
HAL Id: hal-01326849
https://hal.inria.fr/hal-01326849

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Complexity of Concurrent Multiset Rewriting
Marin Bertier, Matthieu Perrin, Cédric Tedeschi

To cite this version:
Marin Bertier, Matthieu Perrin, Cédric Tedeschi. On the Complexity of Concurrent Multiset Rewrit-
ing. International Journal of Foundations of Computer Science, World Scientific Publishing, 2016, 27
(1), �10.1142/S0129054116500052�. �hal-01326849�

https://hal.inria.fr/hal-01326849
https://hal.archives-ouvertes.fr

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

On the Complexity of Concurrent Multiset Rewriting

Marin Bertier

IRISA, INSA de Rennes, France

Matthieu Perrin

Université de Nantes, France

Cédric Tedeschi

IRISA, Université de Rennes, France

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

In this paper, we are interested in the runtime complexity of programs based on

multiset rewriting. The motivation behind this work is the study of the complexity
of chemistry-inspired programming models, which recently regained momentum due to

their adequacy to the programming of large autonomous systems. In these models, data

are most of the time left unstructured in a container, or more formally, a multiset. The
program to be applied to this multiset is specified as a set of conditioned rules rewriting

the multiset. At run time, these rewrite operations are applied concurrently, until no rule

can be applied anymore (the set of elements they need cannot be found in the multiset
anymore).

A limitation of these models stands in their complexity: each computation step may

require a complexity in O(nk) where n denotes the number of elements in the multiset,
and k is the size of the subset of elements needed to trigger a given rule. By analogy

with chemistry, such elements can be called reactants.
In this paper, we explore the possibility of improving the complexity of searching

reactants through a static analysis of the rules’ condition. In particular, we give a char-

acterisation of this complexity, by analogy to the subgraph isomorphism problem. Given
a rule R, we define its rank rk(R) and its calibre C(R), allowing us to exhibit an algo-
rithm with a complexity in O(nrk(R)+C(R)) for searching reactants, while showing that

rk(R) + C(R) ≤ k and that rk(R) + C(R) < k most of the time.

Keywords: Complexity; multiset rewriting; concurrency; rule-based programming

1. Introduction

With the ever-growing complexity of computing environments, building autonomic

systems, that can “manage themselves in accordance with high-level guidance from

humans” [22], is an issue getting more and more attention. In these systems, hu-

mans should only be required to write a set of high-level rules defining the system’s

behaviour. Then the system should be able to run indefinitely, adhering to these

1

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

2 Bertier, Perrin, Tedeschi

high-level, technical details-free rules, whatever the actual conditions on the under-

lying platform are.

The implementation of an autonomic system comes with several challenges that

cannot be tackled at once. A prerequisite is to distinguish the development of the

low-level machinery from the definition of adequate programming abstractions al-

lowing this high-level human guidance. The quest for such high-level abstractions led

recently to the re-emergence of rule-based programming as a promising paradigm,

for instance making it in turn possible to specify distributed systems in a declarative

manner [15]. Also, nature appears to be a great source of inspiration, biological and

chemical system being analogies worth an exploration [1, 17, 25]. Note that the au-

tonomic computing paradigm was initially proposed by analogy with the autonomic

nervous system. The chemical analogy was at the origin of the so-called chemical

programming model, a rule-based programming model enhanced with a chemically-

inspired execution model, which exhibits adequate properties to develop autonomic

systems [4, 12, 20].

Metaphorically speaking, a chemical program is envisioned as a chemical solu-

tion where molecules represent data and reactions are processes manipulating these

data and producing new data (new molecules). More formally speaking, these arti-

ficial chemistries [12] rely on concurrent multiset rewriting. Let CP = (T ,M,R) a

chemical program, where T is the set of possible types of molecules, M represents

an input multiset of molecules, each m ∈ M having a type m.T ∈ T and R is the

rule to be applied on M . R can be represented by:

replace x1 :: T1, . . . , xk :: Tk by P (x1, . . . , xk) if C(x1, . . . , xk) (1)

This rule is composed of three parts : (1) a pattern multiset x1 :: T1, . . . , xk :: Tk
of molecules needed to apply the rule, where Ti ∈ T and xi is the name of the

variable, (2) a multiset of molecules P (x1, . . . , xk) produced by the rule and (3)

the reaction’s condition C(x1, . . . , xk), which is a formula of the propositional logic,

in which literals are the application of a boolean function on the variables x1 to

xk. The previous formalisation excludes program having multiple rules. We restrict

the present study to chemical programs having only one rule. Extending this work

to multiple-rules chemical programs does not present major difficulties. The model

assumes that there is no restriction to parallelism. Whatever the number of rules of

one program is, these rules are to be applied concurrently — and in no particular

order — on the global multiset. The only theoretical limitation to this concurrency

is the property of atomic capture, which ensures that a reactant can be used in at

most one reaction. Once no reactions can be applied anymore, i.e., when no subset

of elements satisfying any of the reaction rules’ condition can be found in the global

multiset, the program is said to be inert. In this state, the solution is stable and

contains the final result of the program. let us review a basic chemical program, for

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 3

the sake of illustrationa:

replace x :: int, y :: int by x if x ≥ y in 〈8, 5, 3, 9, 2, 2〉

The rule consumes any two integers x, y with x ≥ y and produces a new integer

which takes the value of x. The input multiset is 〈8, 5, 3, 9, 2, 2〉. Initially, several

reactions are possible: the rule can be applied to any couple of integers satisfying

the condition: 2 and 3, 2 and 5, 8 and 9, etc. One scenario among the set of possible

scenarios is:

〈8, 5, 3, 9, 2, 2〉 →∗ 〈3, 5, 9〉 →∗ 〈9〉

where →∗ models the application of the rule several times. Merely looking at these

two execution steps is not enough to infer what pairs of numbers reacted together.

Recall that the only needed constraint is the atomic capture, which states that one

molecule can react at most once. A molecule is always consumed in a reaction.

As a corollary, when x, y is replaced by x, the two x variables actually being two

different molecules, the first one being consumed in the reaction, the second one

being created in it. In other words, no molecule can survive a reaction.

While this model is envisioned as a promising way to specify autonomic systems,

one of the main barrier towards its actual adoption is related to its execution com-

plexity : each computation step (i.e., the application of one rewrite rule) assumes

that some reactants satisfying the rule’s condition are found in the multiset. Let

us assume the number of objects in the multiset is n, and the arity of the rule,

(i.e., the number of reactants needed for its application) is k. Then, in the worst

case, an exhaustive exploration of all possible combinations of k molecules among

n is needed, and the complexity involved is in O(nk) (assuming n � k), which is,

when k increases, a problem. One question left largely open about the model is the

possibility to improve the time of reactants search.

Contribution. In this paper, we explore the possibility of improving the complexity

of searching reactants through a static analysis of the reaction condition. In par-

ticular, we give a characterisation of this complexity, by analogy to the subgraph

isomorphism problem. Given a rule R, we define the rank rk(R) and the calibre

C(R), allowing us to exhibit an algorithm with a complexity in O(nrk(R)+C(R)) for

searching reactants, while showing that rk(R)+C(R) ≤ k, and that rk(R)+C(R) < k

most of the time.

Organisation of the paper. The article is organised as follows. Section 2 introduces

the problem and devises a model for it. In Section 3, a characterisation of the

complexity, by analogy with the subgraph isomorphism problem, is given. Then, we

describe the PMJA (Purification of the Minimal Juncture Assignment) algorithm

aThe following rule is written under the HOCL [3] formalism, a language following the chemical
model.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

4 Bertier, Perrin, Tedeschi

putting this result into practice. We discuss its complexity. Section 4 presents some

related works. Section 5 concludes and gives some hints for future works.

2. Model

The problem to be solved is the search for elements in a multiset satisfying a rule’s

condition. The algorithm to be designed takes two input parameters, namely, a

chemical rule R, as described by Expression 1 in Section 1, and a multiset M

composed of n molecules. It returns:

• a tuple (m1, . . . ,mk) of molecules in M , where mi is of type Ti for all i and

C(m1, . . . ,mk) is true, if such a tuple exists in M ,

• ⊥ otherwise.

2.1. Modeling of the rule’s condition

Notice first that the case where the condition is absent is simple to solve, since it is

only necessary to compare the number of available molecules for each type to the

number of molecules required. In the existing approaches (reviewed in Section 4),

the condition is viewed as a black boxb, which imposes to test all possible combi-

nations of molecules. Nevertheless, some optimisation can be done at compile time

by studying the reaction’s condition.

As for any propositional formula, a reaction condition can be put in disjunctive

normal formc:

C(x1, . . . , xn) =

L∨
i=1

li∧
j=1

fij(Xij)

where, for all i and j, Xi,j is a subset of variables of R. Since molecules

m1, . . . ,mk verify C1(x1, . . . , xk) ∨ C2(x1, . . . , xk) if and only if they verify ei-

ther C1(x1, . . . , xk) or C2(x1, . . . , xk), the various terms of the disjunction can be

searched separately. We can consequently replace R by L equivalent rules {Ri}
whom condition is one of the L terms of the disjunction, i.e., a conjunction of

boolean functions applied to a subset of variables, like the one shown in Equation

2:

Ri = replace x1, . . . , xk by P (x1, . . . ,k) if f1(X1) ∧ · · · ∧ fl(Xl). (2)

While the number L of such formulae/rules thus generated is potentially expo-

nential over k, it only depends on the initial rule, and not on the size of the multiset.

Moreover, as the inertia is detected if and only if no reactants can be found for every

rule, the searching of molecules for different rules is independent, and each rule can

be processed in parallel to the others.

bThe computation time of this black box is supposed to be finite.
cNote that the type of a molecule can be seen as an individual condition on this molecule.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 5

Fig. 1. The rule replace x, y, z, t by P (x, y, z, t) if f(z, y) ∧ g(x, z) ∧ h(x, t) ∧ i(y, t) ∧
j(z, t) has an arity 4 and a rank 2 and can be represented as a graph (left). The rule

replace x, y, z, t by P (x, y, z, t) if f(x, y, z) ∧ g(x, y, t) ∧ h(x, z, t) ∧ i(y, z, t) has an arity 4 and a
rank 3 and must be represented as a hyper-graph (right).

We now introduce some accessors to the elements of a rule R like the one given

in Expression 2:

• var(R) = {x1, . . . , xk} denotes the set of its variables. |var(R)| is called the

arity of R.

• pred(R) =
⋃l
i=1 {(fi, Xi)} denotes the set of predicates to be tested on

var(R). Each predicate p = (f,X), associated with a literal in the condition,

has a function func(p) = f and arguments arg(p) = X ⊆ var(R).

Definition 1 (rank of a rule) The rank of a rule R, denoted by rk(R), is the

greatest arity of its predicates: rk(R) = maxp∈pred(R) |arg(p)|.

A rule can be represented as a hyper-graph, in which the vertices are the variables

and the hyper-edges are the predicates, as illustrated in Figure 1. Note that most

of the problems encountered in the literature on artificial chemistries are solved by

rules with a rank of 1, 2 or 3, as their predicates mostly involve comparisons of

pairs of variables [12]. When the rank is 2, the representation is a simple graph (as

the one on the left in Figure 1).

2.2. Structuring of the multiset

The previous section focused on defining the rules. We now devise a model for the

multiset of molecules, and how to structure it according to the rule processed. The

central definition in the following is the axiom. It can be seen as an instantiated

predicate. In other words, it is a predicate for which an actual molecule has been

found for each of its variables so as to make the predicate true. Note that, as reflected

by the chosen term axiom, it can be seen as a minimal set of truth in regards to

the rule’s condition.

Definition 2 (axiom) Let p = (f,X) be a predicate. An axiom is a pair (p,m)

where m is a function that associates a molecule to each variable of p, such that

f(m(x1), . . . ,m(xn)) is true.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

6 Bertier, Perrin, Tedeschi

We extend to axioms, the notations previously defined for predicates. Let an

axiom a = (p,m). Then, func(a) = func(p) and arg(a) = arg(p), pred(a) = p,

a[x] = m(x) for all x ∈ arg(p), mols(a) = {a[x] : x ∈ arg(p)}. We finally extend

these notations to sets of axioms: let A be a set of axioms. The set of molecules of

A is:

mols(A) =
⋃
a∈A

mols(a)

Given a rule R and a set of molecules M , we can define the set of all the axioms

that can be constructed.

Definition 3 (set of axioms induced) For a solution M and a rule R, we define

the set of axioms induced by R in M as the set of axioms composed of a predicate

of R and of molecules of M :

A(R,M) = {a : pred(a) ∈ pred(R) ∧ ∀x ∈ arg(a), a[x] ∈M} (3)

The goal is to associate each variable with a molecule such that this molecule is

used in at least one axiom corresponding to each predicate of the rule. In this case,

the variable is said satisfied.

Definition 4 (satisfaction of a variable) Let x ∈ var(R), A be a set of axioms

and m ∈ mols(A). The molecule m is said to satisfy x in A, denoted m |=A x, if

for every predicate of the rule pertaining x, we can find at least one axiom in A in

which x is associated with m:

∀p ∈ pred(R), x ∈ arg(p)⇒ (∃a ∈ A,pred(a) = p ∧ a[x] = m). (4)

We are interested in finding sets of axioms leading to a possible reaction. A set

of axioms specifies a possible reaction if there is a one-to-one relation between its

variables and its molecules. Let us characterise sets of axioms so as to be able to

define the subsets of axioms that can actually lead to a reaction.

• A set of axioms is refined if ∀m ∈ mols(A), |{x ∈ var(R) : m |=A x}| ≥ 1

• A set of axioms is exclusive if ∀m ∈ mols(A), |{x ∈ var(R) : m |=A x}| ≤ 1

Ensuring exclusivity can be done by adding inequality constraints in the rule so

the same molecule cannot satisfy several variablesd. From now on, we assume all

sets of axioms are exclusive.

In a both refined and exclusive set of axioms, all molecules are assigned to one

and only one variable. This does not mean that it specifies a possible reactions, as

some variables may not be satisfied in it. Let us define sets of axioms that can lead

to reactions:

• A set of axioms is reactive if ∀x ∈ var(R), |{m ∈ mols(A) : m |=A x}| ≥ 1

dNote that exclusivity is preserved by all the operations used in the following.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 7

• A set of axioms is purified if ∀x ∈ var(R), |{m ∈ mols(A) : m |=A x}| ≤ 1

In other words, a reactive set of axioms contains at least one subset of axioms

that specifies a reaction. Extracting one of them can be done by purifying it.

The algorithm presented later in this paper consists in taking the set of axioms

induced and trying to assign molecules to variables so as to refine it, and then test

the reactivity of such an assignment :

Definition 5 (assignment) Let A be a set of axioms, x1, . . . , xp ∈ var(R) and

m1, . . . ,mp ∈ mols(A). An assignment of m1, . . . ,mp to x1, . . . , xp, denoted A′ =

A[x1 := m1, . . . , xp := mp], is the largest (in the sense of inclusion) refined subset

of A verifying ∀i ≤ p,∀m,m |=A′ xi ⇒ m = mi.

Algorithmically speaking, and as detailed in Section 3, given a set A of axioms

induced, an assignment of A is obtained by removing all the molecules and axioms

from A that cannot be in any refined subset of A, given the set of molecules cho-

sen Mchosen for the subset Vassigned of variables assigned. Firstly it means, given

Vassigned, remove all the axioms corresponding to predicates containing variables

in Vassigned but built using molecules not in Mchosen. Secondly, it means remove

all molecules consequently not used anymore, and the axioms in which they were,

making in turn other molecules unused. This refinement is repeated until no more

refinement is needed.

2.3. NP-hardness and the subgraph isomorphism problem

The reactants searching can be reduced to the subgraph isomorphism problem. In

regard to the hyper-graph of the rules, a set of axioms can be modeled by a similar

hyper-graph of molecules, where the vertices are the molecules contained in the set

and each vertex corresponds to an axiom that links its arguments and is labelled by

its predicate. Under this formalism, a purified reactive assignment is a sub-hyper-

graph of the hyper-graph of molecules that is isomorphic to the hyper-graph of the

rule, with respect to the labels of the edges.

The subgraph isomorphism problem is known to be NP-complete, as it contains

the detection of a clique. This property gives clues on the intrinsic complexity of the

reactants searching problem. Let G = (V,E) be a graph. The chemical program with

M = V and R = replace x1, . . . , xk by P (x1, . . . , xk) if
∧k−1
i=1

∧k
j=i+1(xi, xj) ∈ E

can evolve if and only if G contains a clique. This shows that the reactants searching

problem is NP-hard, depending on its arity k. It is actually NP-complete under

the assumption that the evaluation of reaction conditions terminates (in a time

necessarily independent of both n and k) as doing all tests between molecules non-

deterministically can solve it in a polynomial time.

The rule used to show the NP-hardness of the reactants searching problem has

a rank of 2, and its graph is a clique. In other words, it can be considered as a

complicated rule since its reaction condition has as many literals as there are pairs

of variables. We should therefore find a way to characterize the complexity of a rule.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

8 Bertier, Perrin, Tedeschi

This is what we do in the next section, which provides a study of the calibre of a

rule, and an algorithm solving the reactants searching problem, based on it.

3. Calibre and the PMJA Algorithm

In this section, we present a more efficient algorithm for the reactants searching

problem, based on a characterization of the complexity of a rule, using the notion

of calibre of the rule. Then, we present the PMJA algorithm, which levers this

characterisation to allow for a better complexity than the basic O(nk) case, most

of the time. For brevity, we do not exhibit the complete proofs of properties and

theorems in the following. Please refer to the research report [7] for the details.

3.1. Calibre of a rule

Determining the calibre of a rule relies on determining its minimal juncture:

Definition 6 (juncture of a rule) Assuming the variables of a rule are com-

pletely sorted by an order l, we define the juncture of R for the order l, denoted

Jl(R), as the set of variables which are not the smallest in several of their predi-

cates:

Jl(R) = {x ∈ var(R) : |{p ∈ pred(R) : ∃y l x, {x, y} ⊂ arg(p)}| ≥ 2} . (5)

Definition 7 (calibre of a rule) The calibre of a rule is the size of its smallest

juncture considering all possible orders:

C(R) = min
l
|Jl(R)|. (6)

A juncture Jl(R) such that |Jl(R)| = C(R) is said to be minimal.

Let us illustrate the two previous definitions. As rules with a rank of 2 represent

most of rules found in chemical programs in practice, we will discuss the calibre of

some of these rules, by having a look at their corresponding graph:

• The calibre of a rule having a tree shape is 0. By definition, each node of

a tree has a single parent except the root which is an orphan. Therefore,

following the topological order, we find no node in the potential juncture.

• The calibre of a rule having a cycle shape is one. On one hand, regardless

of the order chosen, the greatest element has necessarily two smaller neigh-

bours: its predecessor and its successor in the cycle, making the calibre is

at least equal to 1. On the other hand, for an order that follows the cycle,

all the other elements have 0 or 1 parent, so the calibre is at most 1.

• As illustrated in Figure 2, other examples of graphs include the bridge and

the eight, whose calibre is 1, as well as the lattice, whose calibre is 2.

Let us compare the calibre of a rule to its arity. As detailed later in Section 3.2,

the complexity of our algorithm depends on C(R) + rk(R). It is possible to group

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 9

2

↗ ↘
1 2 5 1 5

↙ ↘ ↗ ↘ ↙ ↖ ↙ ↘ ↙ ↘
2 ↓ 3 1 7 4 3 8 6

↘ ↙ ↘ ↗ ↖ ↙ ↘ ↗ ↘ ↙
4 3 6 4 9

↘ ↗
7

Fig. 2. The bridge, the height and the lattice with their minimal juncture.

predicates: it is equivalent to search for reactants x and y that verify both f(x, y)

and g(x, y) or only (f ∧ g)(x, y). This grouping may have an effect on both C(R)

and rk(R). A direct remark is that, if we group all the predicates, we have rk(R) =

|var(R)| and C(R) = 0, so it is always possible to find a grouping such that

C(R) + rk(R) ≤ |var(R)|. (7)

The case of rules of rank 2 requires no particular grouping.

Theorem 8 (upper bound on the calibre of a rule with a rank of 2) Let

R be a rule of rank 2. The following inequality is verified, with equality if and

only if the graph of R is a clique.

C(R) + 2 ≤ |var(R)|. (8)

Proof. The inequality is due to the fact that regardless the order chosen, the two

smallest variables have at most one smaller neighbor, so they cannot be part of any

juncture. However, if the graph is a clique, all other variables have at least these two

nodes as smaller neighbours, so they are in the juncture, whatever order is chosen.

Conversely, if the graph of R is not a clique, then there exists x and y that

are not connected. Let R′ be a rule with the same variables as R and a predicate

connecting all pairs of variables, except (x, y). Firstly, let us remark that C(R) ≤
C(R′). Secondly, let z be a variable different from x and y, and l an order in which

the three largest items are z l x l y in that order. Then, Jl(R′) = k − 3, so

C(R) ≤ C(R′) ≤ k − 3.

Theorem 9 (purification of the juncture’s assignment) Let R be a rule of

arity k whose variables are ordered by l with {x1, . . . , xc} = Jl(R). Let A be a

set of axioms. For all m1, . . . ,mc ∈ mols(A), Ac = A[x1 := m1, . . . , xc := mc] is

reactive if and only if there are mc+1, . . . ,mk ∈ mols(A) such that Ak = A[x1 :=

m1, . . . , xn := mk] is reactive and purified.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

10 Bertier, Perrin, Tedeschi

Proof. If Ak is reactive, given that Ak ⊂ Ac, we have:

∀x ∈ Jl(R), |{m ∈ Ac : m |= x}| ≥ |{m ∈ Ak : m |= x}| ≥ 1

so clearly Ac is reactive too.

Conversely, suppose Ac is reactive. The goal is to show that Ac can get purified

by choosing one and only one molecule for every variable. This can be done by

choosing one molecule for each variable, one by one, following the order l. When

choosing a molecule for xi, three cases can occur, depending on the number of

predicates containing xi and a smaller variable xj :

(1) if xi has no smaller neighbour, since Ac is reactive, there exists at least one

molecule mi |=Ac xi. We can choose any one of them.

(2) if there is one (and only one) such predicate p, since Ac is reactive, there is at

least one axiom a such that pred(a) = p in Ac. Then, one can choose mi = a[xi].

(3) otherwise, xi ∈ Jl(R), so xi is already assigned in Ac. Since the assignment is

reactive, there exists mi ∈ mols(Ac) that is suitable with all the already chosen

variables.

3.2. The PMJA algorithm

In this section, we present the PMJA (Purification of the Minimal Juncture As-

signment) algorithm that solves the reactants searching problem. Algorithm 1

shows the global PMJA algorithm for a rule R, with an arity k and a juncture

Jl(R) = {x1, . . . , xc}.
It takes as argument a set of axioms A of type AxiomSet organised like a

graph when the rank is 2. A gives access to all the molecules used in these axioms,

sorted by the variables they satisfy. Each molecule gives in turn access to a set of

references to the axioms in which it is an argument, sorted by predicate. In terms

of implementation, an AxiomSet could be implemented through a structure having:

1) a hash table of molecules, where a molecule is retrieved using the variable it

satisfies as the key, 2) a hash table of the axioms these molecules satisfy retrieved

using the predicate they implement as a key, 3) cross-references from molecules to

axioms, andfrom variables to predicates.

According to this structuring, the physical size of the AxiomSet A for a rule

R and a set of molecules M , is in O(|A(R,M)| + |mols(A(R,M))|), and getting

predicates and molecules from variables as well as getting axioms from molecules can

be done in constant time, apart from cloning the structure itself which is necessarily

linear in the size of A. By convention, the indices of an array tab[] vary between 1

and tab.size.

The algorithm is based on Theorem 9, that suggests to test the reactivity of all

the possible assignments of a juncture to detect inertia. Consequently, it is composed

of a main loop, which is executed once for every tuple of molecules (m1, . . . ,mc)

that may be used to build an assignment of Jl(R). More precisely, as can be seen

in Algorithm 1, the loop is composed of two main parts:

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 11

Algorithm 1: Reactants searching for R with var(R) = {x1, . . . , xk} and

Jl(R) = {x1, . . . , xc}.
1 Molecule[] : findReactants(AxiomSet A) :

2 forall m1 |= x1, . . . ,mc |= xc do

// mi variables are global

3 AxiomSet A′ ← A.clone();

4 buildAssignment(A′);

5 if ¬(refineAndTestReactivity(A’)) then

6 continue

7 return(purify(A’));

Algorithm 2: Assignment building given an AxiomSet.

1 AxiomSet : buildAssignment(AxiomSet A) :

// A is passed by reference

2 for i← 1 to c do

3 forall Molecule m ∈ A.molecules(i) s.t. m 6= mi do

4 m.removed← true;

5 forall Axiom a ∈ m.axioms(∗) do

6 a.removed← true;

(1) In the first part of the loop (Lines 3-5), the assignment A′ = A[x1 ←
m1, . . . , xc ← mc] is computed. If it is not reactive, it is dropped. The as-

signment is computed by a successive elimination of molecules, through two

steps:

(a) First, through the use of the buildAssignment() function, the assignment is

built from the AxiomSet. As detailed in Algorithm 2, this function takes

the cloned AxiomSet by reference, and removes all molecules that were not

chosen from it. Subsequently, all axioms the removed molecule were in are

removed on their turn.

(b) Secondly, through the use of the refineAndTestReactivity() function detailed

in Algorithm 3, the build assignment, still stored in the same AxiomSet vari-

able is refined by removing all the molecules that cannot be in any refined

subset of A′. It is done by repeatedly removing molecules that are not a mem-

ber of any axiom left after removals made in the buildAssignment() function.

When molecules are removed, all the axioms they took part in are also re-

moved, making it potentially possible to remove other molecules, and so on,

until either we cannot find any more non-used molecule or some variable

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

12 Bertier, Perrin, Tedeschi

Algorithm 3: Refining and testing the reactivity of an AxiomSet.

1 Boolean : refineAndTestReactivity(AxiomSet A) :

// A is passed by reference

2 Boolean reactive, changed;

3 repeat

4 changed← false;

5 for i← 1 to k do

6 reactive← false;

7 forall Molecule m ∈ A.molecules(i) s.t. ¬m.removed do

8 reactive← true;

9 forall Predicate p ∈ xi.predicates() do

10 Axiom at[]← m.axioms(p);

11 while m.first(p) ≤ at.size ∧ at[m.first(p)].removed do

12 m.incrementFirst(p);

13 if m.first(p) > at.size then // m.axioms(p) is empty

14 changed← true; m.removed← true;

15 forall Axiom a ∈ m.axioms(∗) do

16 a.removed← true;

17 if ¬reactive then break;

18 until ¬reactive ∨ ¬changed;

19 return(reactive)

cannot get satisfied anymore.e Remind that the axiomSet passed as a pa-

rameter to both buildAssignment() and refineAndTestReactivity() is passed

by reference. In addition to refining the AxiomSet, the refineAndTestReac-

tivity() function finally returns true if the refined AxiomSet is reactive, false

otherwise.

(2) The second part in Algorithm 1 starts after the refinement in case the refine-

AndTestReactivity() function returned true, as if all molecules are still satisfied,

according to Theorem 9, this assignment of the juncture can be purified so as

to make a reaction. The purify() function achieves this purification and returns

a set of molecules that can react. This set is finally returned by the global

algorithm.

If no assignment of the juncture is reactive, the solution is inert and the algo-

rithm returns ⊥. From these observations, it can be inferred that the algorithm

eFor each molecule m and predicate p for which m can be an argument, we keep an index on the
first non-removed axiom corresponding for p and containing m, m.first(p) initialised to 1, in order

to check efficiently if a molecule must be removed.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 13

Algorithm 4: Purifying a reactive AxiomSet.

1 Molecule [] : purify(AxiomSet A) :

2 Molecule M [k];

3 for i← 1 to k do // xσ(1) l · · ·l xσ(k)
4 switch

{
p ∈ pred(R) : ∃xσ(j) l xσ(i), {xσ(i), xσ(j)} ⊂ arg(p)

}
do

5 case ∅ : // choose any

6 forall Molecule m ∈ A.molecules(σ(i)) do

7 if ¬m.removed then M [i]← m; break;

8 break;

9 case {p} : // xσ(i) m xσ(j) ∈ arg(p)

10 M [i]←M [j].axioms(p)[M [j].first(p)].get(xi); break;

11 otherwise // xσ(i) ∈ Jl(R)

12 M [i]← mi;

13 return M ;

correctly returns a reactive purified assignment if there is one, and ⊥ otherwise.

Proposition 10 (Time complexity) In the worst case, the time complexity of

Algorithm 1 is T (R,A) = O
(
|mols(A)|C(R)+rk(R)

)
.

Proof.

If the solution is inert, which is the worst case, there are
∏
x∈Jl(R) |{m |= x}|

executions of the main loop. We will show that the complexity of one iteration of

the main loop is proportional to the size of the axiom set.

• In the buildAssignment() function, where the molecules that do not match the

choice are removed, each axiom is considered at most once for each argument,

leading to a complexity in rk(R)× |A|f .
• The complexity of the refineAndTestReactivity() function is defined by the com-

plexity of its two inner loops. On Line 11 of Algorithm 3, the field m.first(p)

can only grow, so each axiom is checked only once for each molecule in its ar-

guments. In the loop of Line 15, an axiom can only be removed once for each

argument.

• The complexity of the purify() function is only |var(R)| � |A|.

The complexity of the main loop does not exceed rk(R) × |A| and is executed

fHere, |A| is to be interpreted as the number of axioms, not the size of the AxiomSet structure.

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

14 Bertier, Perrin, Tedeschi∏
x∈Jl(R) |{m |= x}| times, so the complexity of the whole algorithm is

O

rk(R)× |A| ×
∏

x∈Jl(R)

|{m |= x}|

 .

We can simplify the writing. Since |{m |= x}| ≤ |mols(A)|, we have:∏
x∈Jl(R)

|{m |= x}| ≤ |mols(A)||Jl(R)|

and

|A| ≤
(
|mols(A)|

rk(R)

)
≤ |mols(A)|rk(R)

rk(R)!

Finally,

rk(R)× |A| ×
∏

x∈Jl(R)

|{m |= x}| ≤ 1

(rk(R)− 1)!
|mols(A)|C(R)+rk(R)

and the complexity of the algorithm is in O
(
|mols(A)|C(R)+rk(R)

)
.

We have seen that it was possible to find an R such that C(R)+rk(R) ≤ |var(R)|.
This establishes that the proposed algorithm has a complexity which is either similar

or better than O(nk). Note that in practice, we have actually C(R) + rk(R) <

|var(R)| most of the time. Note also that this gain can be evaluated at compile time

(it depends on the rank and the calibre of a rule, both obtained by static analysis

of the rule, matter of Section 2).

4. Related Work

4.1. Reactants searching problem

To our knowledge, the problem of searching molecules to implement the chemical

model as a computing paradigm, has only been addressed through exhaustive search,

in particular in distributed settings, as studied in works like [14] in a shared memory

architecture, or more recently, in the architectural framework in [21].

Artificial chemistries [12] have emerged primarily to provide computing models

exhibiting interesting computational powers and artificial life models, for which the

main objective is to show the match between the model and real settings.

The area of membrane computing [23], which devises a computing model based

on the analogy of a set of possibly nested cells, is very similar to the chemical model

when sub-solutions are allowed. The problems addressed in this area are closer to

those of organic computing in general. Membrane computing consists mainly in de-

vising models exhibiting interesting computational powers. As stated in [23], the

problem of mapping such a model onto real computers is an open problem, would

it be in silico or using real organic systems. Consequently, researches pursued in

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 15

this area did not actually tackle the problem. Nevertheless, interesting links be-

tween membrane systems and distributed computing are discussed in [9], specifically

about how distributed algorithms can help implement P-Systems. Still, the prob-

lem of searching reactants is not addressed in [9], which focuses on classic issues in

distributed systems such as mutual exclusion, and on how existing solutions to this

problem can be adapted to the context of membranes. A similar problem, namely

the allocation of multiple molecules in distributed settings, has been addressed in [6].

The present work is relevant for computing models based on multiset processing

allowing to have complex conditions on rules. In literature, models with conditions,

such as [2, 3, 10, 16] and models without conditions, such as [5, 23] have been pro-

posed.

4.2. Subgraph isomorphism problem

The subgraph isomorphism problem has been well documented [11] since the first al-

gorithm proposed by Ullman in 1976 [24], which was based on backtracking. In [19],

a decision tree is built, allowing the search for isomorphic subgraphs in polynomial

time, after a pre-treatment in exponential time. This work cannot be applied in our

case, as the pre-treatment would have to be made on the graph of the molecules,

which constantly changes depending on the reactions arising in the computation.

As shown in [18], it is possible to reformulate the subgraph isomorphism problem

as a Constraint Search Problem (CSP). The distributed version of CSP, disCSP [8],

is very close to the reactants searching problem. The disCSP problem is generally

treated through an exhaustive exploration of the nodes of the network [13, 27],

possibly with an optimisation using back-tracking [26].

5. Conclusion and Future Work

In this paper, we have shown that, through a static analysis of the reaction con-

ditions, concurrent multiset rewriting using a rule of arity k can be solved in a

time bounded by nrk(R)+C(R), with rk(R) + C(R) ≤ k, and we exhibited the PMJA

algorithm for this. For rules of rank 2, we were able to characterise the case of equal-

ity. An interesting point is that we are able to estimate the execution complexity at

compile time, which makes it possible to provide the programmer with optimisation

recommendations.

This work needs continuation at several levels. Firstly, there is a need to deal

with compilation. So far we have only presented the effective search of molecules

knowing the graph of the rule. We used arguments from logics to express that

compilation was indeed possible. It would be interesting to find efficient algorithms,

in particular to choose an optimal order of the variables in the rule. Choosing an

order for which the juncture is minimal can be done once, at compile time, while

providing guarantees on the complexity of the algorithm. However, the algorithm

is flexible and works regardless of the juncture. The complexity could be further

reduced by a finer choice of the order, with respect to the quantity of molecules for

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

16 Bertier, Perrin, Tedeschi

each variable. (Among several minimal junctures, prefer those for which the number

of actual molecules is minimised.)

Secondly, going further in the analysis of the reaction conditions could improve

these results. For example, many literals are of the form f(x)◦g(y) where x and y are

variables, f and g are functions to the same set E and ◦ is an order or equivalence

relation on E. In this case, the search can be improved, for example through the

sorting of the values of f(m) and g(n) for the suitable molecules m and n.

Finally, a planned work is the extension of this study to some practical aspects

of the chemical programming model, including the possibility to have multiple rules

in the solution, sub-solutions, and the higher order, that changes the behaviour of

the program at run time.

References

[1] Ö. Babaoglu, G. Canright, A. Deutsch, G. D. Caro, F. Ducatelle, L. M. Gambardella,
N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor and T. Urnes, Design patterns
from biology for distributed computing, TAAS 1(1) (2006) 26–66.

[2] J.-P. Banâtre, P. Fradet and Y. Radenac, Principles of Chemical Programming, Elec-
tronic Notes in Theoretical Computer Science 124(1) (2005) 133 – 147, Proceedings
of the 5th International Workshop on Rule-Based Programming (RULE 2004) Rule-
Based Programming 2004.

[3] J.-P. Banâtre, P. Fradet and Y. Radenac, Generalised multisets for chemical pro-
gramming, Mathematical. Structures in Comp. Sci. 16 (August 2006) 557–580.

[4] J.-P. Banâtre, Y. Radenac and P. Fradet, Chemical specification of autonomic sys-
tems, ISCA 13th International Conference on Intelligent and Adaptive Systems and
Software Engineering , Nice, France (2004), pp. 72–79.

[5] G. Berry and G. Boudol, The chemical abstract machine, Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’90, (ACM, New York, NY, USA, 1990), pp. 81–94.

[6] M. Bertier, M. Obrovac and C. Tedeschi, Adaptive atomic capture of multiple
molecules, J. Parallel Distrib. Comput. 73(9) (2013) 1251–1266.

[7] M. Bertier, M. Perrin and C. Tedeschi, On the Complexity of Concurrent Multiset
Rewriting, Research Report RR-8408 (December 2013).

[8] I. Brito, Synchronous, asynchronous and hybrid algorithms for discsp, Principles and
Practice of Constraint Programming (CP 2004), ed. M. Wallace, Lecture Notes in
Computer Science 3258 (Springer Berlin Heidelberg, 2004), pp. 791–791.

[9] G. Ciobanu, R. Desai and A. Kumar, Membrane systems and distributed computing,
International Workshop on Membrane Computing 2002 , (2002), pp. 187–202.

[10] D. Cohen and J. M. Filho, Introducing a calculus for higher-order multiset program-
ming, Proceedings of the First International Conference on Coordination Languages
and Models, COORDINATION ’96, (Springer-Verlag, London, UK, UK, 1996), pp.
124–141.

[11] D. Conte, P. Foggia, C. Sansone and M. Vento, Thirty years of graph matching,
International Journal of Pattern Recognition and Artificial Intelligence 18(3) (2004)
265–298.

[12] P. Dittrich, J. Ziegler and W. Banzhaf, Artificial chemistries – a Review, Artificial
Life 7 (June 2001) 225–275.

[13] A. Doniec, S. Piechowiak and R. Mandiau, A discsp solving algorithm based on ses-

June 23, 2015 17:54 WSPC/INSTRUCTION FILE IJFCS

On the Complexity of Concurrent Multiset Rewriting 17

sions., 18th International Florida Artificial Intelligence Research Society Conference
(FLAIRS), eds. I. Russell and Z. Markov (AAAI Press, 2005), pp. 666–670.

[14] K. Gladitz and H. Kuchen, Shared Memory Implementation of the Gamma-
Operation, J. Symb. Comput. 21(4) (1996) 577–591.

[15] S. Grumbach and F. Wang, Netlog, a rule-based language for distributed program-
ming, PADL, eds. M. Carro and R. Peña Lecture Notes in Computer Science 5937,
(Springer, 2010), pp. 88–103.

[16] C. Hankin, D. L. Métayer and D. Sands, A Parallel Programming Style and Its
Algebra of Programs, Proceedings of the 5th International PARLE Conference on
Parallel Architectures and Languages Europe, PARLE ’93, (Springer-Verlag, London,
UK, 1993), pp. 367–378.

[17] S. Hariri and M. Parashar, Handbook of Bioinspired Algorithms and Applications
(CRC Press LLC, 2005), ch. The Foundations of Autonomic Computing.

[18] J. Larrosa and G. Valiente, Constraint satisfaction algorithms for graph pattern
matching, Mathematical. Structures in Comp. Sci. 12 (August 2002) 403–422.

[19] B. T. Messmer and H. Bunke, Subgraph isomorphism in polynomial time, tech. rep.,
Institut fur Informatik und angewandte Mathematik, University of Bern, Switzerland
(1995).

[20] A. Mostéfaoui, Towards a computing model for open distributed systems, PaCT ,
ed. V. E. Malyshkin Lecture Notes in Computer Science 4671, (Springer, 2007), pp.
74–79.

[21] M. Obrovac and C. Tedeschi, Distributed chemical computing: A feasibility study,
International Journal of Unconventional Computing 9(3-4) (2013) 203–236.

[22] M. Parashar and S. Hariri, Autonomic Computing: An Overview, International
Workshop on Unconventional Programming Paradigms (UPP 2004), LNCS 3566,
(Springer, Le Mont Saint-Michel, France, 2005), pp. 257–269.

[23] G. Paun, G. Rozenberg and A. Salomaa, The Oxford Handbook of Membrane Com-
puting (Oxford University Press, Inc., New York, NY, USA, 2010).

[24] J. R. Ullmann, An algorithm for subgraph isomorphism, J. ACM 23 (January 1976)
31–42.

[25] M. Viroli and F. Zambonelli, A biochemical approach to adaptive service ecosystems,
Inf. Sci. 180(10) (2010) 1876–1892.

[26] R. Zivan and A. Meisels, Parallel backtrack search on discsp, Workshop on Distributed
Constraint Reasoning (DCR-02), Bologna, Italy (2002).

[27] R. Zivan and A. Meisels, Message delay and discsp search algorithms, Annals of
Mathematics and Artificial Intelligence 46 (April 2006) 415–439.

