
HAL Id: hal-01227699
https://hal.inria.fr/hal-01227699v2

Submitted on 2 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Jacobi’s θ in quasi-linear time
Hugo Labrande

To cite this version:
Hugo Labrande. Computing Jacobi’s θ in quasi-linear time. Mathematics of Computation, American
Mathematical Society, 2016, �10.1090/mcom/3245�. �hal-01227699v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49375068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01227699v2
https://hal.archives-ouvertes.fr

Computing Jacobi’s θ in quasi-linear time
Hugo Labrande

June 2, 2016

Abstract
Jacobi’s θ function has numerous applications in mathematics and computer science; a

naive algorithm allows the computation of θ(z, τ), for z, τ verifying certain conditions, with
precision P in O(M(P)

√
P) bit operations, where M(P) denotes the number of operations

needed to multiply two complex P -bit numbers. We generalize an algorithm which computes
specific values of the θ function (the theta-constants) in asymptotically faster time; this gives
us an algorithm to compute θ(z, τ) with precision P in O(M(P) logP) bit operations, for
any τ ∈ F and z reduced using the quasi-periodicity of θ.

1 Introduction
Jacobi’s θ function appears in a wide range of fields, such as non-linear differential equations (as
a solution of the heat equation), the study of modular forms, and number theory, in which it is
the main ingredient to convert between algebraic and analytic representations of elliptic curves.
Namely, we have the embedding [13, I.4]

C/(Z + τZ) → P3(C)
z 7→ (θ00(2z, τ), θ01(2z, τ), θ10(2z, τ), θ11(2z, τ))

where the θi are essentially the θ function with its z argument translated. We also have the
equation

℘(z, τ) = π2

3 (θ4
10(0, τ)− θ4

01(0, τ))− π2θ2
01(0, τ)θ2

10(0, τ)θ
2
00(z, τ)
θ2

11(z, τ)
which allows to compute, for any point on the torus, its x-coordinate on the curve E(C) : y2 =
4x3 − g2x− g3.

Special values of the θ function have interesting additional properties: the theta-constants,
the value of θ at points z = 0, 1

2 and τ
2 . As modular forms in τ , they are linked to other

modular functions, such as the j-invariant or Dedekind’s η function. Computing the value of the
theta-constants allows one to compute the value of those modular functions; this has been used in
record computations of class polynomials [8], which are interesting to generate safe cryptographic
curves with the CM method.

The main problem we are dealing with here is to compute θ(z, τ) with given absolute precision
P , which allows us to compute the above embedding at any given precision. We will suppose
throughout the article that (z, τ) satisfy certain conditions; the general case can be deduced from
this one using formulas we mention later. The θ function is defined by a rapidly convergent series;
under the conditions specified on z, τ , it gives a naive algorithm that requires a running time of
O(M(P)

√
P) bit operations, where M(P) is the number of operations needed to multiply two

P -bit complex numbers. Although fast, this is a worse running time than other transcendental

1

functions such as the exponential of a complex number, which can be computed in quasi-optimal
time O(M(P) logP).

There is an algorithm to compute the theta-constants asymptotically faster than with the
naive method, outlined in [7]. This algorithm relies on connections between theta-constants and
the arithmetico-geometric mean (AGM) of Gauss; the complex-valued AGM, when evaluated at
the theta-constants, has interesting properties, and this is used along with Newton’s method to,
in a sense, invert the AGM and recover the values of the theta-constants. This algorithm allows
computation of theta-constants for τ ∈ F with precision P in quasi-optimal time O(M(P) logP),
independently of τ . It is faster than the naive method for precisions as low as a few thousand
bits.

In this article, we provide a generalization of this algorithm which computes θ(z, τ), for τ ∈ F
and z such that Im(z) ≤ Im(τ)/2, with absolute precision P inO(M(P) logP) bit operations. We
give two algorithms: the first one runs in quasi-optimal time in P , but its running time depends
on z and τ ; we then use this algorithm as a subroutine to build a quasi-optimal algorithm with
complexity independent of z and τ , provided τ ∈ F and Im(z) ≤ Im(τ)/2. An GNU MPC [9]
implementation of the algorithm was realized; it is faster than the naive method for values of P
greater than a few hundred thousand digits.

Our algorithm provides the six values θ(z, τ), θ(z + 1
2 , τ), θ(z + τ

2 , τ), θ(0, τ), θ(1
2) and θ(τ2),

which are sufficient to compute the projective embedding mentioned above. It can also be used
to compute the Weierstrass ℘ function and its derivative in quasi-optimal time; hence, this paper
provides a quasi-optimal time algorithm to compute the “Jacobi map” C/Λ→ E(C) of an elliptic
curve. We note that the “Abel map” E(C) → C/Λ can already be computed in quasi-optimal
time using links to elliptic integrals and the Landen isogeny; see [2] and [5].

We note that [12] gives an algorithm to compute θ with real arguments (i.e. θ(u,m) with
0 < m < 1 and 0 ≤ u ≤ K(m)), defined by its representation as an infinite product, with
the same, quasi-optimal complexity. Their algorithm relies on the Landen transform for the
θ function, and could perhaps be generalized to the complex setting. We had independently
pursued this line of thought, but found that in the complex setting, the presence of trigonometric
functions induced heavy precision losses for some inputs; however, there may be a workaround
those issues, which would allow one to find an algorithm for the complex setting and with quasi-
optimal complexity relying on the Landen transform.

This article is organized as follows. We introduce the necessary mathematical background and
the strategies we follow for argument reduction in Section 2, which justifies our choice to consider
throughout the paper the case τ ∈ F and Im(z) ≤ Im(τ)/2; we then provide an analysis of the
naive algorithm for θ(z, τ) under those conditions. Section 3 introduces a sequence derived from
relations between values of θ, and we prove quadratic convergence of a certain homogeneization
of the sequence; this is what replaces the AGM in the general case. Section 4 gives a first
algorithm for computing θ-functions, with a complexity depending on z and τ ; this is quasi-
optimal provided that z, τ belong to a compact set. We then get rid of the dependency in z, τ
much in the same way as in the case of theta-constants, which gives a uniform algorithm with
complexity O(M(P) logP). Section 5 shows timings for our GNU MPC implementation of this
last algorithm and compare it to our implementation of the naive algorithm.

2 The function θ, and θ-constants
2.1 Definitions and argument reduction
We recall a few basic facts, following the presentation of [13].

2

Definition 2.1. Define, for z ∈ C and τ ∈ H (i.e. Im τ > 0)

θ(z, τ) =
∑
n∈Z

exp
(
πiτn2 + 2πinz

)
.

Proposition 2.2 (quasi-periodicity). We have θ(z+1, τ) = θ(z, τ) and θ(z+τ, τ) = e−πiz−2πiτθ(z, τ);
in fact for any integers a, b,

θ(z + aτ + b, τ) = e−iπa
2τ−2iπazθ(z, τ). (1)

We also define the following variants of the theta function (which are related to the definition
of “theta functions with characteristics”) [13, Section I.3]:

Definition 2.3.

θ00(z, τ) = θ (z, τ) θ10(z, τ) = exp (πiτ/4 + πiz) θ
(
z + τ

2 , τ
)

θ01(z, τ) = θ

(
z + 1

2 , τ
)

θ11(z, τ) = exp (πiτ/4 + πi(z + 1/2)) θ
(
z + τ + 1

2 , τ

)

We define theta-constants as the values in 0 of those functions.

Those functions and their theta-constants are linked by a great number of formulas; we will
give such formulas as we use them, and most of them can be found in [13, Section I.5]. Note
that we have:

Proposition 2.4. For any τ , the functions z 7→ θ00(z, τ), z 7→ θ01(z, τ), z 7→ θ10(z, τ) are even,
while z 7→ θ11(z, τ) is odd.

The latter implies that θ11(0, τ) = 0, so the only theta constants we are interested in are
θ00(0, τ), θ01(0, τ), and θ10(0, τ).

Those properties can be used for the purpose of argument reduction. For instance, we can use
the parity of θ to suppose that Im(z) ≥ 0; if this is not the case, one can consider −z instead of
z, which does not change the value of θ but ensures that Im(z) ≥ 0. Furthermore, Equation (1)
can be used to recover θ(z, τ) from the value of θ(z′, τ), where z′ is such that |Re(z′)| ≤ 1

2
and | Im(z′)| ≤ Im(τ)

2 ; the added cost is the cost of computing an exponential factor. This
exponential factor can become quite big; should one want to compute θ(z, τ) with an error of at
most 2−P , they have to work with representations of at least P + C bits, with

C = log2(|θ(z′, τ)|) + π log2(e)(a2 Im(τ) + 2a Im(z)) + 2

This is because the integral part of the result fits in C bits, while the fractional part should be
coded on at least P bits to ensure a final error bounded by 2−P . The complexity of running our
algorithm and computing the exponential factor will be O(M(P + C) log(P + C)), and hence
will depend on τ and z; this is inevitable. Hence, throughout the paper we suppose that z is
reduced, in the sense that |Re(z)| ≤ 1

2 and 0 ≤ Im(z) ≤ Im(τ)
2 , with the understanding that

the step of argument reduction has a complexity depending on the original values of z and τ .
However, as Section 2.2 shows, this hypothesis, combined with a hypothesis in τ , allows us to
work with values of θ bounded by 4, which allows us to write an algorithm with complexity only
depending on P for any z satisfying these conditions.

3

We can also reduce the second argument of θ. Define the action of SL2(Z) on the complex
upper-half plane H by (

a b
c d

)
· τ 7→ aτ + b

cτ + d
.

Its fundamental domain is

F = {ω ∈ H | |Re(ω)| < 1/2, |ω| > 1}

Computing τ ′ ∈ F and M =
(
a b
c d

)
∈ SL2(Z) such that τ ′ = Mτ can be done by finding the

shortest vector in the lattice (1, τ) using Gauss’s algorithm [14], which (since the inertia is small)
will be asymptotically negligible. The value of θ(z, τ) can then be computed from θ(z′, τ ′) (for
some value z′) using the following theorem:

Theorem 2.5 (extension of [13, Theorem 7.1]). Let τ ∈ H and z ∈ C, and let

γ =
(
a b
c d

)
∈ SL2(Z). Suppose c > 0, or c = 0 and d > 0; if not, take −γ. Then we have:

θi

(
z

cτ + d
,
aτ + b

cτ + d

)
= ζi,γ,τ

√
cτ + deiπcz

2/(cτ+d)θσ(i)(z, τ) (2)

where the square root is taken with positive real part, ζi,γ,τ is an eighth root of unity and σ is a
permutation of the elements (00, 01, 10), defined by the following table:

a b c d σ(00, 01, 10)
odd even even odd (00, 01, 10)
odd odd even odd (01, 00, 10)
odd even odd odd (10, 01, 00)
even odd odd even (00, 10, 01)
odd odd odd even (10, 00, 01)
even odd odd odd (01, 10, 00)

Proof. Define for any γ =
(
a b
c d

)
∈ SL2(Z):

eγ(τ) = cτ + d, fγ(z, τ) = eiπcz
2/(cτ+d)

With a bit of care, one can prove

eγ1(γ2τ)eγ2(τ) = eγ1γ2(τ), fγ1

(
z

c2τ + d2
, γ2τ

)
fγ2(z, τ) = fγ1γ2(z, τ)

The maps T : τ 7→ τ + 1 and S : τ 7→ −1
τ are generators of SL2(Z), and we have [13, Table V, p.

36]

θi (z, T τ) = ζi,T,τ
√
eT (τ)fT (z, τ)θσT (i)(z, τ), θi

(z
τ
, Sτ

)
= ζi,S,τ

√
eS(τ)fS(z, τ)θσS(i)(z, τ)

with square roots taken with real parts and for some ζ ∈ U8 and σS , σT ∈ S3. Hence for all
γ ∈ SL2(Z),

θi

(
z

eγ(τ)2 , γτ

)
= ζi,γ,τ

√
eγ(τ)fγ(z, τ)θσγ(i)(z, τ)

4

for some root of unity and some permutation. The correspondance γ 7→ σγ can be determined
from [13, p. 36], although one can simply notice it is independent of z and use the tables found
by Gauss in the case of theta-constants [4, Eq. 2.15]. Finally, we could attempt to give a formula
for ζi,γ,τ , but it is more efficient to simply compute a very low precision approximation of θ(z, τ)
and compare it to the full-precision value to determine which eighth root is needed.

Thus, in order to recover θi(z, τ) from θi

(
z

cτ+d ,
aτ+b
cτ+d

)
, one needs to compute

√
cτ + d (which

is done in O(M(P)) bit operations) and eπicz2/(cτ+d) (done in O(M(P) logP) bit operations),
and perform a division; determining ζ is asymptotically negligible. The cost of this step is then
O(M(P) logP) bit operations.

We note that in general, because of the permutation σγ , we need to have computed all three
values θ00,01,10

(
z

cτ+d ,
aτ+b
cτ+d

)
in order to be able to use the formula to compute, say, θ00(z, τ). We

will occasionally talk about computing θ11, but this will not be the focus of the paper. Hence,
the problem we consider in this paper is the following:

Compute θ00(z, τ), θ00(0, τ), θ01(z, τ), θ01(0, τ), θ10(z, τ), θ10(0, τ)

where |τ | > 1, |Re(τ)| ≤ 1
2 , Im(τ) > 0,

|Re(z)| ≤ 1
2 , 0 ≤ Im(z) ≤ Im(τ)

2 (3)

in quasi-optimal time, i.e. O(M(P) logP).

2.2 Naive algorithm to compute θ
2.2.1 Partial summation of the series defining θ

We define the following partial summation for the series defining θ(z, τ):

SB(z, τ) = 1 +
∑

0<n<B
qn

2
(e2iπnz + e−2iπnz)

where use the notation q = eiπτ . We have

Proposition 2.6. Suppose that Im(τ) ≥ 0.35 and 0 ≤ Im(z) ≤ Im(τ)/2; in particular, this is
the case if the conditions (3) are satisfied. Then, for B ≥ 1, |θ(z, τ)− SB(z, τ)| ≤ 3|q|(B−1)2 .

Proof. We look at the remainder of the series:

|θ(z, τ)− SB(z, τ)| ≤
∑
n≥B

|q|n
2
(|e2iπnz|+ |e−2iπnz|)

≤
∑
n≥B

|q|n
2
(1 + |q|−n) ≤ 2

∑
n≥B

|q|n
2−n

≤ 2
∑
n≥B

|q|(n−1)2
≤ 2

∑
n≥0
|q|(B−1+n)2

≤ 2|q|(B−1)2 ∑
n≥0
|q|2n(B−1)+n2

≤ 2 |q|
(B−1)2

1− |q|2B−1 (4)

5

A numerical calculation shows that for Im(τ) ≥ 0.35, we have 2
1−|q| ≤ 3, which proves the

proposition.

We can prove the same inequality for θ01, since the series that define it has the same terms,
up to sign, as the series for θ. Note that, unlike the analysis of [7] for naive theta-constant
evaluation, we cannot get a bound for the relative precision: since θ(1+τ

2 , τ) = 0, there is no
lower bound for |θ(z, τ)|.1 If we set

B(P, τ) =
⌈√

P + 2
π Im(τ) log2(e)

⌉
+ 1.

we have 4|q|(B−1)2 ≤ 2−P , which means the approximation is accurate with absolute precision
P . We just showed that:

Theorem 2.7. To compute θ(z, τ) with absolute precision P bits, it is enough to sum over all
k ∈ Z such that

|k| ≤

⌈√
P + 2

π Im(τ) log2(e)

⌉
+ 1

Note that this bound is larger than the one of [7, p. 5].

2.2.2 Naive algorithm

We then present a naive algorithm to compute not only the value of θ(z, τ), but also the value of
θ01(z, τ), θ00(0, τ), θ01(0, τ) for only a marginal amount of extra computation; this is the algorithm
we will use for comparison to the fast algorithm we propose in this article. The algorithm performs
computations at a precision P, which we determine later so that the result is accurate to the
desired precision P .

Define the sequence (vn)n∈N as

vn = qn
2
(e2iπnz + e−2iπnz)

so that θ(z, τ) = 1 +
∑
n≥1 vn. This satisfies the following recurrence relation for n > 1:

vn+1 = q2nv1vn − q4nvn−1.

We use this recursion formula to compute vn efficiently, which is similar to the trick used by [10,
Prop. 3]. This removes the need for divisions and the need to compute and store e−2iπnz, which
can get quite big; indeed, computing it only to multiply it by the very small qn2 is wasteful. The
resulting algorithm is Algorithm 1.

2.2.3 Error analysis and complexity

We have the following theorem:

Theorem 2.8. For z, τ satisfying conditions (3), Algorithm 1 with P = P + logB+ 7 computes
θ00(z, τ), θ01(z, τ), θ00(0, τ), θ01(0, τ) with absolute precision P bits. This gives an algorithm
which has bit complexity O

(
M(P)

√
P

Im(τ)

)
.

1Incidentally, this is why we consider only absolute precision in this paper.

6

Algorithm 1 Compute θ00,01(z, τ), θ00,01(0, τ) for z, τ satisfying conditions (3).
1: prec← P
2: B ←

⌈√
P+2

π Im(τ) log2(e)

⌉
+ 1

3: θ0,z ← 1, θ1,z ← 1, θ0,0 ← 1, θ1,0 ← 1
4: q ← eiπτ , q1 ← q, q2 ← q
5: v1 ← e2iπ(z+τ/2) + e−2iπ(z−τ/2), v ← v1, v′ ← 2
6: for n = 1..B do
7: /* q1 = qn, q2 = qn

2
, v = vn, v

′ = vn−1 */
8: θ0,z ← θ0,z + v, θ1,z ← θ1,z + (−1)n × v
9: θ0,0 ← θ0,0 + 2q2, θ1,0 ← θ1,0 + (−1)n × 2q2

10: q2 ← q2 × (q1)2 × q
11: q1 ← q1 × q
12: temp← v, v ←

(
q2

1 × v1
)
× v − q4

1 × v′ v′ ← temp
13: end for

Performing the analysis of this algorithm requires bounding the error that is incurred during
the computation. We then compensate the number of inaccurate bits by increasing the precision.
We use the following theorem:

Theorem 2.9. For j = 1, 2, let zj = xj + iyj ∈ C and z̃j = x̃j + iỹj its approximation. Suppose
that |zj − z̃j | ≤ kj2−P and that kj ≤ 2P/2. Then

1. |Re(z1 + z2)− Re(z̃1 + z̃2)| ≤ (k1 + k2)2−P

2. |Re(z1z2)− Re(z̃1z̃2)| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P

3. |Re(z2
1)− Re(z̃1

2)| ≤ (2 + 4k1|z1|)2−P

and the same bounds apply to imaginary parts as well; and

4. |ez1 − ez̃1 | ≤ |ez1 | 7k1+8.5
2 2−P .

Furthermore if |zj | ≥ 2kj2−P ,

5. |Re
(
z1
z2

)
− Re

(
z̃1
z̃2

)
| ≤

(
6(2+2k1|z2|+2k2|z1|)

|z2|2 + 2(4+8k2|z2|)(2|z1||z2|+1)+2
|z2|4

)
2−P

and the same bound applies to the imaginary part, and

6. |√z1 −
√
z̃1| ≤ k1√

|z1|
2−P .

This theorem is not very hard to prove; we refer to [11] for details.

Proof of Theorem 2.8. We first determine the size of the quantities we are manipulating; this
is needed to evaluate the error incurred during the computation, as well as the number of bits
needed to store fixed-point approximations of absolute precision P of the intermediate quantities.
Taking B = 1 in Proposition 2.6 gives |θ(z, τ) − 1| ≤ 3, so |θ(z, τ)| ≤ 4; actually, this also
proves |SB(z, τ)| ≤ 4, which means that |θ0,z|, |θ1,z|, |θ0,0|, |θ1,0| are bounded by 4. We also have
|q| ≤ 0.07, and |q2| ≤ |q|n

2 ≤ |q|n = |q1| ≤ |q| ≤ 0.07. As for the vi, we have v0 = 2, and for
n ≥ 1

|vn| ≤ |q|n
2+n + |q|n

2−n ≤ (1 + |q|2n)qn
2−n ≤ 1.0049qn

2−n ≤ 1.0049

7

Hence, storing all the complex numbers above, including our result, with absolute precision P
only requires P + 2 bits, since their integral part is coded on only 2 bits. Note that, had we
computed e−2iπnz before multiplying it by qn2 , we would have needed O(Im(τ)) more bits, which
worsens the asymptotic complexity.

Computing the absolute precision lost during this computation is done using Theorem 2.9.
We start with the bounds |τ − τ̃ | ≤ 1

2 2−P and |z − z̃| ≤ 1
2 2−P , coming from the hypothesis that

the approximations of z and τ are correctly rounded with precision P. We then need to estimate
kv1 and kq, which can be done using the formula giving the absolute error when computing an
exponential from Theorem 2.9. Given that τ ∈ F , we have

|q − q̃| ≤ 0.077× 1/2 + 8.5
2 2−P ≤ 0.42× 2−P

|v1 − ṽ1| ≤ 6(|e−π(Im(τ)+2 Im(z))|+ |eπ(2 Im(z)−Im(τ))|)× 2−P

≤ 6(|q|+ 1)2−P ≤ 6.42× 2−P

which means that kq ≤ 0.42 and kv1 ≤ 6.42. We then need to evaluate the loss of precision
for each variable and at each step of the algorithm, which gives recurrence relations with non-
constant coefficients. Solving those is rather tedious, and we use loose upper bounds to simplify
the computation; we do not detail this proof in the present article. The results obtained by this
method show that the error on the computation of the theta-constants is bounded by (0.3B +
105.958)2−P , and the one on the computation of the theta function is smaller than (5.894B +
28.062)2−P . This proves that the number of bits lost is bounded by log2 B + c, where c is a
constant smaller than 7; hence we set P = P + logB + 7.

Finally, evaluating π and exp(z) with precision P can be done in O(M(P) logP) [1], but this
is negligible asymptotically. In the end, computing an approximation up to 2−P of θ(z, τ) can
be done in O

(
M (P + log(P/ Im(τ)) + c)

√
P

Im(τ)

)
= O

(
M(P)

√
P

Im(τ)

)
bit operations.

2.2.4 Computing θ10

We mentioned in section 2.1 the need to compute θ10(z, τ) and θ10(0, τ) as well. One could think
of recovering those values using Jacobi’s quartic formula and the equation of the variety:

θ00(0, τ)4 = θ01(0, τ)4 + θ10(0, τ)4 (5)
θ2

00(z, τ)θ2
00(0, τ) = θ2

01(z, τ)θ2
01(0, τ) + θ2

10(z, τ)θ2
10(z, τ) (6)

that is to say, compute

θ10(0, τ) =
(
θ00(0, τ)4 − θ01(0, τ)4)1/4

θ10(z, τ) =
√
θ2

00(z, τ)θ2
00(0, τ)− θ2

01(z, τ)θ2
01(0, τ)

θ10(0, τ) .

However, this approach induces an asymptotically large loss of absolute precision for both
θ10(0, τ) and θ10(z, τ). According to Theorem 2.9, both square root extraction and inversion
induce a loss of precision proportional to |z|−1; since θ10(0, τ) ∼ 4q1/2, the number of bits lost
by applying those formulas is O(Im(τ)). Note that those formulas would also induce a big loss in
relative precision; since θ00(0, τ) and θ01(0, τ) are very close when Im(τ) goes to infinity, the sub-
traction induces a relative precision loss of O(Im(τ)) bits (for more details, see [7, Section 6.3]).
Either of those analyses show that, in order to compensate precision loss, the naive algorithm
should actually be run with a precision of O(P +logB+Im(τ)), which gives a running time that
worsens, insteads of getting better, when Im(τ) gets big. We do not recommend this approach.

8

Instead, one should compute partial summations of the series defining θ10, much in the
same way as we did for θ(z, τ). We outline the analysis in this case, which is very similar to
the one for θ: supposing n ≥ 2, we have n2 − 2n ≥ (n − 2)2, which can be used to prove
that |θ10(z, τ) − SB | ≤ 3|q|(B−2)2 , so that the bound on B is thus just one more than for θ;
the recurrence relation is the same; q2n|v1| is bounded by 2 instead of 1, which in the worst
case means logB more guard bits are needed. In what follows, we will refer to this algorithm
as “the naive algorithm to compute θ10(0, τ), θ10(z, τ)”; its asymptotic complexity is, just like
Algorithm 1, O

(
M(P)

√
P

Im(τ)

)
bit operations, which gets better as Im(τ) increases.

We note that similar considerations apply to the problem of computing θ11. One can compute
θ11(z, τ) using the formula [13, p.22]

θ11(z, τ)2 = θ01(z, τ)2θ10(0, τ)2 − θ10(z, τ)2θ01(0, τ)2

θ00(0, τ)2 . (7)

Using this formula loses only a few bits of precision since θ00(0, τ) is bounded; however, one then
needs to compute a square root, which potentially loses O(Im(τ)) bits. Hence, a summation of
the series, which directly gives θ11, is preferable.

2.3 Fast computation of theta-constants
Recall the definition of the arithmetico-geometric mean (AGM) for two positive real numbers
a, b:

a0 = a, b0 = b

an+1 = an + bn
2 bn+1 =

√
anbn (8)

The sequences (an)n∈N and (bn)n∈N both converge to the same limit, called the arithmetico-
geometric mean of a and b. Furthermore, (an) and (bn) are quadratically convergent, in the
sense of the following definition:
Definition 2.10. A sequence (an) is said to be quadratically convergent (to a limit `) if there
is a C > 0 such that for n large enough:

|an+1 − an| ≤ C|an − an−1|2

The constant C in the case of the AGM can be taken as π
8 min(|a|,|b|) [7, Thm. 1]. Quadratic

convergence implies that the number of exact digits approximately doubles with each iteration,
so that one only needs O(logP) iterations to compute AGM(a, b) with precision P ; hence the
total cost of computing AGM(a, b) is O(M(P) logP) bit operations.

It is possible to generalize the AGM to complex numbers, but there are two possibilities for
the choice of the square root at each step. We then call an AGM sequence for a and b any
sequence (an, bn)n∈N such that

a0 = a, b0 = b, 2an+1 = an + bn, b2
n+1 = anbn

Note that there are uncountably many AGM sequences for a, b. We define unambiguously the
AGM of two complex numbers following [4]:
Proposition 2.11. Let a, b ∈ C and let (an, bn)n∈N be an AGM sequence for a and b. We say
that the choice of signs is good at the rank n if

|an − bn| < |an + bn| or |an − bn| = |an + bn| and Im
(
bn
an

)
> 0

9

We call the AGM sequence for a and b in which all the choices of signs are good the optimal
AGM sequence, and define AGM(a, b) as the limit of the optimal AGM sequence for a and b.

Finally we have the following proposition:
Proposition 2.12 ([4, Proposition 2.1]). Let (an, bn)n∈N be an AGM sequence for a, b:

• If (an, bn) has infinitely many bad choices of sign, limn→∞ an = 0 and the convergence is
at least linear;

• If (an, bn) has only finitely many bad choices of sign (for instance if it is optimal), (an)
and (bn) both converge quadratically to the same non-zero limit.

The link between the complex AGM and theta-constants is well-known:
Proposition 2.13. We have the following formulas linking theta-constants:

θ2
00(0, 2τ) = θ2

00(0, τ) + θ2
01(0, τ)

2 (9)

θ2
01(0, 2τ) = θ00(0, τ)θ01(0, τ) (10)

This shows that (θ2
00(0, 2nτ), θ01(0, 2nτ))n∈N is an AGM sequence for θ2

00(0, τ) and θ2
01(0, τ),

and it converges quadratically to 1. Whether or not this sequence is the optimal AGM sequence
is controlled by the following result:
Proposition 2.14 ([7, Theorem 2] or [4, Lemma 2.9]). Define

Fk′ =
{
τ ∈ H such that |Re(τ)| < 1,

∣∣∣∣τ + 3
4

∣∣∣∣ ≥ 1
4 ,
∣∣∣∣τ + 1

4

∣∣∣∣ > 1
4 ,
∣∣∣∣τ − 1

4

∣∣∣∣ ≥ 1
4 ,
∣∣∣∣τ − 3

4

∣∣∣∣ > 1
4

}
⊂ H

Let τ ∈ Fk′ , and let (an, bn)n∈N the optimal AGM sequence for θ2
00(0, τ) and θ2

01(0, τ). Then for
all n we have (an, bn) = (θ2

00(0, 2nτ), θ2
01(0, 2nτ)), which implies AGM(θ2

00(0, τ), θ2
01(0, τ)) = 1.

In [7, Algorithm 4], an algorithm relying on the AGM, and with complexity O(M(P) logP),
is given to compute the value of the theta-constants with precision P bits. The algorithm uses
the fact that k′(τ) = θ2

01(0,τ)
θ2

00(0,τ) is a solution to the following equation:

iAGM(1, z)− τ AGM
(

1,
√

1− z2
)

= 0

which is a consequence of the action of SL2(Z) on the theta-constants, as well as of Jacobi’s
quartic formula (Equation (5)). Newton’s method, when given an approximation of k′(τ) with
precision P/2 as well as the knowledge of τ with precision P , computes an approximation of
k′(τ) with precision P − δ, where δ is a small constant. If one carries out Newton’s method
while doubling the working precision with each iteration, it is asymptotically only as costly as
the last iteration; this means k′(τ) can be computed with precision P in quasi-optimal running
time. One can then recover the individual values of the theta-constants using the equation

AGM
(

1, θ01(0, τ)2

θ00(0, τ)2

)
= 1
θ00(0, τ)2 . (11)

However, the complexity of this algorithm is not uniform – that is to say, it reaches this
complexity only for τ within a compact set. A variant of the algorithm is proposed in [7,
Algorithm 5] which makes the complexity uniform: if P ≤ 2 log Im(τ), use the naive algorithm
(which gives the right complexity); if not, compute the value of the theta-constants at τ

2n for
some n ≤ log Im(τ), and use the AGM to compute the theta-constants at τ . This gives an
algorithm which complexity does not depend on τ .

10

3 A sequence related to θ-functions
3.1 Definition of the F sequence
We start with the following formula:

Proposition 3.1.

θ00(z, 2τ)2 = θ00(z, τ)θ00(0, τ) + θ01(z, τ)θ01(0, τ)
2 (12)

θ01(z, 2τ)2 = θ00(z, τ)θ01(0, τ) + θ01(z, τ)θ00(0, τ)
2 (13)

This formula is called in [3, formula 3.13, p.39] the change of basis formula from the F2 basis
to the F(n,2)2 basis. However a direct proof can be obtained with limited effort, using the series
defining θ and some manipulations and term reorganization akin to∑

n+m≡0 (mod 2)

qn
2+m2

=
∑
i,j∈Z

q(i+j)2+(i−j)2
.

We also note that one can similarly prove the following formula, which will be used in section 4.2:

θ10(z, 2τ)2 = θ00(z, τ)θ00(0, τ)− θ01(z, τ)θ01(0, τ)
2 (14)

We then define the following function:

F : C4 → C4

(x, y, z, t) 7→

(√
x
√
z +√y

√
t

2 ,

√
x
√
t+√y

√
z

2 ,
z + t

2 ,
√
z
√
t

)

Hence, according to Proposition 2.13 and 3.1, for some appropriate choice of roots we have

F
(
θ2

00(z, τ), θ2
01(z, τ), θ2

00(0, τ), θ2
01(0, τ)

)
=
(
θ2

00(z, 2τ), θ2
01(z, 2τ), θ2

00(0, 2τ), θ2
01(0, 2τ)

)
.

Remark. One can also write rewrite F using Karatsuba-like techniques

F (x, y, z, t) =
(

(
√
x+√y)(

√
z +
√
t) + (

√
x−√y)(

√
z −
√
t)

4 , (15)

(
√
x+√y)(

√
z +
√
t)− (

√
x−√y)(

√
z −
√
t)

4 ,

(
√
z +
√
t)2 + (

√
z −
√
t)2

4 ,
(
√
z +
√
t)2 − (

√
z −
√
t)2

4

)
to speed up computations.

Following section 2.3, we define a good choice for square roots at the rank n as the following
conditions being satisfied:

• Re(√xn) ≥ 0, Re(√zn) ≥ 0;

• |√xn −
√
yn| < |

√
xn +√yn|, or |√xn −

√
yn| = |

√
xn +√yn| and Im

(√
yn√
xn

)
> 0;

11

• |√zn −
√
tn| < |

√
zn +

√
tn|, or |√zn −

√
tn| = |

√
zn +

√
tn| and Im

(√
tn√
zn

)
> 0.

The last condition is equivalent to |zn − tn| ≤ |zn + tn|, which means that (zn, tn) is an AGM
sequence for (z0, t0) in which all the choices of sign are good. Note that the condition |x− y| <
|x+ y| is equivalent to Re

(
y
x

)
> 0.

Again, similarly to the AGM, for any x, y, z, t ∈ C we define the optimal F sequence
((xn, yn, zn, tn))n∈N as follows:

(x0, y0, z0, t0) = (x, y, z, t)
(xn+1, yn+1, zn+1, tn+1) = F (xn, yn, zn, tn)

where all the choices of sign for the square roots are good. The study of this sequence and its
convergence is done in Section 3.4.

3.2 Link with θ-functions
3.2.1 More argument reduction

We go slightly further than the conditions (3) in order to justify the forthcoming results. We
wish to further reduce z, as follows:

0 ≤ Im(z) ≤ Im(τ)
4 , |Re(z)| ≤ 1

8 (16)

The first hypothesis allows us to avoid z = τ+1
2 , which is a zero of θ(z, τ), and hence a pole of

quotients of the form θi
θ00

, which we consider in our algorithm much in the same way as [7]. We
prove Lemma 3.3 and Theorem 3.4 under this assumption. The second condition complements
the first one as follows:

Lemma 3.2. Let z, τ such that |Re(τ)| ≤ 1
2 and the conditions of (16) are verified. Then z

τ ,
−1
τ

verify the first condition of (16).

Proof. Write∣∣∣Im(z
τ

)∣∣∣ = 1
|τ |2
| Im(z) Re(τ)− Re(z) Im(τ)| ≤ Im(τ)

|τ |2

(
1
4

1
2 + 1

8

)
= 1

4 Im
(
−1
τ

)
.

This will be used to apply Theorem 3.4 to z
τ ,
−1
τ in Proposition 4.1.

Note that those conditions are satisfied if one takes z′ = z
2 with z satisfying conditions (3).

One can then compute θ2
00,01(z, τ) from θ2

00,01,10(z/2, τ) and θ2
00,01,10(0, τ) using the following

z-duplication formulas [13, p. 22]:

θ00(z, τ)θ3
00(0, τ) = θ4

01(z/2, τ) + θ4
10(z/2, τ) (17)

θ01(z, τ)θ3
01(0, τ) = θ4

00(z/2, τ)− θ4
10(z/2, τ)

θ10(z, τ)θ3
10(0, τ) = θ4

00(z/2, τ)− θ4
01(z/2, τ).

This requires the knowledge of θ10(z, τ) and the associated theta-constant; this could be com-
puted using Jacobi’s formula (Equation (5)) and the equation of the variety (Equation (6)), but
we end up using a different trick in our final algorithm.

12

3.2.2 Good choices of sign and thetas

We now prove that, for the arguments we consider, the good choices of sign correspond exactly
to values of θ:

Lemma 3.3. For any τ such that Im(τ) ≥ 0. 345 (in particular, for τ ∈ F) and z verifying the
first condition in (16) we have

|θ00(z, τ)− θ01(z, τ)| < |θ00(z, τ) + θ01(z, τ)|,

which also proves that Re
(
θ01(z,τ)
θ00(z,τ)

)
> 0,Re

(
θ01(0,τ)
θ00(0,τ)

)
> 0.

Proof. Write:

|θ00(z, τ) + θ01(z, τ)− 2| ≤ 2
∑

n≥2,n even
|qn

2
(w2n + w−2n)|

≤ 2
∑

n≥2,n even
|q|n

2
(1 + |q|−n/2)

≤ 2
∑
n≥1
|q|4n

2
(1 + |q|−n)

≤ 2|q|3 + 2|q|4 + 2q16

1− q20 + 2q14

1− q19

|θ00(z, τ)− θ01(z, τ)| ≤ 2
∑

n≥1,n odd
|q|n

2
(1 + |q|−n/2)

≤ 2|q|1/2 + 2|q|+ 2q9

1− q16 + 2q7.5

1− q19

We have
2|q|1/2 + 2|q|+ 2q9

1−q16 + 2q7.5

1−q19

2− (2|q|3 + 2|q|4 + 2q16

1−q20 + 2q14

1−q19)
≤ 1

for Im(τ) > 0. 345, which proves the lemma.

We are now ready to prove:

Theorem 3.4. Let (xn, yn, zn, tn) be the optimal F sequence for θ2
00(z, τ), θ2

01(z, τ), θ2
00(0, τ), θ2

01(0, τ).
For any τ such that Im(τ) ≥ 0. 345 and z satisfying the first condition of (16) we have

(xn, yn, zn, tn) =
(
θ2

00(z, 2nτ), θ2
01(z, 2nτ), θ2

00(0, 2nτ), θ2
01(0, 2nτ)

)
Proof. This is true for n = 0; we prove the statement inductively. Suppose it is true for n = k.
We have for any τ :

θ00(0, τ) = 1 + 2q + c, |c| ≤ 2|q|4
1− |q|5

For any τ such that Im(τ) ≥ 0. 345, 2|q| ≤ 0.676 and |c| ≤ 0.027; hence Re(θ00(0, 2kτ)) > 0 for
any k, which proves that√zk = θ00(0, 2kτ). Lemma 3.3 shows that Re

(
θ01(0,τ)
θ00(0,τ)

)
> 0, and we also

have Re
(√

tk√
zk

)
≥ 0 since the choice of roots is good, hence

√
tk = θ01(0, 2kτ). Proposition 2.13

then proves that tk+1 = θ2
01(0, 2k+1τ) and zk+1 = θ2

00(0, 2k+1τ).

13

Similarly, given that z satisfies the first condition of (16):

|θ00(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3 + |q|4 + |q|7/2 + |q|9 + 2|q|14

1− |q|2 (18)

For Im(τ) ≥ 0. 345, this is strictly smaller than 1; hence Re(θ00(z, τ)) > 0, which proves that
√
xk = θ00(z, 2kτ). Again, Lemma 3.3 proves that Re

(
θ01(z,2kτ)
θ00(z,2kτ)

)
> 0, and since the choice of

signs is good, Re
(√

yk√
xk

)
≥ 0, necessarily √yk = θ01(z, 2kτ). This along with Proposition 3.1

finishes the induction.

Note that a consequence of this proposition is the following fact:

Proposition 3.5. The optimal F sequence for θ2
00(z, τ), θ2

01(z, τ), θ2
00(0, τ), θ2

01(0, τ) converges
quadratically to (1, 1, 1, 1).

3.3 A function with quasi-optimal time evaluation
The strategy of [7] is to use an homogenization of the AGM to get a function fτ : C → C, on
which Newton’s method can be applied. To generalize this, we homogenize the function which
maps to (x, y, z, t) the limit of the optimal F sequence associated to them; it becomes a function
from C2 to C2. We call this function F∞; this function is a major building block for the function
we use to compute our two parameters z, τ using Newton’s method.

Proposition 3.6. Let λ, µ ∈ C. Let ((xn, yn, zn, tn))n∈N be the optimal F sequence for (x, y, z, t),
and ((x′n, y′n, z′n, t′n))n∈N the optimal F sequence for (λx, λy, µz, µt). Put limn→∞ zn = z∞ and
limn→∞ z′n = z′∞. Then we have

µ = z′∞
z∞

, λ =

(
limn→∞

(
x′n
z′∞

)2n
)
× z′∞(

limn→∞

(
xn
z∞

)2n
)
× z∞

Proof. We prove by induction that

x′n = εnλ
1/2nµ1−1/2nxn, y′n = εnλ

1/2nµ1−1/2nyn, z′n = µzn, t′n = µtn,

where Re(λ1/2n) ≥ 0, Re(µ1−1/2n) ≥ 0, and εn is a 2n-th root of unity. This is enough to prove
the proposition above, since then

lim
n→∞

(
x′n
z′∞

)2n

= lim
n→∞

λµ2n−1
(
xn
z′∞

)2n

= λ

µ
lim
n→∞

(
xn
z∞

)2n

.

Since this is true for n = 0, suppose this is true for n = k. We have

z′k+1 = z′k + t′k
2 = µzk+1.

As for tk+1, we can write √
z′k = εz

√
µ
√
zk,

√
t′k = εt

√
µ
√
tk

14

where εz = ±1 and εt = ±1, and the square roots are taken with positive real part. But since
Re
(√

t′
k√
z′
k

)
≥ 0 and Re

(√
tk√
zk

)
≥ 0, we have εz = εt. Hence

t′k+1 = (εz
√
µ
√
zk)
(
εz
√
µ
√
tk
)

= µtk+1.

As for the other coordinates, we have√
x′k = εx

√
εkλ

1/2k+1
µ1/2−1/2k+1√

xk,
√
y′k = εy

√
εkλ

1/2k+1
µ1/2−1/2k+1√

yk

where the roots are taken with positive real part, and εx, εy ∈ {−1, 1}. Since Re
(√

yk√
xk

)
≥ 0 and

we require Re
(√

y′
k√
x′
k

)
≥ 0, necessarily εx = εy; hence

x′k+1 =
√
x′k
√
z′k +

√
y′k
√
t′k

2 = εk+1λ
1/2k+1

µ1−1/2k+1
√
xk
√
zk +√yk

√
tk

2 = εk+1λ
1/2k+1

µ1−1/2k+1
xk+1

where εk+1 = εx
√
εz is indeed such that ε2k+1

k+1 = 1. This proves the proposition.

In the case of theta-functions, however, we have:
Proposition 3.7.

lim
n→∞

θ(z, 2nτ)2n

θ(0, 2nτ)2n = 1

Proof. It is enough to prove limn→∞ θ(z, 2nτ)2n = 1, since it also covers the case z = 0. Write,
like Equation (18):

θ(z, 2nτ) = 1 + q2n(w2 + w−2) + c, |c| ≤ 2|q|2n+3

1− |q|

We can write θ(z, 2nτ) = 1 + dn with |dn| ≤ 2|q|2n |w2 + w−2|. We then have classically

|θ(z, 2nτ)2n − 1| ∼ |2ndn|

and since limn→∞ 2n|q|2n = 0, this proves the proposition.

Combining this with Theorems 3.6 and 3.4 proves that, for (xn, yn, zn, tn) as in Theorem 3.4,
we have

λ = lim
n→∞

(
x′n
µ

)2n

× µ.

In particular, if we define the following function:

F∞ : C4 → C2

(x, y, z, t) 7→

((
lim
n→∞

(
xn
z∞

)2n
)
× z∞, z∞

)
where z∞ = limn→∞ zn, then we have that, for any z, τ satisfying the hypotheses of Theorem 3.4,

F∞
(
λθ2

00(z, τ), λθ2
01(z, τ), µθ2

00(0, τ), µθ2
01(0, τ)

)
= (λ, µ).

For instance,

F∞
(

1, θ
2
01(z, τ)
θ2

00(z, τ) , 1,
θ2

01(0, τ)
θ2

00(0, τ)

)
=
(

1
θ2

00(z, τ) ,
1

θ2
00(0, τ)

)
. (19)

This is similar to Equation (11), and will play a similar role in the computation of θ(z, τ).

15

3.4 Convergence
Let us start by showing that, contrary to the AGM and despite Proposition 3.5, an optimal F se-
quence does not always converge quadratically; for instance, the optimal F sequence for (2, 2, 1, 1)
is ((21/2n , 21/2n , 1, 1))n∈N, which does not converge quadratically. This is a big difference from
the AGM, and this is why we are reluctant to call optimal F sequences a “generalization of
the AGM”. However, we now show that the sequence (λn) =

((
xn
z∞

)2n
× z∞

)
n∈N

converges

quadratically, whence F∞ can be computed in O(M(P) logP) bit operations.

Lemma 3.8. Let (x0, y0, z0, t0) ∈ C4. Put (xn+1, yn+1, zn+1, tn+1) = F (xn, yn, zn, tn) for any
integer n ∈ N, and suppose this is an optimal F sequence. Then there exists positive real constants
c, C such ∀n ≥ 1,

c ≤ |xn|, |yn|, |zn|, |tn| < C.

Proof. The upper bound result follows from a trivial induction using the equations defining F .
We prove in Section 4.3.5 that there is a suitable C for any z, τ we consider in our final algorithm.

We now prove the existence of c. Recall that the choice of signs for the square roots are
good at all steps, since we assume (xn, yn, zn, tn) is an optimal F sequence. Thus there exists
α, β ∈ C∗ such that

Re(x1/α) > 0, Re(y1/α) > 0, Re(z1/β) > 0, Re(t1/β) > 0.

For instance, in most cases one can take α = x1 and β = z1. Let us assume without loss of
generality that |α| = |β| = 1, and let c = min(Re(x1/α),Re(y1/α),Re(z1/β),Re(t1/β)). For
good choices of square roots, we have (see e.g. [6, Lemme 7.3])

Re
(√

x1

α

√
z1

β

)
≥ min

(
Re
(x1

α

)
,Re

(
z1

β

))
≥ c

and the same goes if one replaces x1 by y1 or z1 by t1. This implies from the definition that
|x2| ≥ Re(x2/

√
αβ) ≥ c, and the same goes for |y2|, |z2|, |t2|. The result follows by induction,

with
√
αβ, of module 1, playing the role of α at the next iteration.

Lemma 3.9. If the choice of square roots is good, we have

|
√
xn +√yn| ≥

√
2c |

√
zn +

√
tn| ≥

√
2c

and hence
|
√
xn −

√
yn| ≤

|xn − yn|√
2c

, |
√
zn −

√
tn| ≤

|zn − tn|√
2c

Proof. The parallelogram identity gives

|
√
xn +√yn|2 = 2|√xn|2 + 2|√yn|2 − |

√
xn −

√
yn|2

≥ 2|√xn|2 + 2|√yn|2 − |
√
xn +√yn|2 since choice of signs are good

and hence |√xn +√yn|2 ≥ 2c. The proof is the same for |√zn +
√
tn|.

We now prove that (λn) =
((

xn
z∞

)2n
× z∞

)
n∈N

converges quadratically, by proving the

following theorem:

16

Theorem 3.10. The sequence (λn) converges, to a limit λ. Furthermore, for P large enough,
there exists a constant c1 > 0, depending on C, c and |λ|, such that, if k is the first integer such
that |zk − tk| ≤ 2−P−k−c1 , then λk+1 is an approximation of λ with absolute precision P bits.
Proof. The point here is that once zn and tn are close enough, xn+1 and yn+1 are also close and
the value of λn does not change much after that. Let c1 ≥ 0, and take n the first integer for
which |zn − tn| ≤ η with η = 2−P−c1−n. We then have for all k ≥ 0 [7, Theorem 1]:

|zn+k − tn+k| ≤ A2k−1η2k

with A = π
8 min(|z0|,|t0|) . Furthermore, |zn+1 − zn| = 1

2 |zn − tn|, so that

|z∞ − zn+k| ≤
1
2

∞∑
i=k

A2i−1η2i

and we have |z∞ − zn+k| ≤ 1
A (Aη)2k . Finally, using Equation (15), one can write

|xn+k+1 − yn+k+1| ≤
|√xn −

√
yn||
√
zn −

√
tn|

2

≤
√
C
√

2
√
|zn+k+1 − tn+1| since zn+k+1 − tn+k+1 =

(√zn+k −
√
tn+k)2

2
≤
√

2AC|zn+k − tn+k|.

Now, define qn = (xn/z∞)2

xn−1/z∞
, so that λn+1

λn
= q2n

n . Note that if one makes the approximation
xn+k+1 = yn+k+1 and zn+k+1 = tn+k+1 = z∞, we have xn+k+2 = √xn+k+1z∞ which gives
qn+k+2 = 1. We take a closer look at those approximations:

|xn+k+2 −
√
xn+k+1

√
zn+k+1| ≤

|√yn+k+1 −
√
xn+k+1||

√
zn+k+1 +√tn+k+1|

4

+
|√yn+k+1 +√xn+k+1||

√
zn+k+1 −

√
tn+k+1|

4

≤
√
C

2 (|√yn+k+1 −
√
xn+k+1|+ |

√
zn+k+1 −

√
tn+k+1|)

≤
√
C

2

(√
2AC

|√xn+k+1 +√yn+k+1|
|zn+k − tn+k|+

√
2A|zn+k+1 − tn+k+1|

)
≤ B(Aη)2k

so

qn+k+2 − 1 = (xn+k+2/z∞)2 − xn+k+1/z∞
xn+k+1/z∞

≤
1
z2
∞

(√xn+k+1
√
zn+k+1 +B(Aη)2k)2 − xn+k+1/z∞

xn+k+1/z∞

≤ xn+k+1zn+k+1/z
2
∞ − xn+k+1/z∞

xn+k+1/z∞
+ 2C/z2

∞B(Aη)2k +B2(Aη)2k+1

xn+k+1/z∞

≤ 1
2z∞

∞∑
i=k+1

(Aη)2i + CB(Aη)2k

xn+k+1z∞
+ B2(Aη)2k+1

xn+k+1/z∞

≤ B′ × (Aη)2k

17

This proves that (qn) converges quadratically to 1; using the equivalent q2n
n − 1 ∼ 2nqn, we have

that (q2n
n) also converges quadratically to 1, which proves the convergence of the sequence (λn).

Finally we have

q2n+2

n+2 ...q
2n+k

n+k − 1 ≤
k−2∏
i=0

(
1 +B′(Aη)2i

)2n+i+2

− 1

< exp
(

4B′
k−2∑
i=0

2n+i(Aη)2i
)
− 1

≤
4B′

∑k−2
i=0 2n+i(Aη)2i

1− (4B′
∑k−2
i=0 2n+i(Aη)2i)/2

which proves, for P large enough,

|λ− λn+1| ≤ 8B′|λn+1|
∞∑
i=0

2n+i(Aη)2i

≤ 16B′|λn+1|Aη2n

≤ 16AcB′|λn+1|2−c1 × 2−P

This inequality proves that, at least for P large enough, |λn+1| ≤ 2|λ|. Hence if we suppose
log2(32Ac|λ|) ≤ c1, we have that λn+1 is an approximation of λ with P bits of absolute precision.

Algorithm 2 Compute F∞(x, y, z, y)
1: Work at precision P.
2: n← 0
3: while |z − t| ≤ 2−P−n−c1 do
4: n← n+ 1
5: (x, y, z, t)← F (x, y, z, t)
6: end while
7: (x, y, z, t)← F (x, y, z, t)
8: Return

((
x
z

)2n+1

× z, z
)

This gives an algorithm, Algorithm 2, to compute F∞(x, y, z, t). According to [7, Theo-
rem 12], if n = max(log | log |z0/t0||, 1) + log(P + c1), an is an approximation of AGM

(
1, | z0

t0
|
)

with relative precision P bits. This proves that at the end of the algorithm, n = O(logP); in
fact, we have more precisely n ≤ log2 P + C ′′ with C ′′ a constant independent of P . Finally in
the next subsection proves that one can take P = P +O(logP), which means that this algorithm
computes F∞ in O(M(P) logP) bit operations.

18

3.5 Loss of precision
We use Theorem 2.9 in order to evaluate the precision lost when computing F∞(x, y, z, t). First
note that the upper and lower bounds on the terms of the sequence allow us to write(

1√
|zn|

+ 1√
|tn|

)(√
|zn|+

√
|tn|
)
≤ b/2(

1√
|zn|

+ 1√
|tn|

)(√
|xn|+

√
|yn|

)
≤ b(

1√
|xn|

+ 1√
|yn|

)(√
|zn|+

√
|tn|
)
≤ b

for some b > 1; for instance, one can take b = max
(

1, 4
√

C
c

)
. We prove in Section 4.3.5 the

existence of c and C, and hence of b, for any values of theta we consider as arguments.
We first evaluate a bound on the error incurred when computing F using Equation (15).

Using those formulas allows us to get error bounds that are identical for Fx and Fy, and Fz and
Ft. For simplicity, we assume that the error on z and t is the same, as well as the error on x and
y. This gives:

|Re(Fx)− Re(F̃x)| ≤
(

1 + kz

(
1√
|z|

+ 1√
|t|

)(√
|x|+

√
|y|
)

+ kx

(
1√
|x|

+ 1√
|y|

)(√
|z|+

√
|t|
))

2−P

|Re(Fz)− Re(F̃z)| ≤
(

1 + 2kz

(
1√
|z|

+ 1√
|t|

)(√
|z|+

√
|t|
))

2−P

We thus get the following induction relations when looking at what happens when applying F n
times in a row:

k(n)
x ≤ 1 + bk(n−1)

z + bk(n−1)
x , k(n)

z ≤ 1 + bk(n−1)
z

The last equation rewrites as k(n)
z + 1

b−1 ≤ b
(
k

(n−1)
z + 1

b−1

)
, which gives k(n)

z ≤ bn
(
kz + 1

b−1

)
.

The induction for x becomes k(n)
x ≤ 1 + (kz + 1

b−1)bn + bk
(n−1)
x , which we solve:

k(n)
x ≤ (1 + b+ ...+ bn)kx + nbn

(
kz + 1

b− 1

)
≤ bn

(
nkz + b+ n

b− 1

)
For b > 1, we have for n large enough that k(n) ≤ 2b2n, which ultimately means the number of
bits lost when applying F n times in a row is bounded by 2n log b+ 1.

Finally we need to find the number of bits lost in the computation of
(
xn
z∞

)2n
. Call Ek the

error made after computing k squarings in a row; we have the following recurrence relation:

Ek+1 ≤ 2 + 4Ek|xn/z∞|2
k

However, since (λn) converges, |λn| ≤ ρ for some constant ρ; furthermore, for any k ≤ n, one
has |xn/z∞|2

k ≤ 1 + ρ
z∞

. Hence the recurrence becomes Ek+1 ≤ 2 + 4
(

1 + ρ
z∞

)
Ek, which we

solve to get

En ≤ 2C
′n+1 − 1
C ′ − 1 ≤ 2

C ′ − 1C
′n+1

19

with C ′ = 4
(

1 + ρ
z∞

)
. This means the number of bits lost after n successive squarings is at the

most (n+ 1) logC ′ + 1− log(C ′ − 1).
Overall, if we write that the final value of n in Algorithm 2 is bounded by log2 P + C ′′, we

have that the number of bits lost is bounded by

(2 log2 b+ logC ′)(log2 P + C ′′) + logC ′ + 2− logC ′ − 1

which is O(logP).

4 Fast computation of θ
We use a similar method as [7], that is to say finding a function F such that

F

(
θ2

01(z, τ)
θ2

00(z, τ) ,
θ2

01(0, τ)
θ2

00(0, τ)

)
= (z, τ),

which can then be inverted using Newton’s method. One can then compute θ(z, τ) by, for
instance, using Equation (19) and extracting a square root, determining the correct choice of
sign by computing a low-precision (say, 10 bits) approximation of the value using the naive
method; we use a different trick in our final algorithm (Algorithm 5). We build this function F
using F∞ as a building block.

4.1 Building F

Just as with the algorithm for theta-constants, we use formulas derived from the action of SL2(Z)
on the values of θ in order to get multiplicative factors depending on our parameters; this will
allow us to build a function which computes z, τ from the values θi(z, τ). We define the function
F as the result of Algorithm 3.

Algorithm 3 Compute F (s, t)

1: b←
√

1− t′2 . Choose the root with positive real part [4, Prop 2.9]
2: a← 1−st

b
3: (x, y)← F∞ (1, a, 1, b)
4: (q1, q2)← F∞ (1, s, 1, t)

5: Return
(√

log
(
q2x
q1y

)
× q2/y
−2π , i

q2
y

)
, choosing the sign of the square root so that it has positive

imaginary part.

Proposition 4.1. Let τ be such that |Re(τ)| ≤ 0.5, Im(τ) ≥ 0. 345 and Im
(−1
τ

)
≥ 0. 345, and

let z be such that the conditions (16) are satisfied. Then

F

(
θ2

01(z, τ)
θ2

00(z, τ) ,
θ2

01(0, τ)
θ2

00(0, τ)

)
= (z, τ)

Proof. Equation (19) proves that (q1, q2) =
(

1
θ00(z,τ)2 ,

1
θ00(0,τ)2

)
. Furthermore, using Jacobi’s

formula (5) and the equation defining the variety (6), it is easy to see that b = θ10(0,τ)2

θ00(0,τ)2 and
a = θ10(z,τ)2

θ00(z,τ)2 .

20

The formulas in [13, Table V, p.36] give

(
θ2

00(z, τ), θ2
10(z, τ), θ2

00(0, τ), θ2
10(0, τ)

)
=
(
λθ2

00

(
z

τ
,
−1
τ

)
, λθ2

01

(
z

τ
,
−1
τ

)
, µθ2

00

(
0, −1

τ

)
, µθ2

01

(
0, −1

τ

))

with λ = e−2iπz2/τ

−iτ , µ = 1
−iτ . From the discussion in Section 3.2.1, the conditions on z, τ allow

us to apply Theorem 3.4 to z
τ ,
−1
τ . This proves that

F∞
(
θ2

00(z, τ), θ2
10(z, τ), θ2

00(0, τ), θ2
10(0, τ)

)
=
(
e−2iπz2/τ

−iτ
,

1
−iτ

)
,

and by homogeneity, (x, y) =
(

e−2iπz2/τ

−iτθ00(z,τ)2 ,
1

−iτθ00(0,τ)2

)
.

This means that, starting from the knowledge of z and τ with precision P and a low-precision
approximation of the quotients θ01(z,τ)

θ00(z,τ) and θ01(0,τ)
θ00(0,τ) , one can compute those quotients with pre-

cision P using Newton’s method. This is Algorithm 4.

Algorithm 4 Compute θ2
00(z, τ), θ2

01(z, τ), θ2
00(0, τ), θ2

01(0, τ) with precision P .
Input: (z, τ) with absolute precision P .

1: Compute θ2
00,01(z, τ), θ2

00,01(0, τ) with absolute precision P0 using Algorithm 1.
2: s← θ01(z,τ)2

θ00(z,τ)2 , t← θ01(0,τ)2

θ00(0,τ)2

3: p← P0
4: while p ≤ P ′ do
5: p← 2p
6: Compute a11 = ∂Fx

∂x (s, t), a22 = ∂Fy
∂y (s, t), a12 = ∂Fx

∂y (s, t) with precision p.

7: (s, t)← (s, t)− (F(s, t)− (z, τ))
(
a11 a12
0 a22

)−1

8: end while
9: (a, b)← F∞(1, s, 1, t)

10: (a, b)← (1/a, 1/b), (s, t) = (sa, tb)
11: Return (a, s, b, t).

We make a few remarks:

• The proof of the invertibility of the Jacobian of F is delayed until Section 4.3.2.

• Much in the same way as [10], we find it preferable to use finite differences to compute
the coefficients a11, a21, a22 of the Jacobian, as it does not require the computation of the
derivative of F, which could be tedious.

• The value of P0 has to be large enough that Newton’s method converges. We note that, in
general, a lower bound on P0 may depend on the arguments; for instance, [7] experimentally
finds 4.53 Im(τ) to be a suitable lower bound for P0 when computing theta-constants.
However, we outline in the next section a better algorithm which only uses the present
algorithm for z, τ within a compact set; hence, P0 can be chosen to be a constant, and we
use in practice P0 = 30000.

21

We do not provide a full analysis for this algorithm: we outline in the next section a better
algorithm, which uses this algorithm as a subroutine, and we will provide a full analysis at that
time. It is enough to say that the computation of F∞ at precision p is done in time O(M(p) log p)
using Algorithm 2; however, this running time depends on z, τ , since it depends on the bounds
C, c that one can write for |xn|, |yn|, |zn|, |tn|. Hence, the cost of evaluating F at precision p is
O(M(p) log p) bit operations, and the fact that we double the working precision at every step
means that the algorithm is as costly as the last iteration. Furthermore, one should choose P ′ so
that the final result is accurate with absolute precision P . This means compensating the loss of
absolute precision incurred during the computation of F; in general, this only depends on Im(τ)
and linearly in log p. Furthermore, we have the following proposition:

Proposition 4.2. Let x and y be approximations of a and b with absolute precision N , and x′, y′
the result of Step 7 in Algorithm 4 when using finite differences to approximate the Jacobian
matrix. Then x′, y′ are approximations of a, b with precision 2P0 − δ.

Its proof can be adapted from the proof of [10, Theorem 12]. In practice, we found δ = 4 to
be enough. Determining the number of bits lost at each step can be done in the same way as [10,
p. 19]: if s(n−1) and s(n−2) agree to k bits, and s(n) and s(n−1) agree to k′ bits, the number of
bits lost can be computed as 2k − k′. In the end, working at precision P ′ = P + c logP + d,
with c, d independent of P but functions of z, τ , is enough to compensate all precision losses;
this proves that the running time of this algorithm is asymptotically O(M(P) logP).

4.2 Computing θ(z, τ) in uniform quasi-optimal time
We now show an algorithm with uniform (i.e. independent in z and τ) quasi-optimal complexity
that computes θ(z, τ) for any (z, τ) satisfying conditions (3). We use the same strategy as [7];
namely, we use the naive algorithm when Im(τ) is large; and for smaller values of Im(τ), we put
τ ′ = τ

2s so that τ ′ is within a compact set, then use Algorithm 4, which complexity will be uni-
form since its arguments belong to a compact set. However we also need to divide z by a power
of 2 so that it also belongs to a compact set, and so that (z′, τ ′) satisfies conditions (3) and (16).
Once θ

(
z
2t ,

τ
2s
)
has been computed by the previous algorithm, we alternate between using Equa-

tion (12) to double the second argument and Equation (17) to double the first argument, until
finally recovering θ(z, τ). This is Algorithm 5.

A few notes on this algorithm:

• We note that, at several steps of the algorithm (e.g. Steps 9, 14, 16) we need to compute
theta-constants from their square. The correct choice of signs is given by the proof of
Theorem 3.4, which shows that Re(θ00(0, τ)) ≥ 0 and Re(θ01(0, τ)) ≥ 0; and furthermore,
since Re(q1/4) ≥ |q|1/4 cos(π/8), we also have Re(θ10(0, τ)) ≥ 0.

• Taking τ2 = τ1/2 allows us to use Equation (14) in step 8 instead of Equation (5) and
Equation (6), which is more efficient and loses fewer bits.

• The knowledge of θ2
10(2i−2z1, 2iτ) is enough for the z-duplication formulas of step 17, and

it can be computed directly from θ00 and θ01 using Equation (14).

• Computing θ11(z, τ) is also possible; one should use a partial summation if P ≤ 25 Im(τ).
In the other case, since all the z-duplication formulas for θ11(z, τ) involve a division by
θ10(0, τ) [13, p.22], it is just as efficient to simply use Equation (7) after Step 20, then
extract the square root. The square root extraction loses O(Im(τ)) = O(P) bits, and this
also gives a quasi-optimal algorithm.

22

Algorithm 5 Compute θ(z, τ) for τ ∈ F and z reduced
1: if P ≤ 25 Im(τ) then
2: Compute θ00,01,10(z, τ), θ00,01,10(0, τ) with precision P using the naive method (Algo-

rithm 1 + Section 2.2.4).
3: else
4: Take s ∈ N such that 1 ≤ |τ |/2s < 2
5: Put τ1 = τ

2s and z1 = z
2s , so that Im(z1) ≤ Im(τ1)/2.

6: Put z2 = z1/4 and τ2 = τ1/2.
7: Compute approximations of absolute precision P of θ2

00(z2, τ2), θ2
01(z2, τ2), θ2

00(0, τ2), and
θ2

01(0, τ2) using Algorithm 4.
8: Compute θ2

00(z2, τ1), θ2
01(z2, τ1), θ2

00(0, τ1), θ2
01(0, τ1) using Equation (12), and θ2

10(z2, τ1)
using Equation (14) and θ2

10(0, τ1) using its equivalent in z = 0.
9: Compute θ00,01,10(0, τ1).

10: Compute θ00,01(z1/2, τ1) using Equation (17).
11: for i = 1 .. s do
12: Compute θ2

00(0, 2iτ1), θ2
01(0, 2iτ1) using the AGM.

13: Compute θ2
00(2i−2z1, 2iτ1), θ2

01(2i−2z1, 2iτ1) using Equation (12).
14: If i = s, compute also θ2

10(0, 2iτ1) using the equivalent of Equation (14) in z = 0, then
θ10(0, 2iτ1) by taking the square root.

15: Compute θ2
10(2i−2z1, 2iτ1) using Equation (14).

16: Compute θ00,01(0, 2iτ1).
17: Compute θ00(2i−1z1, 2iτ1), θ01(2i−1z1, 2iτ1) using Equation (17).
18: end for
19: Compute θ2

10(2s−1z1, 2sτ1) using Equation (6).
20: Compute θ00,01,10(z, τ) using Equation (17).
21: end if

23

4.3 Proving the correctness of the algorithm
This section is devoted to proving the following theorem:

Theorem 4.3. For any τ, z satisfying conditions (3), Algorithm 5 with P = 2P computes
θ00,01,10(z, τ), θ00,01,10(0, τ) with absolute precision P in O(M(P) logP) bit operations.

As we discussed in Section 2, this also gives an algorithm that computes θ(z, τ) for any
(z, τ) ∈ C×H; one simply needs to reduce τ in τ ′ ∈ F , then reduce z in z′, and deduce θ(z, τ)
from θ(z′, τ ′) using Equations (1) and (2). This causes a loss of absolute precision which depends
on z and τ , and this algorithm is no longer uniform.

We need to perform an analysis of the number of bits lost by the algorithm; once again, we
use Theorem 2.9. For each step, we proceed as follows: assuming the error on all the quantities
is bounded by k, determine a factor x such that the error on the quantities we get after the
computation is bounded by xk, then declare the number of bits lost in this step to be log x; this
gives a very loose upper bound, but simplifies the process.

Finally, we also need to prove that the hypotheses made in Sections 3.4 and 3.5 are verified
in Step 7 of the algorithm. This is necessary to prove that the sequence (λn) we consider is
quadratically convergent, and that the number of bits lost is only O(logP). We prove this
in Section 4.3.5, which then completes the proof that the running time is indeed uniform and
quasi-optimal.

4.3.1 Naive algorithm

As we showed in Theorem 2.8, the number of bits lost when using the naive algorithm is logB+7,
although this constant could be made even smaller when taking into account that P ≤ 25 Im(τ).
Furthermore,

√
P

Im(τ) ≤ 25, which means the running time of this step is asymptotically dom-
inated by the cost of the computation of π, q and w with precision P = P + logB + 7, which
takes O(M(P) logP) bit operations.

4.3.2 Invertibility of the Jacobian matrix

Newton’s method can only be applied if the Jacobian of the function we invert (here, F) is
invertible. The following proposition establishes this:

Proposition 4.4. The Jacobian of F at
(
θ2

1(z,τ)
θ2

0(z,τ) ,
θ2

1(0,τ)
θ2

0(0,τ)

)
is of the form

(
a b
0 c

)
with a, c 6= 0.

This proves that the Jacobian is invertible on a neighbourhood of
(
θ2

1(z,τ)
θ2

0(z,τ) ,
θ2

1(0,τ)
θ2

0(0,τ)

)
, e.g. on

a ball centered on this point and of radius 2−P0 for some value of P0. In practice, the value
P0 = 30000 gives invertible Jacobians for any z, τ in the compact set we consider, and is enough
to make Newton’s method converge.

Proof. We have

a = ∂F1

∂z1

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
c = ∂F2

∂z2

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
.

24

Given the expression of the function F , where only the third and fourth argument influence
the third and fourth coordinate, we have that c = ∂fτ

∂z

(
θ2

1(0,τ)
θ2

0(0,τ)

)
where fτ is the function in [6,

Section 4.2] such that fτ
(
θ2

1(0,τ)
θ2

0(0,τ)

)
= 0. We then have c 6= 0 by [6, Prop. 4.3, p. 102].

We prove a 6= 0 using the chain rule: define u : (z, τ) 7→
(
θ2

1(z,τ)
θ2

0(z,τ) ,
θ2

1(0,τ)
θ2

0(0,τ)

)
. Then (F◦u)(z, τ) =

(z, τ) and we thus have

1 = ∂(F ◦ u)1

∂z
(z, τ) = a× ∂u1

∂z
(z, τ) + ∂F

∂u2

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
× ∂u2

∂z
(z, τ)

This already proves that a 6= 0, but we can actually give a more explicit form:

a = ∂u1

∂z
(z, τ)−1

= 2θ1(z, τ)
θ0(z, τ)

(
θ1(z, τ)
θ0(z, τ)

)′
= 2θ1(z, τ)

θ3
0(z, τ) (θ′1(z, τ)θ0(z, τ)− θ′0(z, τ)θ1(z, τ))

= 2θ1(z, τ)
θ3

0(z, τ)πθ
2
2(0, τ)θ2(z, τ)θ3(z, τ) 6= 0

the last equality deriving from Formula 10 in [15, Section 23]. This finishes the proof.

4.3.3 Square root extraction

Steps 9, 16 and 14 require extracting square roots, which multiply the error by 1√
|z|

. We prove

in the next subsection that |θ00,01(0, 2iτ1)| ≥ 0.859 for i = [1 . . . s]. Hence, each extraction of
square root loses at most 4 bits: step 9 loses 4 bits, and step 16 loses 4s ≤ 4 logP bits.

Step 14 loses more bits since θ10(0, τ) is smaller; indeed, |θ10(0, τ)| ∼ |q|1/4. This means the
number of bits lost during this step is bounded by log |q|

8 = π
8 log2 e Im(τ).

4.3.4 Duplication formulas and finishing the proof of correctness

The algorithm uses both τ -duplication formulas and z-duplication formulas, and we need to
analyse how many bits are lost for each application of those formulas.

The τ -duplication formulas are nothing more than applying F to θ2
00,01(z, τ) and θ2

00,01(0, τ).
However, the analysis here is simpler than in section 3.5, because we do not need to compute
the square roots of θ00,01(z, τ), since they are directly given by step 17. Hence we just need to
account for the error of the additions, subtractions and multiplications in Equation (15); since
all the quantities are bounded, this means each step loses a constant number g of bits (our
analysis shows that g ≤ 10.48). In the end, the τ -duplication formulas account for the loss of
g × s ≤ g logP bits of precision.

As for the z-duplication formulas, we need to perform several analyses. Looking at Equa-
tion (17), one needs to evaluate the fourth power of theta functions, then add them; then evaluate
the third power of theta constants, then perform a division. Computing the error using the for-
mulas from 2.9 is rather straightforward when one has bounds on those quantities, which are
given by the following theorem:

25

Theorem 4.5. Assume Im(τ) >
√

3/2. Then

0.859 ≤ |θ00,01(0, τ)| ≤ 1.141, |θ10(0, τ)| ≤ 1.018

We also have:

• Suppose that 0 ≤ Im(z) ≤ Im(τ)
8 , as in Steps 10 and 17. Then |w|−2n ≤ enπ Im(τ)/4 and

0.8038 ≤ |θ00,01(z, τ)| ≤ 1.1962 |θ10(z, τ)| ≤ 1.228

• Suppose that 0 ≤ Im(z) ≤ Im(τ)
4 , as in Steps 20. Then |w|−2n ≤ enπ Im(τ)/2 and

0.6772 ≤ |θ00,01(z, τ)| ≤ 1.3228 |θ10(z, τ)| ≤ 1.543

Proof. The bounds on the theta-constants come from [7, p. 5], which proves |θ00,01(0, τ)− 1| ≤
2|q|

1−|q| . The techniques are the same as the proof of Lemma 3.3 or Theorem 2.6. This gives in the
first case

|θ00,01(z, τ)− 1| ≤ |q|3/4 + |q|+ |q|7/2 + |q|4 + |q|8.25 + |q|9 + |q|15

1− |q|
≤ 0.1962 since Im(τ) ≥

√
3/2

|θ10(z, τ)− q1/4(w + w−1)| ≤ q15/8

1− q3/8 ≤ 0.009

so |θ10(z, τ)| ≤ |q|1/4(|w|+ |w|−1) + 0.009 ≤ 1.228. In the second case:

|θ00,01(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3

1− |q| ≤ 0.3228

|θ10(z, τ)− q1/4(w + w−1)| ≤ |q|5/4 + |q|9/4 + ... ≤ q5/4

1− q ≤ 0.0357

Combining these bounds with formulas from Theorem 2.9 gives the following bounds:

error(θ00(2iz1, 2i+1τ1)) ≤ (20050.518 + 1818.032kθz01
+ 1966.823kθz10

+ 33516kθ0
00

)2−P

error(θ01(2iz1, 2i+1τ1)) ≤ (20050.518 + 1818.032kθz00
+ 1966.823kθz10

+ 33516kθ0
01

)2−P

which means losing at most 16 more bits of precision.
Step 19 causes the loss of a greater number of bits. We use Equation (6) instead of the third

z-duplication formula, because dividing by θ10(0, τ)2 loses less bits than dividing by θ10(0, τ)3,
and we only need the knowledge of θ2

10(2s−1z, 2sτ) for the next step anyway. This amounts to
computing:

θ2
10(z, τ) = θ2

00(z, τ)θ2
00(0, τ)− θ2

01(z, τ)θ2
01(0, τ)

θ2
10(0, τ)

Computing the numerator multiplies the error by a factor at most 60, and the norm of this
numerator is bounded by 4.557; we then get from Theorem 2.9 that the error is bounded by

m
|θ10(0,τ)|8 ∼ m|q|

−2, with m ≤ 1600. In the end, we lose at most 2π log2 e Im(τ) + 11 bits.

26

Finally, we also lose a great number of bits during the last application of the z-duplication
formulas in step 20, since the formula for θ10(z, τ) requires dividing by θ10(0, τ)3. The error is
thus multiplied by |q|−3 up to a constant factor; this means a loss of 3π log2 e Im(τ) bits, plus
a constant.

In the end, we see that the number of lost bits is bounded by (2π+ π/8 + 3π) Im(τ) log2 e+
c logP + d; given that P ≥ 25 Im(τ), and that 5.125π log2 e ≤ 23.3, the number of bits lost is
thus less than P . This means that P = 1.93P + c logP + d ≤ 2P is enough to get a result which
is accurate to absolute precision P ; this also means that we indeed never have an error k bigger
than 2(2P)/2, which is necessary to apply Theorem 2.9.

4.3.5 Proof of quadratic convergence and quasi-optimal running time

It remains to prove that the complexity is the right one. If P ≥ 25 Im(τ), log2 P > log2 Im(τ) +
4.7, which means s ≤ logP and the cost of Steps 11 to 18 is O(M(P) logP). We verify that
conditions (3) and (16) hold:

|Re(τ2)| ≤ 1/2s+2 ≤ 1/4, 0. 345 ≤
√

3
4 ≤ Im(τ2) ≤ 1,

|Re(z2)| ≤ 1/2s+3 ≤ 1/8, 0 ≤ Im(z2) ≤ Im(τ2)
4 .

This means the choices of signs are always good, and hence our result is indeed (squares of)
theta-functions and theta-constants.

We also need prove that there is a C > 1 such that, for all z2, τ2 that we consider,

θ2
01(0, τ2)
θ2

00(0, τ2) ≤ C,
θ2

10(0, τ2)
θ2

00(0, τ2) ≤ C,
θ2

01(z2, τ2)
θ2

00(z2, τ2) ≤ C,
θ2

10(z2, τ2)
θ2

00(z2, τ2) ≤ C.

This is a direct consequence of the fact that z2, τ2 are within a compact set that does not contain
any zero of θ(z, τ); hence one can write (non-zero) lower and upper bounds for any of the values
of theta. If one wants to be a bit more precise, using the same reasoning as in Theorem 4.5, we
have for

√
3/4 ≤ Im(τ) ≤ 1:

|θ00,01(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3

1− |q| ≤ 0.7859, |θ10(z, τ)| ≤ 1 + |q|1/4 + |q|5/4

1− |q| ≤ 1.958.

This gives C ≤ 83.64 and c ≥ 0.0422

1.78592 ' 1
1808 . Furthermore, with a careful analysis, one can prove

that c1 = 55 is enough in Theorem 3.10.
In any case, this proves that (λn) is quadratically convergent. We note that the fact that

z2, τ2 are within a compact shows that the constants b1, b2, b3 exist and are independent of z, τ .
This makes the running time of Step 7 only dependent in P , which was the point of the uniform
algorithm. In particular, the number of bits lost during the computation of F∞ or in F can be
written as c1 logP + c2, with c1, c2 constants independent in z, τ . Hence, the number of bits that
are lost in the whole of Step 7 is

n∑
i=1

δ + h+ log(p/2i) ≤ G logP +H

since the number n of steps in Newton’s method is O(logP).
This means the computations in step 7 should be carried out at precision P ′ = P+G logP +

H, so that the result is accurate with P bits. This gives a running time of O(M(P) logP),

27

independently of z and τ . All the other steps cost no more than O(M(P)) bit operations.
Given the formula for P in subsections 4.3.1 to 4.3.4, this indeed gives us a running time of
O(M(P) logP).

5 Implementation
An implementation using the GNU MPC library [9] for arithmetic on multiprecision complex
numbers was developed; we compared our algorithm to our own implementation of Algorithm 1
using MPC2. The code is distributed under the GNU General public license, version 3 or any
later version (GPLv3+); it is available at the address

http://www.hlabrande.fr/pubs/fastthetas.tar.gz

We compared those implementations to MAGMA’s implementation of the computation of θ(z, τ)
(function Theta). Each of those implementations computed θ(z, τ) for z = 0.123456789 + 0.123456789i
and τ = 0.23456789 + 1.23456789i at different precisions; the computations took place on a com-
puter with an Intel Core i5-4570 processor. The results are presented in Figure 1 and Table 1.

Our figures show that our algorithm outperforms Magma even for computations at relatively
low (i.e. 1000 digits) precision3, and the naive algorithm for more than 325000 digits of precision.
Hence, a combined algorithm which uses the naive method for precisions smaller than 325000
digits, and our method for larger precision, will yield the best algorithm, and outperform Magma
in all cases, as shown in Table 1.

References
[1] J. M. Borwein and P. B. Borwein. Pi and the AGM: a study in the analytic number theory

and computational complexity. Wiley-Interscience, 1987.

[2] J.-B. Bost and J.-F. Mestre. Moyenne arithmético-géométrique et périodes des courbes de
genre 1 et 2. Gaz. Math, 38:36–64, 1988.

[3] R. Cosset. Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques.
PhD thesis, Université Henri Poincaré-Nancy I, 2011.

[4] D. A. Cox. The arithmetic-geometric mean of Gauss. Enseign. Math, 30(2):275–330, 1984.

[5] J. E. Cremona and T. Thongjunthug. The complex AGM, periods of elliptic curves over
C and complex elliptic logarithms. Journal of Number Theory, 133(8):2813–2841, August
2013.

[6] R. Dupont. Moyenne arithmético-géométrique, suites de Borchardt et applications. PhD
thesis, École polytechnique, Palaiseau, 2006. http://www.lix.polytechnique.fr/Labo/
Regis.Dupont/these_soutenance.pdf.

[7] R. Dupont. Fast evaluation of modular functions using Newton iterations and the AGM.
Mathematics of Computation, 80(275):1823–1847, 2011.

[8] A. Enge. The complexity of class polynomial computation via floating point approximations.
Mathematics of Computation, 78(266):1089–1107, 2009.

2The naive algorithm which only computes θ(z, τ) is only 5% faster; furthermore since Algorithm 5 computes
all 4 values, it is fair to compare it to Algorithm 1.

3This is even though Magma only returns θ(z, τ), when our algorithm returns 4 values.

28

http://www.hlabrande.fr/pubs/fastthetas.tar.gz
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf

[9] A. Enge, M. Gastineau, P. Théveny, and P. Zimmerman. GNU MPC – A library for multi-
precision complex arithmetic with exact rounding. INRIA, September 2012. Release 1.0.1,
http://mpc.multiprecision.org/.

[10] A. Enge and E. Thomé. Computing class polynomials for abelian surfaces. Experimental
Mathematics, 23(2):129–145, 2014.

[11] H. Labrande. Absolute error in complex fixed-point arithmetic, 2015. available at
hlabrande.fr/pubs/absolutelossofprecision.pdf.

[12] W. Luther and W. Otten. Reliable computation of elliptic functions. Journal of Universal
Computer Science, 4(1):25–33, 1998.

[13] D. Mumford. Tata lectures on theta, volume I. Birkhäuser, Boston, 1983.

[14] B. Vallée. Gauss’ algorithm revisited. Journal of Algorithms, 12(4):556–572, 1991.

[15] H. Weber. Lehrbuch der algebra. Druck und verlag Fr. Vieweg & Sohn, 1921.

29

hlabrande.fr/pubs/absolutelossofprecision.pdf

Figure 1: Timing results

103 104 105 106 107

10−3

10−1

101

103

105

107

Base 10 precision

T
im

e
(s
)

Our algo (low prec=9000)
Naive
Magma

Prec (digits) This work Naive Magma
4000 0.092 0.032 0.1740
8000 0.298 0.112 0.8719
16000 0.868 0.384 4.358
32000 2.399 1.347 22.70
64000 6.778 4.598 116.4
128000 18.32 15.29 606.1
256000 45.54 41.56
325000 62.74 63.90
512000 111.78 129.8
1024000 263.7 390.3
2048000 625.4 1275
4096000 1468 3921

Table 1: Times (in s) of different methods

30

	Introduction
	The function theta, and theta-constants
	Definitions and argument reduction
	Naive algorithm to compute theta
	Partial summation of the series defining theta
	Naive algorithm
	Error analysis and complexity
	Computing theta10

	Fast computation of theta-constants

	A sequence related to theta-functions
	Definition of the F sequence
	Link with theta-functions
	More argument reduction
	Good choices of sign and thetas

	A function with quasi-optimal time evaluation
	Convergence
	Loss of precision

	Fast computation of theta
	Building our function to invert
	Computing theta(z, tau) in uniform quasi-optimal time
	Proving the correctness of the algorithm
	Naive algorithm
	Invertibility of the Jacobian matrix
	Square root extraction
	Duplication formulas and finishing the proof of correctness
	Proof of quadratic convergence and quasi-optimal running time

	Implementation

