferroviaire et il est essentiel de bien dimensionner le système de communication
afin de limiter les freinages d’urgences intempestifs. Dans ce rapport, nous étudions le contrôle
ferroviaire à canton glissant et considérons comme cas d’étude des lignes de métro déployées
par Alstom Transport, un acteur majeur du monde ferroviaire. En particulier, nous quantifions
le taux de freinages d’urgence intempestifs (les freinages dus aux erreurs de communications
radio et non pas à un réel risque de collision). Nous obtenons une formule exacte lorsque les
pertes de paquets sont homogènes et indépendantes et exploitons cette formule pour concevoir
une méthode Monte-Carlo permettant de calculer le taux de freinages d’urgence intempestifs
lorsque les pertes de paquets sont aussi dues aux phases de handover dans la communication
sans-fil. Nous validons notre approche par des simulations à événements discrets. Nous utilisons
en particulier le simulateur ns-3 pour lequel nous avons implanté des modules supplémentaires
nécessaires à la simulation des systèmes ferroviaires. Notre approche est efficace même lorsque
les freinages d’urgence intempestifs sont extrêmement rares (comme ils devraient l’être) alors
qu’une simulation à événements discrets ne serait plus envisageable.

Mots-clés : Freinages d’urgence intempestifs, Communication Based Train Control (CBTC),
European Rail Traffic Management System (ERTMS), European Train Control System (ETCS),
Méthode de Monte-Carlo.
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Figure 1: Fixed-block and moving-block operation.

1 Introduction

In order to avoid collisions between consecutive trains traveling on the same track, the track is
traditionally divided in fixed sections—called blocks—and only one train at a time is allowed
to be in a given block. Different signaling mechanisms (trackside traffic lights, communication
through the track circuits, . . . ) are used to inform a train’s driver of the presence of another train
in the block ahead, so that he/she can stop the train. Automatic train protection mechanisms
can intervene in case the driver fails to react. The cost of the required trackside equipment
limits blocks’ granularity and determines a lower bound for the trains’ headway, i.e. the minimum
distance (or time) achievable between two consecutive trains. The minimum headway determines
the maximum line capacity, e.g. expressed in number of passengers per hour.

The increasing demand for efficient mass transit transport requires to utilize train lines more
efficiently. The improvements of train-sidetrack wireless communications, on board processing
and actuators have made possible the introduction in the last 15 years of moving block systems,
where blocks are dynamically calculated. Figure 1 schematically illustrates the two different
approaches. The moving-block control can reduce the headway taking into account the actual
distance between the trains as well as their speeds. It is being deployed as Communication-
Based Train Control (CBTC) for urban mass transit system and is under consideration for next
generation of European Train Control System (ETCS level 3 under standardization).

In moving-block systems an on board local controller, called the Carborne Controller (CC),
continuously collects and processes data about different quantities of interest like the train’s
position, its speed, etc. This information is sent periodically to an external ground controller,
which is called the Zone Controller (ZC) because it monitors all the trains in a given zone. On
the basis of the information collected from all the trains, the ZC computes the Limit of Move-
ment Authority (LMA) for each train and sends it to the corresponding CC, using standard or
proprietary radio technologies. Messages can be sent redundantly through multiple independent
channels to reduce the risk that the information is lost, nevertheless such event can always occur.
Given that ZC messages carry movement authorities that are safety-critical, if no LMA message
is received during a given interval then the CC will no longer have valid guarantees that train
movement is still safe and will trigger an Emergency Brake (EB). It is clearly desirable to limit
the frequency of spurious emergency brakes, i.e. emergency brakes that are simply due to losses
on the wireless channel and not to a potential collision risk. Indeed spurious emergency brake can
be themselves a cause of danger, with trains potentially blocked in tunnels, risks of passengers
disembarking on the tracks, etc. Moreover, a spurious EB can generate legitimate EBs on the
following trains on the track, causing in this way major service disturbance. For this reason, the
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4 G. Neglia, et al.

so-called performance based contracts (similar to service level agreements for network operators)
can bind rail transport companies to specify the maximum number of spurious emergency brakes
over a given period of time.

In spite of their criticality, the estimation of the rate of spurious EBs is mostly based on
historical operational data. This approach strongly limits the possibility to evaluate ahead of
time the performance when significant changes are deployed and in particular when new lines
based on new technologies are built. It is often required to experimentally adapt different system
parameters (e.g. transmission power levels, timer values, . . . ) after the deployment of the line,
and sometimes even to deploy additional trackside equipment (e.g. radio transmitters). These
difficulties are often considered one of the reasons for the delay in the standardization of ETCS
level 3. For example [12] shows that the official quality of service specifications for the different
subcomponents of the ETCS level 3 system can lead to a ridiculously high rate of spurious EBs
(one every 30 minutes).

A model-based analysis can then play a fundamental role for a preliminary evaluation of
the real performance of moving block control. Some work has been done in this direction fol-
lowing [12], and then considering its abstraction from ETCS level 3 specifications mostly using
stochastic Petri nets [13, 5, 1, 4, 2]. A detailed overview of the related papers is in Sec. 5, here
we simply mention the four main differences of our approach. First, rather than moving from
the current proposals for ETCS level 3, we consider as reference an actual implementation of
the moving-block system for metro by Alstom, one of the world largest company in the domain
of rail transport and signaling. This fact has important consequences on the modeling phase.
One example illustrates the difference in viewpoints. ETCS level 3 specifications require loss of
communication to be spaced by 7 seconds on average and to last less than 1 s in 95% of the
cases. From these requirements [12] (and then the follow-ups) models the wireless channel as an
ON-OFF renewal process (independent from the train movement) whose rates are determined so
to match the requirements. On the contrary we explicitly consider the handover phases that are
the cause of such long losses of communications and we then study them jointly with the train
mobility. In fact disassociation time instants are obviously dependent on the relative position
of train’s and trackside’s transmitters. Second, looking at an actual implementation has lead
us to identify the importance of the time-slotted operation of the two controllers (the CC and
the ZC). Indeed, the most important delay component in the messages’ exchange between the
CC and the ZC is due to the waiting time for the next clock tick at which the controller can
process the message. This waiting time can be equal to hundreds of milliseconds versus the tens
of milliseconds due to network delays. This aspect was ignored in the previous literature and
we show that has to be addressed to correctly evaluate the system performance. In particular, a
consequence of the time-slotted operation is that the EB rate exhibits non-trivial discontinuity
as the timer value changes. A third (methodological) difference in comparison to the direction
of [12] and follow-ups is that we try to push as further as possible the probabilistic analysis to
derive closed-formula expressions. We manage to derive a formula for the case of independent
and homogeneous packet losses. The analysis allows to better understand the role of the dif-
ferent system parameters and it is also the foundation on which we develop an efficient perfect
simulation approach for the more general case. On the contrary the existing literature only relies
on simulations or (in the case of [2]) on the numerical solution of a stochastic Petri net. In both
cases the dependence on the system parameters is hidden. Finally, from the algorithmic point
of view, it is not clear if the numerical approaches proposed until now can be practically used to
estimate EB rates as low as in this paper. Our guess is that this is probably not the case but,
perhaps, for [13] and [2] (see the detailed discussion in Sec. 5). Indeed our approach does not
need to simulate rare sequences of packet losses and is then practically implementable (less than
1 minute on standard PCs). Our numerical approach is also validated by discrete-event simula-

Inria



Performance Evaluation of Train Moving-Block Control 5

tions through an ad-hoc simulator and ns-3 [10], for which we had to develop some additional
modules.

Summarizing, our main contributions in this paper are the following:

1. we study moving block control starting from a real implementation,

2. we derive a simple formula for the rate of spurious EBs in the case of independent packet
losses,

3. we provide an efficient Monte Carlo method to evaluate the EB rate in presence of han-
dovers,

4. we present some new additional modules for ns-3 to simulate train-trackside communica-
tions and in particular the moving block control.

The paper is organized as follows. In Sec. 2 we describe our assumptions about the train sce-
nario and the details of the moving-block control including typical values for system parameters.
Then in Sec. 3 we describe our general approach to study the system, we show that a worst case
analysis is of limited utility (Sec. 3.1.2) and then move to derive a general formula for the EB
rate (Sec. 3.1.3) that requires to characterize system delays (Sec. 3.2) and losses (Sec. 3.3). Some
numerical experiments are in Sec. 4. Section 5 reviews the related work and Sec. 6 concludes the
paper. The acronyms used throughout are listed in Appendix A.

2 Scenario

Here we describe the specific railway scenario we consider. In our description we will refer to
transmission technologies and parameters typical of a urban rail network (and then of a CBTC
system), but our following analysis does not depend on these specific implementation details.
What is instead required is that the random variables (r.v.s) defined below (train speed, distances
between access points, etc.) have bounded support and are lower bounded by a positive constant.
For a given r.v. α, we denote by αmin > 0 its lower bound and by αmax <∞ its upper bound.1

We consider a train of length Lmoving on an infinitely long track, its speed ν(t) is a stationary
process. While we allow the speed to change (differently from most of the works in the domain
that implicitly assume a constant speed), we require that its variations are small on the timescale
of the timer used by the moving-block control (TM defined later), i.e. over an interval of a few
seconds. Typical values for the bounds of the values assumed by ν(t) as well as for the r.v.s
defined later are in Table 1.

The train has two WiFi On Board Modems (OBMs) with directive antennas: one is located
at the front of the train, the other at the back. We refer to them respectively as the blue and
the red OBMs. Along the track there are pairs of closely-located WiFi Access Points (APs),
using the same channel. The pair is called a Trackside Radio Equipment (TRE). Each AP in a
TRE is devoted to communicate with one of the two OBMs and is connected to an independent
wired network through which the Zone Controller (ZC) can be reached. We also label the APs,
the wireless channels and the wired networks blue or red as the corresponding OBM. Hence
communications between the train and the ZC are possible through separate paths, each with a
single wireless link. A frequency reuse plan limits interference from other APs. The track part
between two consecutive pairs of APs is called a line segment. Let ξk denote the length of the

1 Please note that in our paper Greek letters are reserved to denote random variables and capital letters to
denote system parameters.
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Figure 2: Illustration of LOC-EOA exchanges.

line segment between the k-th and the k + 1-st pair of APs. We assume ξk to be independent
samples from a random variable ξ.2

An OBM, say the blue one, disassociates from the blue AP it is connected to when the
received signal strength falls below the given threshold. Due to the vagaries of the wireless
channels, different antenna gains for different APs, and different antenna gains for the same
OBM for different channels, the distance between the OBM and the AP at the disassociation
is a random variable. We consider disassociation distances for different APs (of the same or of
different color) to be i.i.d. r.v.s.. In particular disassociation distances from blue (resp. red)
APs are samples of the r.v. δb (resp. δr). The distribution of δb and δr are in general different
because of the different gain antennas have in the two opposite directions (the main antenna lobe
is oriented outward). The power design guarantees that the OBM will then connect to the next
blue AP along the track, i.e. to an AP that is separated by one line segment from the previous
one.

2.1 Train Moving-Block Control

In this section we describe the detailed operation of a moving block system considering as ref-
erence the specific CBTC implementation by Alstom, one of the world largest company in the
train transport and signaling domain.3

Figure 2 shows a typical messages’ exchange between the on board controller (the CC) and
the ground controller (the ZC). Observe that both the controllers operate in discrete time on the
basis of clock periods of hundreds of milliseconds. This is due to the fact that they are actually
e-out-of-f voting systems where different processors perform in parallel the same calculations and
a time-slotted operation simplifies the synchronism of the processors. The clock periods at the
ZC and at the CC (respectively TZC and TCC) are in general different because the subsystems are
provided by different vendors and also because they have different computational loads during
one period.

The most important CBTC messages are location reports (LOC) and end-of-authority ones
(EOA). A LOC is a message periodically transmitted from the on board Carborne Controller
(CC) through the Data Communication Sub-System (DCS) to the ground Zone Controller (ZC).

2 The analysis can be immediately extended to the case when the lengths are drawn from a distribution
associated to the state of an underlying stationary Markov chain.

3 The parameters’ values have been slightly changed and some specific implementation details are hidden to
protect Alstom know-how.

Inria



Performance Evaluation of Train Moving-Block Control 7

The message is actually sent twice through the blue and the red networks. The first LOC arriving
at the ZC is processed. Each LOC is acknowledged by an EOA message in the reverse direction
(again sent through the two networks). The EOA carries the LMA that indicates to the CC
how far the train can advance. The LOC has a validity duration TM and a timer with such
duration is activated at the generation of the LOC. An EOA is said to be valid if the timer of
the corresponding LOC has not expired yet. The CC-ZC-CC exchange works as follows:

1. a LOC is generated at the CC every TLOC , multiple of the CC clock period TCC ,
2. the LOC (say LOC k) is ready to be emitted and passed to the DCS after a processing

delay equal to TCC since its generation,
3. the delivery delay introduced by the DCS is a random variable χ1 with support in [TDCS,min, TDCS,max],
4. at the ZC the LOC is available for computing at the next tick of the local clock,
5. the computing time at the ZC required to process the LOCs from all the trains in the zone

and generate the corresponding EOAs is TZC ,
6. the EOA k is emitted within the next cycle of the ZC at an offset O depending on the train

(the ZC sends sequentially the EOAs to all the trains in the zone),
7. the EOA is delivered to the CC after a random delay χ2, distributed as χ1, but independent

from it,
8. at the CC the EOA gets in a processing queue, at the next tick of the CC clock the most

recent EOA present in the queue is processed unless there are higher priority tasks arrived
during the same CC clock period (which happens with probability pD). In any case an
EOA processing is not delayed more than an additional CC period.

9. the EOA k is actually processed only if it remains valid until the end of the current CC
clock. Once processing starts, all the pending timers for older LOCs (i.e. LOC h for h ≤ k)
are deactivated.

10. if the timer of a LOC is not deactivated before its expiration, the EB procedure is triggered.

RemarkWe observe that the timer value TM is always large enough for an EOA to deactivate
the timer of the corresponding LOC in absence of losses. If it were not the case, then spurious
EBs would be systematically generated by network delays even in absence of losses.

3 Analysis
There are different metrics which could be considered to assess the emergency brakes’ events.
For example, one could imagine the system to be initialized at time 0 according to some specific
state distribution and calculate the time distribution until the first occurrence of an emergency
brake. In this paper we rather consider that the system is described by a stationary stochastic
process and calculate the rate at which emergency brakes occur (considering the steady state is
common to all the related literature but [2]). In particular we consider that the train is moving
according to some stationary mobility model and the algorithm described above is running all the
time, even after the occurrence of an emergency brake. This has some important consequences
for the definition of which events are emergency brakes. If n > 1 consecutive LOCs experience
a timeout, they should not be counted as n distinct emergency brakes events. In fact, in reality
the train would stop for a while at the first timeout before starting moving again. While we
find convenient analytically to imagine that the train keeps moving and the algorithm running,
a sequence of multiple consecutive timeouts should only represent a single emergency brake. For
this reason, a timeout for a given LOC, say LOC 1, is counted as an emergency brake only if
the previous LOC 0 does not experience a timeout. LOC 0 does not experience a timeout if and

RR n° 8917



8 G. Neglia, et al.

Figure 3: Different delay components of the k-th LOC-EOA exchange for two different values of
the LOC transmission delay φ′L,k and φ

′′

L,k.

only if the corresponding LOC-EOA exchange is not lost. In fact, observe that if the exchange
is not lost, then the EOA 0 will necessarily arrive in time to block the timer activated at the
generation of LOC 0 (see the remark at the end of Sec. 2.1). The reverse is also true because
if the exchange 0 is lost, no following EOA can block the timer of LOC 0, because they do not
block the timer of LOC 1 that expires later. We denote Lk the event that the exchange k is
lost, Tk the event that the k-th LOC experiences a timeout and Ā the complement of set A. The
probability qEB that a random LOC experiences an emergency break is:

qEB = Pr(L̄0 ∩ T1),

that does not depend on the specific pair of LOCs considered because the process is stationary.
The rate of emergency brakes is then

rEB =
qEB
TLOC

. (1)

3.1 EB Probability
As we have seen in the previous section, our target is to evaluate the emergency brake probability
qEB for a random LOC. In this section we first derive some simple bounds for qEB . The bounds
will reveal to be too loose to be practically used, but they are nevertheless useful for the following
analysis. We conclude the section with a general formula for the EB rate, whose terms will be
calculated in the following sections. We report numerical values corresponding to the typical
scenario presented in Sec. 2.

3.1.1 Minimum and maximum LOC-EOA round trip times

We calculate the minimum and the maximum time between the generation of a LOC and the
instant T when the corresponding EOA is available for computation at the CC. Consider a LOC
generated at time 0. Its EOA arrives at the CC at time:

T = TCC+TDCS,min+φL+ωZC+TZC+O+TDCS,min+φE

= Tmin + φL + φE + ωZC +O, (2)

where Tmin = TCC + 2TDCS,min + TZC = 623 ms, ωZC is the time interval between the arrival
of the LOC at the ZC and then next ZC tick and φL and φE are the random components of the
transmission delays respectively for the first LOC and the first EOA to arrive at destination (see
also Fig. 3).

Inria



Performance Evaluation of Train Moving-Block Control 9

The earliest arrival time Tmin+O occurs when the LOC and the EOA experience the minimum
travel times on the DCS (i.e. φL = φE = 0) and the LOC is available for computing at the ZC
immediately before a ZC tick (i.e. ωZC = 0).

The latest arrival time Tmax+O occurs when the LOC and the EOA experience the maximum
travel time on the DCS (i.e. φL = φE = TDCS,max − TDCS,min) and the LOC is available for
computing at the ZC immediately after a ZC tick. In this case the LOC will wait an additional
TZC before being processed (i.e. ωZC = TZC). It holds:

Tmax = TCC + TDCS,max + TZC + TZC + TDCS,max = 1081ms.

3.1.2 Number of potential LOC-EOA exchanges before a TimeOut

Even if a LOC or an EOA is lost, the EOAs corresponding to following LOCs could still deactivate
its timer and then the emergency brake would be prevented. In this section we calculate how
many LOC-EOA exchanges can happen between the generation of a LOC and the expiration of
the corresponding timer, i.e. how many other EOAs can have a chance to block the timer.

Let consider that the first LOC is generated at time t = 0, then its timer would expire at
time t = TM .

The maximum number nmax of LOC-EOA exchanges can be calculated considering that
i) the last potentially useful EOA arrives in the shortest time possible and ii) it is immediately
processed by the following CC tick, which is the last one before the timer expires. The last
potential useful EOA arrives at (nmax − 1)TLOC + Tmin + O and it can then be processed at
TCC d((nmax − 1)TLOC + Tmin +O) /TCCe. The CC tick just before the timer expires occurs at
time TCC bTM/TCCc. We determine nmax by imposing that:4⌈

(nmax − 1)TLOC + Tmin +O

TCC

⌉
≤
⌊
TM

TCC

⌋
, (3)

and we can manipulate this inequality as in Appendix B, to obtain:

nmax = 1 +

TM −
⌈
Tmin+O
TCC

⌉
TCC

TLOC

 . (4)

Similarly the minimum number nmin of LOC-EOA exchanges can be calculated considering
that i) the last potentially useful EOA arrives in the longest time possible and ii) it is processed
2 CC ticks after in correspondence of the last tick before the timer expires. Then we determine
nmin by imposing that: ⌈

(nmin − 1)TLOC + Tmax +O

TCC

⌉
≤
⌊
TM

TCC

⌋
− 1, (5)

and proceeding as above we obtain:

nmin = 1 +

TM −
(⌈

Tmax+O
TCC

⌉
+ 1
)
TCC

TLOC

 . (6)

4 This is correct if nmax > 1. The first EOA needs to be valid until the end of the CC clock during which it
is processed and then its processing time should start the latest at the tick number

⌊
TM−TCC

TCC

⌋
.
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10 G. Neglia, et al.

Figure 4: Minimum and maximum number of LOC-EOA exchanges for O = 50 ms, calculated
through Eqs. (6) and (4).

The difference between nmax and nmin depends on the timer TM and also on the offset. For
the typical values in Table 1 they differ by at most 2 exchanges, i.e. nmax ≤ nmin + 2. Figure 4
shows the nmin and nmax for different values of the timer TM and an offset O = 50 ms. It also
shows that the maximum difference is achieved for some values of TM .

The two values nmin and nmax allow us to provide respectively upper and lower bounds for
the TM probability and then for the EB rate. In particular, let us assume that packet losses
on the two wireless channels are independent Bernoulli random variables with parameter p. The
probability p̃ to lose a LOC-EOA exchange is then p̃ = 1− (1− p2)2, because either the LOC is
lost (and then no EOA will be generated) or the LOC is received but the corresponding EOA is
lost.

An emergency brake requires that the exchange 0 is not lost. Moreover the EB will necessarily
occur if the nmax following LOC-EOA exchanges are lost (even if the nmax + 1 EOA arrives, it
will be after the timer expiration) and cannot occur unless nmin exchanges are lost (the first nmin

EOA cannot arrive late even in the worst case). It follows that

(1− p̃)p̃nmax ≤ qEB ≤ (1− p̃)p̃nmin . (7)

The upper bound can be up to p̃−2 times larger than the lower bound. A typical value for the
packet loss probability is p = 5%, and then p̃ ≈ 0.5% and the ratio of the two bounds is almost
4 × 104. In this case, as we are going to show later, the upper bound can be too pessimistic
and practically of no utility to set the parameter TM . For this reason a more refined analysis is
required.

3.1.3 Exact Formula

Let consider that the LOC 1 is generated at time t = 0 and we number all the LOCs, so that
LOC k-th is the LOC generated at (k − 1)TLOC . The k-th EOA is the EOA corresponding to
the k-th LOC. The timer of LOC 1 would expire at time t = TM . Remember that Lk denotes
the event that the k-th LOC-EOA exchange is lost. Let Dk denote the event that the k-th EOA
arrives too late to deactivate the timer of LOC 1.

We assume that EOAs cannot arrive out of order at the ZC. A consequence is that:

Dk ⊂ Dk′ ∪ Lk′ ∀k′ ≥ k, (8)
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in fact if the k-th EOA arrives late, a later one either does not arrive or it arrives late.
This simple relation allows us to conclude that for any m

m
∩
k=1

(Lk ∪ Dk) =
m
∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(

m
∩
h=1
Lh
)
. (9)

We prove Eq. (9) by induction in Appendix C.
The LOC 1 experiences a timeout if all the nmax LOC-EOA exchanges are lost or the corre-

sponding EOAs arrive too late. We can now move to calculate qEB as follows:

qEB = Pr
(
L̄0 ∩ T1

)
= Pr

(
L̄0 ∩

nmax∩
k=1

(Lk ∪ Dk)

)
= Pr

(
L̄0∩

(
nmax∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(
nmax∩
h=1
Lh
)))

(10)

= Pr

(
L̄0∩

(
nmax∪

k=nmin+1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(
nmax∩
h=1
Lh
)))

(11)

=

nmax∑
k=nmin+1

Pr

(
Dk ∩

(
L̄0∩

k−1
∩
h=1
Lh
))

+ Pr

(
L̄0∩

nmax∩
h=1
Lh
)

(12)

=

nmax∑
k=nmin+1

Pr

(
Dk
∣∣∣ L̄0∩

k−1
∩
h=1
Lh ∩ L̄k

)
Pr

(
L̄0∩

k−1
∩
h=1
Lh ∩ L̄k

)
+ Pr

(
L̄0∩

nmax∩
h=1
Lh
)
. (13)

Equation (10) is obtained considering equality (9). Equation (11) follows from Pr(Dk) = 0 for
k ≤ nmin. It can be read as follows: there is a timeout if there is a sequence of nmin, nmin + 1
up to . . . nmax− 1 exchanges lost and the following EOA arrives late or if all the nmax exchanges
are lost. These events are disjoint, because Dk ∩Lk = 0, and then we can conclude Eq. (12). As
observed, for the typical values in Table 1 it is nmax ≤ nmin+2 and then there are at most 3 terms
in Eq. (12). The final expression is Eq. (13). The reason why we introduce the additional set
L̄k in the intersection will be clear in the following sections, where we will move to characterize
delays and losses in order to compute the terms appearing in Eq. (13). Because we will need often
to condition on this sequence of loss events, we denote it simply as SL,k , L̄0∩ ∩k−1

h=1 Lh ∩ L̄k.

3.2 Delay
In this section we characterize the event Dk. In particular, we are interested to evaluate the
probabilities Pr (Dk | SL,k) appearing in Eq. (13). To this purpose we will study in detail the
different components that determine if the k-th EOA arrives before or after the expiration of the
timer of the first LOC.

Again, assume that LOC 1 is generated at time 0. If the k-th exchange LOC-EOA is not lost,
then the arrival time of the k-th EOA is

Tk = (k − 1)TLOC + TCC + TDCS,min + φL,k

+ωZC,k + TZC +O + TDCS,min + φE,k

= Tmin,k + φL,k + φE,k + ωZC,k, (14)

where Tmin,k = TCC + 2TDCS,min + TZC + (k − 1)TLOC + O and the random variables ωZC,k,
φL,k, φE,k represent the same quantities than in Eq. (2), but are referred to the k-th exchange
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12 G. Neglia, et al.

rather than to the first one. The EOA is processed at the tick

γk ,

⌈
Tk
TCC

⌉
+ ωCC,k, (15)

where ωCC,k represents the processing delay at the CC expressed in number of ticks. According
to the description in Sec. 2.1 ωCC,k can assume value 0, if the EOA is going to be processed at
the first CC tick after Tk, or value 1, if it is going to be processed at the following tick. We
are going to characterize the Bernoulli r.v. ωCC,k soon, for the moment we observe that the
EOA arrives too late if γk > TM

TCC
i.e. the EOA starts being processed after the expiration of the

timeout.5 Then, the event Dk can be expressed as follows:

Dk = L̄k ∩
{
γk >

TM

TCC

}
,

and
Pr
(
Dk
∣∣∣ SL,k) = Pr

(
γk >

TM

TCC

∣∣∣ SL,k) , (16)

because L̄k ⊂ SL,k. In order to calculate this probability we now move to consider each source
of randomness in γk.

Processing delay at the CC Observe that ωCC,k is independent of the arrival time of the
k-th EOA Tk, as well as on arrival of any other EOA. In fact the queuing delay for the k-th EOA
depends only on higher-priority traffic and not on the previous EOAs (that may or not being
present in the processing queue), because only the most recent EOA is processed. It follows
that ωCC,k is independent of the event ∩k−1

h=1 Lh and its conditional distribution is equal to the
a priori distribution provided in Sec. 2.1, i.e. ωCC,k in Eq. (16) is a Bernoulli random variable
with parameter pD. While ωCC,k as introduced is defined only when the k-th exchange is not
lost, we can define it for any k as an independent Bernoulli random variable with parameter pD.
It can then be interpreted as the processing delay experienced by an hypothetical EOA arriving
at a given time. The distribution of ωCC,k does not depend on k and is independent of SL,k.

Processing delay at the ZC Going back to Eq. (14), the random variable ωZC,k is dependent
on the relative position of the ticks of the two clocks but also on the value of φL,k. In fact the
later the LOC arrives at the ZC (the larger φL,k) the less the LOC has to wait until the next ZC
tick (the smaller ωZC,k), unless the LOC arrives so late that it misses the first available ZC tick
and needs to wait for the next one. While we cannot get rid completely of this dependence, it is
simpler to reverse it. With reference to Fig. 3, we express Tk with this equivalent expression:

Tk = (k − 1)TLOC + TCC + TDCS,min + σk

+ 1 (φL,k > σk)TZC + TZC +O + TDCS,min + φE,k,

= Tmin,k + σk + 1φL,k>σk
TZC + φE,k (17)

where σk denotes the time interval between the earliest possible instant at which the k-th LOC
could be received at the ZC and the next ZC tick and 1φL,k>σk

is a Bernoulli random variable

5 For k = 1 if γ1 ≤ TM
TCC

, but γ1 + 1 > TM
TCC

then the EOA could not be processed (because it would not be
valid until the end of the CC clock period) and an EB will be triggered. We do not consider this case because
the timer value is always large enough to allow an EOA to deactivate the timer of the corresponding LOC (see
remark at the end of Sec. 2.1).
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indicating if the random component of the communication delay will cause the LOC to miss this
ZC tick and then to wait for the following one. It can be easily verified that σk depends on the
specific LOC we are considering because the two clock periods are different. Then coherently
with the idea that, in order to evaluate qEB , the first LOC is chosen at random, σk is a random
variable. Observe that the variable σk is independent of the loss processes and in particular of
SL,k. Moreover, it is independent of communication delays (i.e. of the variables φL,k, φE,k) and
of processing delay at the ZC (i.e. of ωCC,k). Our next task is to determine σk’s distribution.

Given the value σ1 = s1 for the first LOC, the values of the other r.v.s σk for k > 1 are un-
equivocally determined, let σk = sk. Assuming that TZC and TLOC are commensurable numbers
and choosing an opportune unit so that their value can be expressed as integers, Appendix D
shows that the possible values for sk are the values s in [0, TZC) for which the following Dio-
phantine equation in m and n admits integer solutions:

mTZC − nTLOC = s− s1. (18)

The study of this equation in Appendix D leads to the conclusions that sk assumes all and only
the values in the set S = {s̃+ iM, i = 0, 1, . . . qZC − 1} where M is the greatest common divisor
of TZC and TLOC , TZC = qZCM and s̃ = s1%M . For example for the typical values we consider
(TZC = 378 ms, TLOC = 675 ms) it is M = 27, qZC = 14. Moreover, the sequence sn is periodic
with period qZC and then assumes the qZC values in S only once during each period. When we
consider that the first LOC is a LOC selected at random, we conclude then that the variable σk
is a uniform random variable over the set S = {s̃+ kM, k = 0, 1, . . . qZC − 1}.

If the two clocks are not periodically synchronized in order to counter-act the effect of their
relative frequency-shift, then the sequence sn is in general no more periodic. If the corresponding
phase shift is a random process with independent increments and negligible changes over the
timescale of the timer, it is possible to study the system in the same way simply approximating
σk with a uniform random variable on [0, TZC). Equivalently, in this scenario, it is possible to
consider that the variable ωZC,k in Eq. (14) has the same distribution.

Communication delays In order to completely characterize the probability in Eq. (16), we
need to discuss the two random variables φL,k and φE,k. Remember that φL,k is the delay
experienced by the “fastest” of the two LOC packets conditional on one of them arriving at the
ZC. Let τr,L denote the random component of the delay experienced by the k-th LOC packet
transmitted on the red network if it is not lost (we omit for simplicity the dependence on k).
We can similarly introduce τb,L, τr,E and τb,E . These delays are independent and identically
distributed random variables with Cumulative Distribution Function (CDF) Fτ (t). In particular,
under the typical values in Sec. 2.1 they have support [0, 40] ms. If both transmissions are
successful then φL,k = min{τr,L, τb,L} and Fφ(t) = 1− (1−Fτ (t))2, otherwise if one transmission
(say the blue) is lost, it will be φL,k = τr,L and Fφ(t) = Fτ (t). In order to calculate the general
distribution of φL,k conditional on the fact that the LOC arrives to the ZC, we need to know
the probabilities of the two events: i) both LOC packets arrive at the ZC and ii) only one LOC
packet arrives at the ZC. These two events are in general dependent on the previous sequence
of losses, it follows that the variable φL,k is in general dependent on the event ∩k−1

h=1 Lh (the
fact that there have been k − 1 exchanges lost before can indicate “bad” states for both the red
and the blue wireless channels and then a higher probability to lose one of the two packets for
the k-th LOC). In the next section we study one case where it is possible to calculate exactly
the distribution of φL,k. Here, we conclude by deriving some bounds. Let τ (u)

L , τ ′ and τ ′′ be
independent random variables with CDF Fτ (t) and τ

(l)
L = min{τ ′, τ ′′}. The discussion above

leads us to conclude that:
τ

(l)
L ≤st φL,k ≤st τ

(u)
L .
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14 G. Neglia, et al.

Note that the variables τ (l)
L , τ (u)

L can be drawn independently from the event SL,k (in particular
they are always defined, even if the k-th exchange should be lost).

Let τ (u)
E (resp. τ (l)

E ) be a r.v. distributed as τ (u)
L (resp. τ (l)

L ) and independent of τ (u)
L (resp. τ (l)

L ).
Let now define the random variables γ(u)

k and γ
(l)
k replacing the pair (φL,k, φE,k) in Eq. (15)

respectively with (τ
(u)
L , τ

(u)
E ) and with (τ

(l)
L , τ

(l)
E ), i.e.

γ
(u)
k ,


Tmin,k + σk + 1

τ
(u)
L >σk

TZC + τ
(u)
E

TCC

+ ωCC,k,

γ
(l)
k ,


Tmin,k + σk + 1

τ
(l)
L >σk

TZC + τ
(l)
E

TCC

+ ωCC,k.

It follows that γ(l)
k ≤st γk ≤st γ

(u)
k (whenever γk is defined, i.e. when L̄k happens). Moreover,

observe that all the random variables appearing in the definitions of γ(l)
k and γ(u)

k are independent
of the losses of LOC-EOA exchanges (and in particular from SL,k) and independent of each other.
Having characterized the distribution of each of these variables the distributions of γ(l)

k and γ(u)
k

are completely determined. We can then introduce the events:

D(u)
k =

{
γ

(u)
k >

TM

TCC

}
,D(l)

k =

{
γ

(l)
k >

TM

TCC

}
.

They are both independent of SL,k. It follows that

Pr
(
D(l)
k

)
≤ Pr

(
Dk
∣∣∣ SL,k) ≤ Pr

(
D(u)
k

)
(19)

Using these bounds for k = nmin, . . . nmax in Eq. (13) we can bound the timeout probability. As
we are going to show in Sec. 4, the bounds are very tight, because i) the delays τ have limited
support and relatively small variance, so that there is no much difference between a single delay
or the minimum of two delays (differently for example from the case of samples from a heavy-tail
distribution), ii) τ and φ are relatively small in comparison to the other delays appearing in the
formulas for γk, γ

(u)
k and γ(l)

k .

3.3 Losses

We start by considering the case when packet losses are independent and homogeneous. In this
case the expression (13) for the EB probability reduces to an easy-to-calculate exact formula. We
then consider the effect of handovers, which introduce strongly correlated and time-variant losses.
We introduce an efficient Monte Carlo method to evaluate the terms in Eq. (13) by sampling
directly from the correct system stationary distribution. The approach is similar in spirit to
perfect simulations for Monte Carlo Markov Chains [8]. Interestingly, the computational cost of
our numerical procedure does not depend on the loss probability value and then it can be used
to quantify extremely rare events (as emergency brakes should be). We finally discuss how the
same approach can be used to study other causes of packet losses as fading.

3.3.1 Independent Losses

In this section we assume that each packet can be lost independently with probability p.
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Performance Evaluation of Train Moving-Block Control 15

In this case we do no need to rely on the bounds (19), because i) the variables φL,k and φE,k
do not depend on previous losses for the other exchanges and in particular on ∩k−1

h=1 Lh and ii)
their CDF can be easily calculated. The independence allows to write:

Pr
(
Dk
∣∣∣ SL,k) = Pr

(
Dk
∣∣∣ L̄0 ∩

k−1
∩
h=1
Lh ∩ L̄k

)
= Pr

(
Dk
∣∣∣ L̄k) = Pr

(
γk >

TM

TCC

)
, d(k), (20)

where γk is a function of the independent r.v.s ωCC,k, σk (already characterized in the previous
section) and φL,k and φE,k, whose CDF Fφ(t)can be easily derived by conditioning on the number
of packets arriving at the ZC/CC:

Fφ(t) =
(1− p)2

1− p2

(
1− (1− Fτ (t))

2
)

+
2(1− p)p

1− p2
Fτ (t)

=
Fτ (t) (2− Fτ (t)(1− p))

1 + p
. (21)

Our definition of d(k) stresses that Pr(γk > TM/TCC) is a function of k, but this happens
because of the constant Tmin,k, while the distributions of the r.v.s ωZC,k, σCC,k, φL,k and φE,k
do not depend on k.

Finally, by developing the terms Pr
(
L̄0 ∩ ∩k−1

h=1 Lh ∩ L̄k
)

in Eq. (13), we obtain

qEB =

nmax∑
k=nmin+1

d(k)p̃k−1(1− p̃)2 + p̃nmax(1− p̃), (22)

where p̃ = 1− (1− p2)2 is the probability that an exchange is lost.

3.3.2 Handovers

During the handover of one OBM, say the blue one, all the packets that should be transmitted
by this OBM are lost. Out of the handover phase, we assume the same independent loss model
considered above. Let ηb(t) (resp. ηr(t)) be a Bernoulli random variable denoting if the blue
(resp. red) OBM experiences a handover at time t. If follows that the loss process at time
t is completely characterized if we know the pair (ηb(t), ηr(t)). In order to calculate the EB
probability it is not enough to be able to derive the distribution of (ηb(t), ηr(t)) at a random
time t, but we need to know the joint distribution over a time interval of length roughly (nmax +
1)TLOC + Tmax, i.e. the time needed to send the nmax + 1 exchanges appearing in Eq. (13).
Unfortunately the joint distribution of the process (ηb(t), ηr(t)) is very hard to derive. For
example the correlation of ηb(t) and ηb(t + ∆t) depends on how far the train travels during
the time interval ∆t and on its relative position to the AP it was connected to at time t. The
correlation then depends on the specific sequence of line segments’ lengths as well as on the speed
process ν(t). The correlation of the two variables ηb(t) and ηr(t) depends on the sequence of line
segments too, and also on the length of the train.

We rely then on an efficient way to sample from the stationary distribution of the system
in order to calculate Eq. (13) via the Monte Carlo method. The main improvement here comes
from avoiding to simulate the rare packet loss events (occurring with probability p).

As usual, let us denote by 0 the generation time of LOC 1. We denote by tL,i (resp. tE,i)
the time at which the i-th LOC (resp. EOA) is transmitted on the wireless channel. Let ηLb,i ,
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Algorithm 1 Monte Carlo method to generate H samples
1: Draw the length of the current line segment ξ̃0 with PDF sfξ(s)/E[ξ]
2: Draw the length of the previous two line segments ξ−2, ξ−1 and of the following one ξ1, all

with PDF fξ(s)
3: Draw the position of the front (blue) OBM’s disassociation from TRE0 and TRE1, all with

PDF fδb(s)
4: Draw the position of the back (red) OBM’s disassociation from TRE−2, TRE−1 and TRE0,

all with PDF fδr (s)
5: Draw the position X of the head of the train at the transmission instant of the LOC 0

uniformly at random in the current line segment
6: Calculate the train head’s position xi at which the i-th LOC is transmitted by the front and

back OBMs (xi = X + ivTLOC , for i = 0, 1 . . . , nmax)
7: Draw the current speed of the train ν̃
8: Determine the variables ηLb,i, η

L
r,i by considering which LOC message is transmitted at a

position at most vTHO after a disassociation
9: Draw the time interval σ0 between the generation time of LOC 0 and the first ZC tick at

which LOC 0 could be processed
10: Draw the DCS delays φL,k, τE,b,k and τE,r,k for i = 0, 1 . . . , nmax

11: Calculate the transmission instants for the i-th EOAs, for i = 0, 1 . . . , nmax

12: Calculate the train head’s position at which the i-th EOAs are transmitted by the ZC
13: Determine the variables ηEb,i, η

E
r,i, by considering which EOA message is transmitted at a

position at most vTHO after a disassociation

ηb(tL,i) and ηLr,i , ηr(tL,i) denote the handover states of the two channels at the transmission
instant of LOC i and we define similarly the corresponding r.v.s for the EOA, ηEb,i and η

E
r,i.6 Let

H = {ηLr,i, ηLb,i, ηEr,i, ηEb,i, i = 0, 1 . . . nmax} be the set of values assumed by these variables and Ā
denote the complement of the Boolean variable A. It is easy to derive the conditional probability
of a specific sequence of losses given H similarly to what done in the independent case in Eq. (22):

Pr (SL,k | H) = Pr

(
L̄0∩

k−1
∩
h=1
Lh ∩ L̄k | H

)
=
(

1− pη̄
L
b,0+η̄Lr,0

)(
1− pη̄

E
b,0+η̄Er,0

)
×
k−1∏
h=1

(
1−

(
1− pη̄

L
b,h+η̄Lr,h

)(
1− pη̄

E
b,h+η̄Er,h

))
×
(

1− pη̄
L
b,k+η̄Lr,k

)(
1− pη̄

E
b,k+η̄Er,k

)
. (23)

Obviously the last term in Eq. (13) can be exploded in a similar way:

Pr

(
L̄0∩

nmax∩
h=1
Lh | H

)
=
(

1− pη̄
L
b,0+η̄Lr,0

)(
1− pη̄

E
b,0+η̄Er,0

)
×
k−1∏
h=1

(
1−

(
1− pη̄

L
b,h+η̄Lr,h

)(
1− pη̄

E
b,h+η̄Er,h

))
(24)

6 Note that, even conditioning on the first LOC being at time 0, the EOA are transmitted on the wireless
channel at random time instants. Moreover here we consider that the transmission on the wireless channel is
instantaneous.
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We can also observe that, given the transmission instant of the k-th EOA and the handover
status at this instant, the event Dk is independent of the losses for any other exchange, i.e.:

Pr
(
Dk
∣∣∣ SL,k,H, tE,k) = Pr

(
Dk
∣∣∣ L̄k, ηEb,k, ηEr,k, tE,k)

= Pr

(
γk >

TM

TCC

∣∣∣ ηEb,k, ηEr,k, tE,k) , (25)

where γk =
⌈
tE,k+φE,k

TCC

⌉
+ ωCC,k, and φE,K has CDF:

(1− pη̄
E
b,k)(1− pη̄

E
r,k)

1− pη
E
b,k+ηEr,k

(
1− (1− Fτ (t))

2
)

+
(1− pη̄

E
b,k)pη̄

E
r,k + (1− pη̄

E
r,k)pη̄

E
b,k

1− pη
E
b,k+ηEr,k

Fτ (t), (26)

that is the extension of Eq. (21).
Equations (23), (24) and (25) are the basis for an efficient Monte Carlo method to estimate

Eq. (13). We need to

1. generate independent samples of the variables tE,i, ηLb,i, η
L
r,i, ηEb,i and η

E
r,i for i = 0, . . . nmax

from the system stationary distribution,
2. compute Eqs. (23), (24) and (25) for each sample and combine the terms according to

Eq. (13) to obtain the value of qEB given the sample
3. average the values obtained.

This algorithm can be implemented and leads to significant cost reduction in comparison to the
naive approach where we would simulate also the specific loss pattern. In reality, motivated by
the bounds in Eq. (19), we have implemented a simpler algorithm that uses the upper bound
Pr(D(u)

k ) rather than estimating the quantity Pr(Dk|SL,k). The simplification is due to the
fact that Pr(D(u)

k ) is just a function of k, while to evaluate Pr(Dk|SL,k) we need to consider
Pr
(
Dk
∣∣∣ SL,k,H, tE,k) that is a function of k, tE,k (a continuous variable) and the two binary

values ηEb,k, η
E
r,k as shown in Eq. (25). With this approximation (whose accuracy is justified

by the reasoning at the end of Sec. 3.2 and a posteriori by the results in Sec. 4), the Monte
Carlo method is simply used to evaluate the loss probability terms in Eq. (13) through Eqs. (23)
and (24).

We now specify how to generate a sample of H from the stationary distribution, the steps
are in Alg. 1 and rely in particular on the analysis in Sec. 3.2. Comments to specific steps are in
Appendix E.

In the next section we show the effectiveness of this approach to calculate very small rates of
spurious EBs. We also observe that, while the approach here has been detailed for the specific
loss process due to handovers, it can be easily extended to other causes of loss bursts, like slow
fading.

4 Numerical Experiments
In this section we first compare the results of our numerical approach described in Sec. 3.3.1 with
discrete-event simulations of the system. We have used two different discrete-event simulators:
an ad-hoc Python simulator we have developed by scratch and ns-3.
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The scenario tested by discrete-event simulations matches that described in Sec. 2 and consid-
ered in our analysis. We should then get the same results, if it were not for the approximation of
relying on the upper bound Pr(D(u)

k ) rather than estimating the exact quantity Pr(Dk|SL,k). We
stress again that 1) this approximation leads to conservatively overestimate the actual expected
EB rate, 2) its use is not crucial for the numerical method, it can be removed at the price of a
slight increase in complexity (a few more random variables should be generated). The compari-
son confirms the upper bound to be tight. Moreover, it allows us to contrast the computational
cost of our approach and of event-driven simulations.

Before moving to describe our experiments we briefly describe the additional modules for
railway simulations we have implemented for ns-3. As soon as their documentation is completed,
we will make them available to the research community.

4.1 NS-3 modules

The network simulator ns-3 [10] is a GPLv2 licensed discrete-event network simulator. The
current version is missing some functionalities that we need to simulate train-trackside commu-
nications. First, ns-3 considers only the omnidirectional antennas for the WiFi model even if
some theoretical directional antenna models are implemented for the simulation of other wireless
technologies. The gain of the transmitter/receiver antennas is a key parameter for the train
system because it affects the packet loss probability and the behavior of the handover process.
Second, ns-3 does not yet implement a scan mechanism of beacon signals’ strength transmitted
by APs operating on different channels/frequencies, which is necessary for a realistic layer-2
handover implementation. Third, ns-3 does not implement a switch object and hence, changing
routes after a handover at the MAC level as done in the real implementation is tricky. Using
the layer-3 routing algorithms as a workaround is not an option because the convergence to the
correct path may require a few seconds causing the loss of several control messages. Fourth,
there are no modules for trains and—as expected—no implementation of a moving block control
system.

Therefore, we have implemented new modules in ns-3 and enhanced existing ones as follows.
3D antenna pattern models. We simulated real antennas using their 3D radiation patterns

as provided by the antennas vendor [7]. We implemented a module for the trackside antenna
and one for the on board antenna. Each module takes as input the corresponding data sheet of
the 3D radiation pattern.

Enhancing handover. We added a multi-channel scanning mechanism and modified the
related objects at Channel, Physical, and MAC level, based on the rss of the received beacons
and the active probe response messages.

Fast rerouting after handovers. We have modified the static routing module and added
some methods to the MAC layer objects to statically and immediately update the routing tables
of the nodes affected by the association/disassociation events.

CBTC protocol and its different modules. A ZC server module and a train object that
contains CC server and LOC message generator modules are implemented at the application
level to simulate the CBTC protocol explained in Section 3.1.2.

4.2 Results

For constant system parameters and the support of random variables, we have considered the
typical values indicated in Table 1. The results we show are for a 90m-long train. The train
changes speed every 100 s, and the speed evolves according to a symmetric random walk with
barriers over 100 equally spaced values between 20 m/s and 22 m/s. The line segments (ξ)
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Figure 5: Number of emergency brakes per hour when O = 50 ms and TO = 5.5 s.

are uniform random variables. The disassociation distance (δ) is obtained assuming a uniform
variability of AP antenna gains in a range of ±2 dB around their nominal values.

Figures 5 and 6 show the EB rate versus different values of the packet loss probability p
(out of handover phases) respectively for TO = 5.5 s and TO = 2.5 s. The red solid curves is
obtained through the numerical approach described in Sec. 3.3.2. Simulation results obtained by
the Python simulator for selected values of p are reported as 95% confidence intervals in blue.
Our approach method relies on the upper bound Pr(D(u)

k ) and then its estimates do not need to
fall inside the confidence intervals. Nevertheless, they do, but for the 3 smallest values of p in
Fig. 6. The estimates are in any case very close to the results of the event-driven simulations,
hence, the bound is implicitly shown to be tight. About the computational time, our numerical
solver requires less than one minute to produce one point of the curve on a current commodity
PC. On the same machine the Python simulator is able to simulate roughly 104 hours of train
operation in one hour. It follows a rate of the order of 10−4 EBs per hour requires roughly 100
hours to be estimated with a precision of 1% through the Python simulator. It is clear that
lower EB rates are out of reach for the Python simulator. The computational cost of the ns-3
simulations is even higher (60 hours are simulated in 1 hour), so that we did not manage to carry
experiments for values of p smaller than 0.5. For the values we experimented, the ns-3 results
are analogous to those obtained with Python and are not shown here.

Figures 5 and 6 also show some other curves. In particular the black dashed curve plots
the function (1 − p̃)p̃nmin/TLOC , that corresponds to the upper bound in Eq. (7) in presence
of independent Bernoulli packet losses with probability p. The blue dotted curve corresponds
instead to a potentially more realistic way to bound the performance, considering the same
Bernoulli loss model but with the actual average packet loss probability in presence of handovers
peq. A simple calculation shows that peq = E[ṽ]THO/E[ξ̃0] + p(1 − E[ṽ]THO/E[ξ̃0]) > p. We
observe that neither of the two approximations is guaranteed to lead to an upper bound for
the actual system performances and even when they actually produce an upper-bound this is
in general very loose. The second approximation does not lead to an upper-bound for the real
system because it ignores the correlation between the red and blue handovers.

For TO = 2.5 s, one can be surprised to observe in Fig. 6 that the number of EBs does not
vanish when p goes to zero. This is due to the fact that for TO = 2.5 s the number of potential
LOC-EOA exchanges is 2 or 3 (see Fig. 4). When the third EOA is late, then an EB can occur
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Figure 6: Number of emergency brakes per hour when O = 50 ms and TO = 2.5 s.

if the handovers cause the loss of the first two LOC-EOA exchanges. We have checked some
simulation results and we have seen that this happens always according to the following scheme:
the front and back handovers, the transmission of the second LOC and the transmission of the
first EOA all happen very close in time (in the order of THO). In this case both the exchanges
are lost and then an EB is triggered. The frequency of such event matches the results observed
in Fig. 6. The presence of a horizontal asymptote for the EB rate was someway unexpected and
confirms the need to pay particular attention to the effect of handovers. Similar effects can be
contrasted by an accurate placement of the APs. Our analysis in this paper can be effectively
used as a decision support tool to this purpose.

As a final application of our methodology, Fig. 7 shows the expected number of emergency
brakes per hour for different values of the timer TM , O = 50 ms and packet loss probability
p = 0.05. The theoretical values calculated from Eqs. (22) and (1) (red dots) are compared with
the bounds (blue dashed lines) considering the actual packet loss probability peq. The figure
shows that the simple upper bound can be orders of magnitude larger than the actual value. We
now discuss the discontinuities appearing in the EB rate curve. From Eq. (22) we observe that
the EB probability exhibits discontinuities only if nmin, nmax or the functions d(k) do. The small
gaps of the EB rate correspond indeed to changes in the values nmin or nmax as it is revealed by
the corresponding jumps of the bounds. The other gaps correspond to changes of the functions
d(k). We remember that d(k) = Pr (γk > TM/TCC), where γk is an integer. Then d(k) does not
depend on TM as far as h ≤ bTM/TCCc < h+ 1 for some integer h. Indeed, it can be checked
that the other discontinuities in the curve (when neither nmin nor nmax change) correspond to
integer values of TM/TCC . This high sensitivity to the timer value is not only easily revealed
by our numerical method, but well explained by our theoretical analysis.

5 Related Work

The fundamental work for the quantitative evaluation of moving-block control is [12] and its
extended version [13]. In these papers Zimmermann and Hommel move from probabilistic QoS
specifications for the communication subsystem of ERTMS/ETCS level 3 to derive a stochastic
Petri Net model for a scenario with two consecutive trains on the same track. Their objective is
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Figure 7: Rate of emergency brakes when O = 50 ms and p = 0.05.

to evaluate the EB probability. of an EB for the trailing train due to losses of LOC messages from
the leading train or of EOA for the trailing train. In this case the train stops because it has no
updated information about the information of the leading train. Their scenario (considered also
by the following papers) is apparently more complex than ours, but in reality equivalent from
the modeling point of view. The approach proposed to numerically solve the Petri Net works
only under the so-called enabling restriction, i.e. only one transition can be generally distributed
and all the others should be exponential r.v.s. In the more realistic cases, the authors rely then
on Monte Carlo simulations of the Petri Net. The naive simulation approach presented in [12]
cannot manage to quantify EB rate smaller than 2 EBs per hour. Importance splitting techniques
used in [13] allow to estimate much smaller rates (about 10−10 per hour). It is not clear if the
computational cost of this numerical approach is insensitive to the packet loss probability p as
ours is.

Hermanns et al. in [5] show how the UML statechart extension called StoCharts can be
used to describe the moving block control in ERTMS/ETCS level 3 and then automatically
translated to MoDeST formal language (a process algebra-based formalism). Some event-driven
simulation results are shown, but they fail to evaluate rare events. In a similar way Trowitzsch
and Zimmermann present in [11] an approach to automatically map UML descriptions of the
train system to a Stochastic Petri network.

In [1] Babczynski and Magott also use performance statecharts coupled with Monte Carlo
simulations to estimate the probability of an emergency brake as a function of the timer. They
consider that the number of LOC-EOA messages exchanged by the timer is n = bTM/TLOCc and
then estimate qEB = p̃n someway similarly to our bounds (7). Although their analysis ignore the
difficulties of studying the two coupled discrete-time controllers, it is the first work to highlight
the discontinuous dependence of qEB on the timer value TM .

In the very recent paper [2] Carnevali et al. use the tool ORIS to solve numerically the
Stochastic Petri net proposed in [12, 13], without the need to rely on Monte Carlo simulations.
The tool indeed overcomes the limit of the enabling restriction thanks to recent advancements
based on the method of stochastic state classes [6]. Moreover, it allows for a transient analysis
of the system. As a case study, the authors consider a toy-example similar to that in [12] leading
to very high EB rates. From a preliminary analysis using their tool, it is not clear if a more
realistic scenario like the one we consider can be solved in a reasonable amount of time.
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In [4], Flammini et al. evaluate the unavailability of three main systems of ERTMS/ETCS
Level 2: the on board subsystem, the so-called Radio Block Centre (RBC) equivalent to the ZC
in CBTC, and the communication between both through a GSM-R connection (GSM-R is an
enhancement of the GSM network for railway signalling purposes). While the system they study
does not use moving blocks, their conclusion is interesting for our purposes: losses on the wireless
channel are the main factor determining the whole system reliability, hence the importance to
develop deeper models of the train-trackside exchange. This remark is even more relevant in
urban rail systems, where no regulation assigns a particular frequency to urban rail applications
like CBTC and interference can be the major cause of packets losses [3].

6 Conclusion
In this paper we study the moving block control and we quantify the rate of spurious EBs. We
provide analytical formulas for the simple case of independent and homogeneous packet losses,
as well as a more general numerical approach with which we study the effect of losses due to
handovers.

Our theoretical analysis and our numerical methods can be used as a decision support tool in
order to advice on the choice of system parameters like the timer value or the spacing of APs.
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A List of Acronyms

The acronyms used in the paper are listed in Table 2.

B Deriving the Bounds of Sec. 3.1.2

⌈
(nmax − 1)TLOC + Tmin +O

TCC

⌉
≤

⌊
TO

TCC

⌋
TLOC
TCC

(nmax − 1) +

⌈
Tmin +O

TCC

⌉
≤

⌊
TO

TCC

⌋
(27)

TLOC
TCC

(nmax − 1) ≤
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TO

TCC
−
⌈
Tmin +O

TCC

⌉⌋

nmax = 1 +

⌊
TCC
TLOC

⌊
TO

TCC
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Tmin +O

TCC

⌉⌋⌋
(28)
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 TCC
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 (29)
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Tmin+O
TCC

⌉
TCC

TCC

 (30)

nmax = 1 +

TO −
⌈
Tmin+O
TCC

⌉
TCC

TLOC

 (31)

where (27) follows from TLOC/TCC being a natural number and (30) follows from TCC/TLOC
being smaller than 1.
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C Proof of Eq. (9)
We prove Eq. (9) by induction. It is obviously true for m = 1. Suppose that it is true for m− 1,
then:

m
∩
k=1

(Lk ∪ Dk) =

(
m−1
∩
k=1

(Lk ∪ Dk)

)
∩ (Lm ∪ Dm)

=

(
m−1
∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(
m−1
∩
h=1
Lh
))
∩ (Lm ∪ Dm)

=
m−1
∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
)
∩ (Lm ∪ Dm)

)
∪
(
m−1
∩
h=1
Lh ∩ (Lm ∪ Dm)

)
=
m−1
∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))

∪
(
m−1
∩
h=1
Lh ∩ (Lm ∪ Dm)

)
(32)

=
m−1
∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))

∪
(
Dm ∩

(
m−1
∩
h=1
Lh
))
∪
(

m
∩
h=1
Lh
)

=
m
∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(

m
∩
h=1
Lh
)
,

where (32) follows from Eq. (8), because Dk ∩ (Dm ∪ Lm) = Dk for k < m.

D Study of the Diophantine equation (18)
Given the value σ1 = s1 for the first LOC, the values of the other r.v.s σk for k > 1 are
unequivocally determined, let σk = sk. We now study what possible values sk can be assumed.
We observe that the n + 1-st LOC is generated at time nTLOC and the earliest ZC tick at
which it could be processed at the ZC is obtained by the smallest non-negative integer m∗
such that nTLOC ≤ s1 + m∗TZC . Given this value m∗ the corresponding value for the sn is
m∗TZC + s1−nTLOC . Assuming that TZC and TLOC are commensurable numbers and choosing
an opportune unit so that their value can be expressed as integers, it follows that the possible
values for sk are then the values s in [0, TZC) for which the following Diophantine equation in m
and n admits integer solutions:

mTZC − nTLOC = s− s1. (33)

It is known that such equation admits solutions if and only if s− s1 is a multiple of the greatest
common divisor (g.c.d.) M of the two coefficients TZC and TLOC , i.e. if and only if s = s1 + kM
for k ∈ Z. Moreover, we require s ∈ [0, TZC) and then only a finite number of values are possible
for s. IfM is the g.c.d. of TZC and TLOC , then TZC = qZCM and TLOC = qLOCM , with qZC and
qLOC prime to each other. Given that s0 ∈ [0, TZC), it exists s̃ ∈ [0,M) and h ∈ {0, 1, . . . qZC},
such that s1 = s̃+ h×M . Then the possible values for s can be expressed as s = s̃+ (h+ k)M
for k ∈ Z such that s ∈ [0, TZC) or equivalently:

s ∈ S = {s̃+ kM, k = 0, 1, . . . qZC − 1}.
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Then s can assume (and assume) only qZC possible values. For example for the typical values
we consider (TZC = 378 ms, TLOC = 675 ms) it is M = 27, qZC = 42 and qLOC = 25.

We now observe that the values for s are periodic. In order to find the period we can look
for the smallest positive integers m and n such that mTZC + s1 − nTLOC = si, i.e.

mTZC − nTLOC = mqZCM − nqLOCM = 0.

Given that qZC and qLOC are prime to each other, by the unique factorization theorem it follows
that the smallest m and n are m = qLOC and n = qZC . The values of s then repeat every
qLOCqZCM time units or equivalently every qZC LOCs. Because the set S has qZC values and
s is periodic con period qZC , it follows that s assumes all the values in S once before repeating
the same sequence.

E Comments on Algorithm 1
Consider a random LOC (labeled as LOC 0). This is equivalent to considering a random obser-
vation instant of the (stationary) system. In step 1 we generate ξ̃0 the length of the line segment
where the head of the train is when LOC 0 is generated. The r.v. ξ̃0 is stochastically larger
than the length ξ of a generic line segment (this is a form of the usual inspection paradox). In
order to locate the possible handovers of the front OBM occurring in a time interval of duration
(nmax + 1)TCC + Tmax starting from the generation of LOC 0, we need to take into account
that the head of the train moves forward during this time and handovers can be experienced
in following line segments. With the typical values indicated in Table 1 the head of the train
cannot move farther than the following line segment, so we draw its length ξ1 in step 2. The back
OBM is located at the tail of the train, i.e. L backward than the head, so it can still be in the
previous line segment. Moreover, it can be connected to a TRE located still backward (because
the disassociation distance for the back OBM is longer than for the front OBM). With the typical
values indicated in Table 1 and a train length L = 90 m, we just need to draw the lengths of the
previous two line segments ξ−1 and ξ−2. The head of the train is in the line segment of length ξ̃0.
Every location is equally likely, hence X is a uniform random variable in [0, ξ̃0] (step 5). We have
assumed that the train speed is a stationary process, but we have not specified which one. In
step 7, we assume to be able to sample from the stationary distribution of the train’s speed (see
for example [9] for correct sampling techniques for different synthetic mobility models). Step 8 is
where we use the approximation of considering the speed constant over short timescales (order
of the TM). The analysis in Sec. 3.2 allows us to correctly sample the positions of the ZC ticks
in relation to the CC ticks (step 9). Note that we only generate the relative position for a single
pair of ticks, because the two clocks are periodic. LOC delay can be correctly generated because
the handover variables ηLb,i, η

L
b,r have already been calculated (the CDF of φL,i is the same as in

Eq. (26) with ηE∗ replaced by ηL∗ ). The EOA 0 transmission time on the blue channel can then
be calculated (step 11) as TCC +TDCS,min +σ0 +1 (φL,0 > σ0)TZC +TZC +O+TDCS,min +τE,b,0
and analogous equation can be easily derived for the other channel and the other EOAs.
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Table 1: Notation and typical values for the variables. We omit subscripts for some of the
variables. A subscript b (r) denotes that the variable refers to the blue (red) OBM or network.
A subscript L (E) denotes that it refers to a LOC (an EOA).

Symbol Quantity Value
ν train speed ≤ 80 km/h
ξ line segment length [200, 300] m
δb disassociation distance TRE-OBM [100, 200] m
δr disassociation distance TRE-OBM [150, 300] m
THO duration of handover 100 ms
TZC ZC clock period 378 ms
TCC CC clock period 225 ms
TLOC LOC generation period 3TCC
TM validity duration of a LOC 5.5 s
TDCS transmission delay [10, 50] ms
τ positive random component of TDCS [0, 40] ms
φ positive random component of TDCS [0, 40] ms

for first message to arrive
ωZC time interval between LOC arrival [0, TZC ] ms

at ZC and next ZC tick
σ time interval between earliest LOC [0, TZC ] ms

arrival at ZC and next ZC tick
O EOA transmission offset [0, TZC ]
ωCC number of CC ticks an EOA waits {0, 1}

until CC processes it
pD probability that ωCC is 1 0.01
qEB emergency brake probability
rEB emergency brake rate
p packet loss
p̃ probability to lose a LOC-EOA exchange
Tk arrival time of k-th EOA
γk tick at which k-th EOA is processed
Dk event that k-th EOA is late to deactivate the timer

of LOC 1
Tk event that k-th LOC experiences a timeout
Lk event of k-th LOC-EOA exchange loss
η(t) Bernoulli random variable denoting if OBM

experiences a handover at time t

RR n° 8917



28 G. Neglia, et al.

Table 2: List of Acronyms
AP Access Point
CBTC Communication Based Train Control
CC Carborne Controller
CDF Cumulative Distribution Function
DCS Data Communication Sub-System
EB Emergency Brake
EOA End-Of-Authority
ERTMS European Rail Traffic Management System
ETCS European Train Control System
LMA Limit of Movement Authority
LOC Location report
OBM On Board Modem
PDF Probability Distribution Function
TM validity duration Timer of a LOC
TRE Trackside Radio Equipment
ZC Zone Controller
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