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Abstract

Facing the scale, heterogeneity and dynamics of the global computing plat-
form emerging on top of the Internet, autonomic computing has been raised
recently as one of the top challenges of computer science research. Such a
paradigm calls for alternative programming abstractions, able to express au-
tonomic behaviours. In this quest, nature-inspired analogies regained a lot of
interest. More specifically, the chemical programming paradigm, which envi-
sions a program’s execution as a succession of reactions between molecules rep-
resenting data to produce a result, has been shown to provide some adequate
abstractions for the high-level specification of autonomic systems.

However, conceiving a runtime able to run such a model over large-scale
platforms raises several problems, hindering this paradigm to be actually lever-
aged. Among them, the atomic capture of multiple molecules participating in
concurrent reactions is one of the most significant.

In this paper, we propose a protocol for the atomic capture of these molecules
distributed and evolving over a large-scale platform. As the density of potential
reactions has a significant impact on the liveness and efficiency of such a capture,
the protocol proposed is made up of two sub-protocols, each of them aimed at
addressing different levels of densities of potential reactions in the solution.
While the decision to choose one or the other is local to each node participating
in a program’s execution, a global coherent behaviour is obtained. We also give
an overview of the course of execution when a program contains multiple rules
and provide a rule-changing mechanism. The proof of correctness, as well as
intensive simulation results showing the efficiency and limited overhead of the
protocol are given.
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1. Introduction

The amount of computing technologies surrounding us seems to grow every-
day. These technologies provide applications, or services, that cover a growing
part of our life. The underlying infrastructures (e.g., the Internet) make it pos-
sible to aggregate a virtually infinitely large set of these independent computing
devices. Due to its scale and its highly dynamic and heterogeneous nature,
leveraging the capabilities of such a platform is a quite tedious experience.

Enhancing these omnipresent computing systems around us with autonomic
behaviours has been recently raised as one of the top challenges in computer
science research. As for instance put by Parashar and Hariri in [23], autonomic
computing is a paradigm consisting in building systems that can “manage them-
selves in accordance with high-level guidance from humans.” In other words,
according to this paradigm, humans should simply define these rules initially.
Then the system can virtually run indefinitely, adhering to these high-level,
technical-detail-free rules, regardless of the conditions in the underlying plat-
forms.

The implementation of such a system offers several challenges that cannot be
tackled at once. A prerequisite is to separate the development of the low-level
machinery from the definition of adequate programming abstractions, allowing
this high-level human guidance. This situation advocates the use of declarative
programming [18], whose goal is to separate the logic of a computation (“what
we want to do”) from its control (“how to achieve it”). More precisely, while
the “what” is to be defined by the programmer, the “how” becomes for them
implicit, hidden in the system. In particular, rule-based programming, where
this logic is expressed as a set of high-level rules allows to hide the intrinsic diffi-
culties of the parallelism and distribution of the runtime from the programmer.
Recently, some work has gone into showing how to concretely apply rule-based
programming to the specification of distributed systems. For instance, in [12],
it has been shown how communication protocols and peer-to-peer applications
can be specified using a rule-based language. In [1], the same programming
style is applied to web-based data management. On the computing side, rule-
based programming was also used as a building block for workflow management
systems [33, 15].

Also, nature appears to be a great source of inspiration. Biological and chem-
ical systems1 appear as analogies worth to be explored [2, 13, 32]. More con-
cretely, the chemical programming model, which is both rule-based and nature-
inspired, seems to be one of the most promising paradigms to be studied in
such a quest [6, 11, 20, 22]. Combining rule-based programming with a nature-
inspired paradigm results in a model which has got a high level of abstraction,
whose paradigm is implicitly parallel and non-deterministic. The user is, thus,
able to provide high-level rules, on the basis of which the system is able to

1The autonomic computing paradigm was initially proposed by analogy with the autonomic
nervous system.
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manage itself due to the implicit parallelism and non-determinism.
Metaphorically speaking, in such a model, a program is envisioned as a chem-

ical solution where molecules of data float and react according to some reaction
rules specifying the program, to produce new data (the products of reactions).
Formally speaking, these artificial chemistries [10] rely on concurrent multiset
rewriting : the solution is a multiset of molecules, and reactions are rewriting
rules to be applied on it. At run time, reactions can be triggered concurrently.
The exact degree of parallelism may vary from one model to another. For in-
stance, membrane computing [24] is a branch of chemical computing focusing
on the organisation of the solution in sub-solutions, in which it is assumed that,
at each step, the set of reacting molecules is maximised. However, this is not the
case for instance for the runtime of the HOCL language [5], whose parallelism
degree remains unspecified, and is left to the implementer of the underlying
runtime.

Once no more reactions are possible, the program is said to be inert. In this
state, the solution is stable and contains the result of the computation.

While the chemical paradigm offers a promising way to specify autonomic
systems, running these chemical specifications over distributed platforms is still
a widely open issue. One of the most significant barriers to be lifted is inher-
ent to concurrent rewriting and deals with the atomic capture of the different
molecules satisfying a reaction. At run time, a molecule can potentially partic-
ipate in several concurrent reactions. However, it should be ensured that it will
participate in at most one. Otherwise, the logic of the program could be broken
(as exemplified in Section 2).

Let us slightly refine the problem envisioned in this paper : we consider a
chemical program made of a multiset of objects (molecules), and a set of rules to
be applied concurrently on them. Both the objects and the rules are distributed
over a set of nodes on which the program runs. Each node periodically tries
to fetch molecules needed for the reactions it is trying to perform. As several
molecules can satisfy the pattern and conditions of several reactions performed
concurrently by different nodes, the same molecule can be requested by several
nodes at the same time, inevitably leading to conflicts. Mutual exclusion on
the molecules is thus mandatory. Although our problem resembles the classic
resource allocation problem [16], it differs from it in several aspects. Firstly, the
molecules are interchangeable to some extent. The requested molecules must
match a pattern defined in the reaction rule a node wants to perform; if two
molecules, say A and B, both match the rule’s pattern, any of the two may be
used in the actual reaction. Then, we differentiate two processes which are :

1. finding molecules matching a pattern (achieved by a discovery protocol);
2. obtaining them to perform reactions (achieved by a capture protocol).

Consequently, if one node cannot manage to grab some specific molecules,
it will switch to another set of molecules. We are not so much interested in
avoiding one node’s starvation as in the liveness of the system itself : some node
should be able to perform one reaction in a finite time in order to move the
computation forward.
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Secondly — and following the previous point — the platform envisioned
is at large scale, and the resources dispatched over the nodes are dynamic :
molecules are deleted when they react, and new ones are created. Likewise, the
number of resources/molecules (and of possible reactions) will fluctuate over
time, influencing the design of the capture protocol. Bear in mind that once
the holder of a matching molecule is located, the scale of the network is of less
importance, since only the nodes requesting the molecules and their holders are
involved in the capture protocol.

To sum up, our objective is to define a protocol for the atomic capture of
multiple molecules that dynamically and efficiently adapts to the density of
potential reactions in the system.

Contribution. Our contribution is a distributed protocol combining two sub-
protocols inspired by previous works on distributed resource allocation, and
adapted to the distributed runtime of chemical programs. The first sub-
protocol, referred to as the optimistic one, assumes that the number of molecules
satisfying some reaction’s pattern and condition is high, so only few conflicts
for molecules will arise, nodes being likely to be able to grab distinct sets of
molecules. While this protocol is simple, fast, and has a limited communication
overhead, it does not ensure liveness when the number of conflicts increases.
The second one, called pessimistic, slower, and more costly in terms of commu-
nication, ensures liveness in the presence of an arbitrary number of conflicts.
Switching from one protocol to the other is achieved in a scalable, distributed
fashion and is based on local success histories in grabbing molecules. Further-
more, we analyse chemical programs containing multiple rules and the possible
input/output dependencies they might have and propose a rule-changing mech-
anism instructing nodes as to which rule to execute. A proof of the protocol’s
correctness is given, and its efficiency is discussed through a set of simulation
results. Note that the bare protocol and preliminary results have previously
been published in [7], while this paper provides an in-depth description of the
complete algorithm and an analysis of all of its features.

Organisation of the Paper. The next section presents the chemical program-
ming paradigm in more detail, highlights the need for the atomic capture, and
describes the system model used throughout the paper. Section 3 details the
sub-protocols, their coexistence, and the switch from one to the other. It also
proposes a communication-minimisation scheme when the number of conflicts
is high as well as the aforementioned rule-changing mechanism. Proofs of safety
and liveness are also given for the complete protocol. Section 4 presents the
simulation results and discusses the efficiency and overhead of the protocol. Re-
lated works, both in the chemical programming and the distributed systems
areas, are presented in Section 5. Section 6 concludes.

2. Preliminaries

Different systems require different algorithms for performing atomic opera-
tions varying in complexity. This section describes the programming and system
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models which compose the required conditions for the proposed protocol.

2.1. Concurrent Multiset Rewriting

Concurrent multiset rewriting, as formalised by the γ-calculus [4], was put
into practice by the Higher-Order Chemical Language (HOCL) [5]. As suggested
by the chemical metaphor, in such a language, data are molecules floating in a
solution. At runtime, they are consumed according to some reaction rules, i.e.
the program, producing new molecules, i.e. the resulting data. These reactions
take place in an implicitly parallel and autonomous way, until no more reactions
are possible, a state referred to as inertia. More specifically related to HOCL,
which includes the higher order, rules can themselves be put in the multiset, and
be consumed and/or produced in a reaction. As our focus in this paper is the
actual capture of molecules in a large-scale system, the higher order is not our
primary concern. Hence, for the sake of simplicity, we illustrate the paradigm
in its first-order version. In HOCL, a rule takes the form:

replace P by M if V

It consumes a set of molecules satisfying the pattern P and the condition V , and
produces a set of molecules M . We want to emphasise here that consumption
is the only possible transition in the state of a molecule: once it has been
consumed, it vanishes from the multiset entirely; meaning molecules are objects
that are only created and deleted, never updated nor recreated. For the sake
of illustration, let us consider the following chemical program made up of two
rules applied on a multiset of strings, that counts the aggregated number of
characters in words with two or more letters:

let count = replace s :: string by len(s) if len(s) ≥ 2 in
let aggregate = replace x :: int, y :: int by x+ y in
〈 ”maecenas”, ”ligula”, ”massa”, ”varius”, ”a”, ”semper”,

”congue”, ”euismod”, ”non”, ”mi” 〉

The rule named count consumes a string element if it is composed of at
least two characters, and introduces an integer representing its length into the
solution. The aggregate rule consumes two integers to produce their sum. By its
repeated execution, this rule aggregates the sums to produce the final number.
At runtime, these rules are executed repeatedly and concurrently, the first one
producing inputs for the second one. While the result of the computation is
deterministic, the order of its execution is not. Only the mutual exclusion of
reactions sharing some reactants, through the atomic capture of the reactants
is implicitly required by the paradigm.

A possible execution is the following. Let us consider, arbitrarily, that the
first rule is applied on the first three strings as represented above, and on the
last one. The state of the multiset is then the following:

〈 ”varius”, ”a”, ”semper”, ”congue”, ”euismod”, ”non”, 8, 6, 5, 2 〉.
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Then, let us assume, still arbitrarily, that the aggregate rule is triggered three
times on the previously introduced integers, producing their sum. Meanwhile,
the remaining strings are scanned by the count rule. The multiset is then:

〈 6, ”a”, 6, 6, 7, 3, 2, 21 〉.

With the repeated application of the aggregate rule, inertia is reached (”a”
satisfies neither of the two rules’ conditions). The final solution is:

〈 ”a”, 51 〉.

It is important to notice that the atomic capture is a fundamental condition.
Let us simply assume that the same string was captured by different nodes
running the count rule in parallel. Then, the count for a word would appear
more than once in the solution, leading to an incorrect result.

The reader may have noted that the presented example is in fact a
MapReduce-like [9] program, where the rule count provides the map function,
while aggregate is the reducer. However, note that this example has not been
given for comparison reasons, but in order to draw the reader’s attention to: (i)
the execution paths a chemical program might take; and (ii) the importance the
atomic capture of molecules bears on the correctness of the execution. A com-
parison between the chemical programming model and MapReduce, or other
paradigms used for parallel execution in HPC systems such as MPI [21], is not
in order due to the difference in their target systems: while MapReduce and
MPI target HPC systems with the aim of improving the execution performance,
our intention is to use the chemical programming model for the coordination
and management of large-scale, distributed systems, in an autonomic fashion,
as for instance shown in detail in [6, 11, 20, 22].

2.2. System Model

We consider a distributed system DS consisting of n machines which com-
municate via message passing. They are interconnected in such a way that a
message sent from a node can be delivered, in finite time, to any other node
in DS. Moreover, we suppose that a communication channel between any two
given nodes is a FIFO queue — a message sent at time t is always delivered
strictly before a message sent at time t+ε. At large scale, such a fully-connected
network can be built by relying on P2P systems, more specifically ones employ-
ing distributed hash table (DHT) communication protocols [26, 31]. They allow
us to focus on the atomic capture of molecules without worrying about the
underlying communications’ details.

Data and Rules Dissemination. In the following, we assume data and rules have
already been dispatched to the nodes. Again, any DHT algorithm or network
topology may be used for this purpose. Even if the data and rules are initially
held by a single external application, it can contact a node in the DHT and
transfer it the chemical solution to be executed. The node which received the
data scatters the molecules across the overlay according to the DHT’s hash
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function. Molecules are routed concurrently according to the DHT’s routing
scheme. The dissemination of rules can follow a similar pattern, or can be
broadcast in the network. The only difference is that rules can be replicated
on several nodes to satisfy an increased level of parallelism. A more accurate
discussion of the rules’ distribution falls out of the scope of this paper. In the
following, we simply assume every rule of the program is present on all of the
nodes in the system.

Discovery Protocol. In order for the reaction to happen, a suitable combination
of molecules has to be found. While the details of this aspect are also abstracted
out in the remainder of the paper, they deserve to be preliminarily discussed.
The basic lookup mechanism offered by DHTs allows the retrieval of an object
according to its (unique) identifier. Unlike the exact match functionality pro-
vided by DHTs, we require nodes to be able to find some molecule satisfying
a pattern (e.g., one integer) and condition (e.g., greater than 3), as stated in
Section 2.1. This can be achieved by the support of range queries on top of the
overlay network, i.e. mechanisms to find some (at least one) molecules falling
within a range, provided the molecules can be totally ordered on a (possibly
complex, multi-dimensional) criterion, as for instance provided in [28]. This
mechanism can be easily extended to support patterns and conditions involving
several molecules. For instance, when trying to capture two molecules ordered
in a specific way, a rule translator constructs the range query to be sent over
the DHT based on the given rule and the first molecule obtained. If matching
molecules are found, the capture protocol will be triggered.

Fault tolerance. DHT systems inherently provide fault-tolerance mechanisms.
If nodes crash, leave or join, the properties of the communication pattern will
be preserved. On top of that, we assume that there exists a higher-level re-
silience mechanism which prevents the loss of molecules, such as state machine
replication [19, 29]. Each node replicates its complete state — the molecules
and its current actions — across k neighbouring nodes, where the definition
of a neighbour depends on the actual DHT scheme used. Thus, in case of its
failure, one of its neighbours is able to assume its responsibilities and continue
the computation.

3. Protocol

Here, the protocol in charge of the atomic capture of molecules is discussed.
The protocol can run in two modes, based on two different sub-protocols: an
optimistic and a pessimistic one. The former is a simplified sub-protocol which
is employed while the number of possible reactions is high enough to render
the possibility of conflicts insignificant. When the ratio between actual and
possible reactions drops below a given threshold, the pessimistic sub-protocol is
activated. While being the heavier of the two in terms of network traffic, this
sub-protocol ensures the liveness of the system, even when an elevated number
of nodes in it compete for the same subset of molecules.

7



3.1. Pessimistic Sub-protocol

To some extent similar to the three-phase commit protocol [30] used in
database systems, this sub-protocol ensures that at least one node wanting to
execute a reaction will succeed. The differences between the original protocol
and our adaptation are discussed in Section 5. Molecule fetching is done in
three phases — the query, commitment, and fetch phases — and involves at
least two nodes — the node requesting the molecules, called requester, and at
least one node holding the molecules, called holder(s). Algorithms 1 and 2 rep-
resent the code run on these two entities, respectively, and Figure 1 delivers the
time diagram of molecule fetching. Note that a node acts at times as a requester
(when it executes rules), while at others it behaves as a holder (when it holds a
molecule requested by another node).

When molecules suitable for a reaction have been found using the discovery
protocol (line 1 in Algorithm 1), the query phase begins (line 10). The requester
sends QUERY messages asynchronously to all of the holders to inform them
it is interested in the molecule. Depending on their local states, each of the
holders evaluates separately the received message (lines 1—13 in Algorithm 2)
and replies with one of the following messages:

• RESP OK : the requested molecule is available;

• RESP REMOVED : the requested molecule no longer exists;

• RESP TAKEN : the molecule has already been promised to another node.

Unless it received only RESP OK messages, the requester aborts the fetch and
sends GIVE UP messages to holders, informing them it no longer intends to
fetch their molecules (line 14 in Algorithm 1).

Following the query phase is the commitment phase, when the requester tries
to secure its position by asking the guarantee from the holders that it will be
able to fetch the molecules (line 19 in Algorithm 1). It does so using COMMIT-
MENT messages. Upon its receipt, each holder sorts all of the requests received
during the query phase (line 14 in Algorithm 2) according to the conflict res-
olution policy (described below). Holders reply, once again, with RESP OK,
RESP REMOVED or RESP TAKEN messages. A RESP OK response repre-
sents a holder’s commitment to deliver its molecule in the last phase. Thus,
subsequent QUERY and COMMITMENT requests from other nodes will be
resolved with a RESP TAKEN message. Naturally, if a requester does not re-
ceive only RESP OK responses to its COMMITMENT requests, it aborts the
fetch with GIVE UP messages. The holder then removes the requester from
the list, in this way allowing others to fetch the molecule.

Finally, in the fetch phase, the requester issues FETCH messages, upon
which holders transmit it the requested molecules using RESP MOLECULE
messages. From this point on, holders issue RESP REMOVED messages to
nodes requesting the molecule.
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Conflict Resolution. Each of the holders individually decides to which requester
a molecule will be given. Since we want at least one requester to be able to com-
plete its combination of molecules, all holders apply the same conflict resolution
scheme, based on the total order of requesters (lines 20—27 in Algorithm 2).
Any total order scheme could be applied. We here detail a dynamic scheme
based on load-balancing: each of the messages sent by requesters contains two
fields — the requester’s identifier and the number of reactions it has completed
thus far. When two or more requesters are competing for the same molecule,
holders give priority to the requester with the lowest number of reactions. In
case of a dispute, the requester with a lower node identifier (ensured to be
unique by the DHT’s hash function) gets the molecule. Such a conflict resolu-
tion scheme promotes fairness while at the same time balancing the workload
amongst nodes, seeing that the less reactions a node has done the greater the
chances are for it to capture the molecules it needs for a reaction.

3.2. Optimistic Sub-protocol

When the probability of successful multiple concurrent reactions is high,
the atomic fetch procedure can be relaxed and simplified by adopting a more
optimistic approach. The optimistic sub-protocol requires only two phases —
the fetch and the notification phases. Algorithm 3 describes the sub-protocol
on the requesters’ side, while Algorithm 4 describes it on the holders’ side. The
time diagram of the process of obtaining molecules is depicted in Figure 2.

Once a node acquires information about suitable candidates, it immedi-
ately starts the fetch phase (line 1 in Algorithm 3). It dispatches FETCH
messages to the appropriate holders. As with the pessimistic sub-protocol, the
holder can respond using one of the three previously described types of messages
(RESP MOLECULE, RESP TAKEN and RESP REMOVED) as shown in Al-
gorithm 4. A holder that replied with a RESP MOLECULE message, replies
with RESP TAKEN messages to subsequent requests until the requester either
returns the molecule or notifies it a reaction took place.

If the requester acquires all of the molecules, the reaction is subsequently
performed, and the requester sends out REACTION messages to holders to
notify them the molecules are being consumed. This causes holders to reply with
RESP REMOVED messages to subsequent requests from other requesters. In
case the requester received a RESP REMOVED or a RESP TAKEN message,
it aborts the reaction and returns the obtained molecules by enclosing them in
GIVE UP messages, which allows holders to give them to others.

Conflict Resolution. Given the fact that the optimistic sub-protocol is designed
to be executed by nodes in a highly reactive stage, there is no need for a strict
conflict resolution policy. Instead, the node the request of which first reaches a
holder obtains the desired molecule. However, the optimistic sub-protocol does
not ensure that a reaction will be performed in case of a conflict. In the worst
case, all attempts at fetching molecules might be aborted.
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Algorithm 1: Pessimistic Sub-

protocol — Requester.

1 on event combination found
2 QueryPhase(combination);

3 on event response received
4 if phase = query then
5 QueryPhaseResp(resp mol);

6 else if phase = commitment then
7 CommitmentPhaseResp(resp mol);

8 else if phase = fetch then
9 FetchPhaseResp(resp mol);

10 begin QueryPhase(combination)
11 phase ⇐ query;
12 foreach molecule in combination do
13 dispatch QUERY(molecule);

14 begin QueryPhaseResp(resp mol)
15 if resp mol 6= RESP OK then
16 Abandon(combination);

17 else if all responses have arrived
then

18 CommitmentPhase(combination);

19 begin CommitmentPhase(combination)
20 phase ⇐ commitment;
21 foreach molecule in combination do
22 dispatch COMMITMENT(molecule);

23 begin CommitmentPhaseResp(resp mol)
24 if resp mol 6= RESP OK then
25 Abandon(combination);

26 else if all responses have arrived
then

27 FetchPhase(combination);

28 begin FetchPhase(combination)
29 phase ⇐ fetch;
30 foreach molecule in combination do
31 dispatch FETCH(molecule);

32 begin FetchPhaseResp(resp mol)
33 add resp mol to reaction args;
34 if all responses have arrived then
35 Reaction(reaction args);

36 begin Abandon(combination)
37 phase ⇐ none;
38 foreach molecule in combination do
39 dispatch GIVE UP(molecule);

Algorithm 2: Pessimistic Sub-

protocol — Holder.

1 on event message received
2 if message = GIVE UP then
3 remove sender from

molecule.list;

4 else if message.molecule does
not exist then

5 reply with RESP REMOVED;

6 else if message = FETCH then
7 clear molecule.list;
8 reply with molecule;

9 else if molecule has a
commitment then

10 reply with RESP TAKEN;

11 else if message = QUERY then
12 add sender to molecule.list;
13 reply with RESP OK;

14 else if message =
COMMITMENT then

15 SortRequesters(molecule);
16 if molecule.locker = sender

then
17 reply with RESP OK;

18 else
19 reply with

RESP TAKEN;

20 begin SortRequesters(molecule)
21 foreach pair of requesters in

molecule.list do
22 if req j.no r < req i.no r

then
23 put req j before req i;
24 continue;

25 if req j.id < req i.id then
26 put req j before req i;

27 molecule.locker ⇐ molecule.list
(0);
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Algorithm 3: Optimistic Sub-

protocol — Requester.

1 on event combination found
2 foreach molecule in combination

do
3 dispatch FETCH(molecule);

4 on event response received
5 if response 6= RESP MOLECULE

then
6 Abandon(combination);
7 return;

8 add response.molecule to
reaction args;

9 if all responses have arrived then
10 NotifyHolders(combination);
11 Reaction(reaction args);

12 begin NotifyHolders(combination)
13 foreach molecule in combination

do
14 dispatch REACTION(molecule);

15 begin Abandon(combination)
16 foreach molecule in combination

do
17 dispatch GIVE UP(molecule);

Algorithm 4: Optimistic Sub-

protocol — Holder.

1 on event message received
2 if message = GIVE UP then
3 molecule.state ⇐ free;

4 else if message = REACTION then
5 remove molecule;

6 else if message.molecule does not
exist then

7 reply with RESP REMOVED;

8 else if molecule.state = taken then
9 reply with RESP TAKEN;

10 else
11 molecule.state ⇐ taken;
12 reply with RESP MOLECULE;

Figure 1: Pessimistic exchanges. Figure 2: Optimistic exchanges.

11



3.3. Sub-protocol Mixing

During its execution, a program typically can pass through two different
stages. The first one is the highly reactive stage, which is characterised by a
high volume of possible concurrent reactions. In such a scenario, the use of
the pessimistic sub-protocol would lead to superfluous network traffic, since the
probability of a reaction’s success is rather high. Thus, the optimistic approach
is enough to deal with concurrent accesses to molecules. The second stage is
the quiet stage, when there is a relatively small number of possible reactions.
Since this entails highly probable conflicts between nodes, the pessimistic sub-
protocol has to be employed in order to ensure the liveness of the system. Thus,
the execution environment has to be able to adapt to changes and switch to
the desired protocol accordingly. Moreover, these protocols have to be able
to coexist in the same environment, as different nodes may act according to
different modalities at the same time.

3.3.1. Switching

Ideally, the execution environment should be perceived as a whole in which
the switch happens unanimously and simultaneously. Obviously, a global view
of the reaction potential cannot be maintained in a large-scale system. Instead,
each node independently decides which sub-protocol to employ for each reac-
tion. The decision is first based on a node’s local success rate, denoted σlocal,
computed on the basis of the success history of the last queries the node issued.
In order not to base the decision only on its local observations, a node also keeps
track of local success rates of other nodes; each time a node receives a request or
a reply message, the sender supplies it with its own current history-based suc-
cess rate, stored into a list (of tunable size). Note that when there are multiple
rules being executed, the node takes into account only the information relevant
to the rule it is currently executing, as noted in Section 3.5. We denote σ the
overall success rate, computed as the weighted arithmetic mean of a node’s lo-
cal success rate and the ones collected from other nodes. Finally, the decision
as to which protocol to employ depends on the rule a node wishes to execute.
More specifically, it is determined by the number of the rule’s arguments, since
the more molecules the rule needs, the harder it is to assure they will all be
obtained. To grab r molecules, a node employs the optimistic sub-protocol if
and only if σr ≥ s, where r is the number of arguments the chosen rule has
and s is a predefined threshold value. If the inequality is not satisfied, the node
employs the pessimistic sub-protocol. Even though a more in-depth discussion
about the value of the switch threshold falls out of the scope of this paper, we
show its influence on the protocol’s performance in Section 4.

3.3.2. Coexistence

Due to the locality of the switch between sub-protocols, not all participants
in the system will perform it in the exact same moment, leading to possible
inconsistencies in the system, where some nodes try to grab the same molecules
using different sub-protocols. In order to distinguish between optimistic and pes-
simistic requests, each requester incorporates a request type field into messages.
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Based on this field, the node holding the conflicting molecule gives priority to
nodes employing the more conservative, pessimistic algorithm.

Although this decision discourages optimistic nodes and sets them back tem-
porarily, it ensures that a node will be able to grab the molecules it needs
eventually, since pessimism is favoured over optimism. When pessimistic nodes
compete for molecules, one of them is surely going to perform its reaction as
per the total order. On the other hand, when solely optimistic nodes compete
for molecules, all of their reactions might be aborted since the optimistic sub-
protocol does not guarantee the system’s liveness. Consequently, pessimistic
requests have a higher chance of being concluded by a reaction.

3.4. Dormant Nodes

During the quiet stage, the system might reach a point where n � m (n
denotes the number of nodes in the system, while m represents the number of
molecules). In this extreme scenario, having more nodes represents a burden
for the system, as most of the requests sent for molecules will ultimately be
rejected, elevating the network traffic without speeding up the progression of
the computation. Thus we introduce the notion of dormant pessimistic nodes —
nodes which are using the pessimistic sub-protocol to capture molecules, but do
so less often than usual. When a node switches to the pessimistic sub-protocol,
it starts counting the number of consecutively aborted reactions. Once this
number reaches a threshold a, it puts itself to sleep for a predefined amount of
time δ — it becomes a dormant node. It then wakes up and tries to capture
another combination of molecules. In case it succeeds, it becomes an active
pessimistic node again. Otherwise, it returns to the dormant state for a δ
amount of time, and so forth. In order to avoid massive awakenings of nodes,
i.e. the simultaneous resumption of activities of a large number of dormant
nodes, we allow the actual amount of time a node spends as dormant to vary by
a constant εδ from δ: before putting itself to sleep, a node randomly chooses the
number of steps it is going to sleep for from the interval [δ−εδ, δ+εδ]. Dormant
nodes do not put their entire execution on hold — they are still active in the
system as molecule holders. Note that a discussion about concrete values of δ,
εδ and a and their fine-tuning is out of the scope of this paper.

3.5. Execution of Multiple Rules

Thus far we focused on the protocol and its various aspects carrying the
assumption that there is only one rule in the program. However, in practice, a
small fraction of chemical programs contain only one rule to be used in reac-
tions, as one-rule programs appear rather limited when addressing more complex
problems. As every node tries to carry out reactions, when multiple rules are
present, each of them has to decide which of the rules it is going to employ in
a given cycle. In the remainder, we assume the number of nodes executing the
program is greater than the number of rules, i.e. n > nr. We refer to the rule
being executed by a node at a given moment as its active rule.

In order for the computation to be done as smoothly and efficiently as possi-
ble, certain constraints of the programming model have to be taken into account.
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Firstly, a node’s decision to switch from one sub-protocol to the other should
take into account only the grabs it has tried to do for the rule it is using at
the moment. Secondly, due to the paradigm’s non-determinism and lack of se-
quentiality, a rule might be triggered at any given point in time : if a rule is
used at time T , but not at time T + ∆T1, there is no guarantee that it will not
be used again at time T + ∆T1 + ∆T2. Finally, the interdependency of rules
influences the flow of the execution. Two rules can be: (i) independent (they
can be concurrently executed), (ii) dependent (the product of one rule can be
used as input by the other), and (iii) circularly dependent (the product of one
rule can be used as input by the other and vice versa).

3.5.1. Multiple Success Rates

As noted earlier, while deciding which of the sub-protocols to employ to grab
molecules, a node should take into account exclusively the capture attempts
made while executing the currently active rule. Thus, the calculation of the
success rate is adapted as follows. Now, each node manages a separate local
success grab history list for each rule. Analogously, a separate list of observed
remote successes is maintained per rule on each node. Consequently, a node
is able to calculate multiple success rates (σi), one per rule i, and base its
switch decision solely on information relevant to the active rule. Finally, the
exchanged messages are expanded with one more field : the identifier of the rule
for which the success rate is contained in the message. This way, nodes are able
to differentiate success rates for distinct rules and place them in the correct
lists. Note that, since a node bases its sub-protocol switch decision only for its
currently active rule, while the threshold value is set globally for all rules, its
interpretation depends on the rule for which the local switch decision is being
taken.

3.5.2. Initial Rule Assignment

To ensure every rule is executed, nr nodes are each permanently assigned
a rule. These nodes are called rule keepers and they are selected based on the
hash identifiers assigned to the rules : a node N is the rule keeper for a rule R
if its node identifier is numerically the closest to the rule’s hash identifier. Note
that, in case a node, according to the hash function, should be the rule keeper
for more than one rule, it may delegate the responsibility for all but one of them
to other randomly-selected nodes. Rule keepers try to execute their assigned
rules all throughout the computation — they behave as if only one rule (the
one they execute) is present in the system. The rest of the nodes (n − nr of
them) pick randomly one of the rules in the program with which to start the
execution.

3.5.3. Changing the Active Rule

Even though rule keepers ensure the execution of every rule, the reaction
potential of a rule varies throughout the computation; depending on the state
of the program at a given moment, more reactants may be present for one rule
than another. Thus, nodes ought to be able to change their active rules during
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the execution based on the reaction potential of the rules. While a node is
trying to obtain molecules using the optimistic sub-protocol, a change of the
active rule is not being considered, as using this sub-protocol is an indicator of
the active rule’s high reaction potential. Hence, a change may occur when and
only when a node is employing the pessimistic sub-protocol. Given the facts
that a rule’s reaction potential can be derived from a node’s success rate and
that every node keeps track of success rates for all of the rules, every node has
got a good estimation of the reaction potential of each rule.

A node changes its active rule if the following conditions are met:

1. the node is currently using the pessimistic sub-protocol;

2. the node did not succeed to perform a reaction in the previous cycle;

3. the success rate for the active rule observed by the node is the smallest
success rate when compared to all of the other rules’ success rates.

If the above conditions are fulfilled, the node changes its active rule to the
one with the highest success rate known. If the current σ value of the newly
selected active rule permits the node to employ the optimistic protocol, it resets
its grab history and sets its σ to 1, since it means that its reaction potential
is high, entailing that a fair amount of reactions will be done switching to this
rule. Otherwise, it means that the new active rule’s reaction potential is also
low. In this case the node will, for reasons described in Section 3.4, become
a dormant node immediately after changing its active rule. Doing so, when it
wakes up, it will start trying to apply the new active rule.

3.5.4. Discussion

The reader might have noticed that the presented rule-changing algorithm
is a greedy one with respect to both time — when to change to another rule
— and space — which rule to change to. Indeed, by adopting a policy of late
rule changing, whereby a node changes rules only if its success rate is the worst
it knows of, the subset of nodes executing a given rule consumes most of the
rule’s input molecules. The greediness with respect to space is manifested in
the policy to switch to the rule with the highest success rate known to the node
about to change rules. While switching to any rule with a value of σ higher than
the active rule’s would improve the execution, picking the highest one ensures
the execution’s optimality, in the sense that the node choosing it is guaranteed
to encounter the least number of conflicts.

Combined, these two levels of greediness assure that (i) all of the reactions
which can be done for a rule will be done, in the sense that if molecules capable
of reactivating a rule appear, it is going to be chosen for execution; and that (ii)
nodes avoid conflicts as much as possible. It should be pointed out that, due
to the fact that there is no global view of the system as nodes build up their
knowledge based on the communication with other nodes and that they choose a
rule at random during initialisation, nodes will decide to execute different rules
at distinct times. Moreover, they will not uniformly choose the same rule.
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3.6. Proof of Correctness

To be correct, this protocol must guarantee two properties:

• safety : a molecule is used in at most one reaction (as we consider that
every reaction consumes all of the molecules entering it);

• liveness: if a node sends a request infinitely often, it will eventually suc-
ceed in capturing the molecules, provided the requested molecules are still
available.

3.6.1. Proof of Safety

Even though multiple servers (molecules holders) and multiple clients
(molecule requesters) are involved in the process, safety is straightforward to
prove, because both sub-protocols are synchronised by molecule requesters.

Theorem 1. A molecule is consumed in at most one reaction.

Proof. As visible in Algorithms 1 and 3, before performing reactions requesters
wait for the responses of all concerned molecule holders. A reaction is carried out
if and only if all of the molecules are present on the requester. Does it not receive
a molecule, a requester renounces performing the reaction by executing the
Abandon routine, giving back all of the molecules it has captured. Additionally,
when employing the pessimistic sub-protocol, a requester has to pass through
three synchronisation barriers, one after each phase.

On the other side, each holder locally enforces conflict resolution. Because
both sub-protocols have conflict resolution policies which ensure that a molecule
can be given to only one requester, a molecule will be consumed in at most one
reaction. This is observable in Algorithms 2 and 4, where a molecule’s state
changes based on the arrived request. Once it has been promised or given
to a requester, others receive either a RESP TAKEN or a RESP REMOVED
message even if the molecule can be given back later to the holder due to a
requester’s call to the Abandon routine.

Finally, there are two cases of conflict between the two protocols. When
an optimistic request arrives before a pessimistic one, the pessimistic request
is aborted because the molecule has already been reserved by the optimistic
requester. On the other hand, if a pessimistic request arrives first, the optimistic
request is aborted in favour of the pessimistic one.

3.6.2. Liveness Proof

To prove the liveness property, we show that:

• the protocol is deadlock-free;

• if no successful reaction happens in the system, nodes eventually switch
to the pessimistic protocol;

• if several pessimistic requesters are in conflict, at least one reaction is not
aborted;

16



In addition, we show that a node cannot see its reactions infinitely aborted,
i.e. that the protocol is starvation-free.

Lemma 1. A node’s execution cannot be blocked infinitely.

Proof. Although requesters compete against each other for molecules, ultimately
the decision is taken unilaterally by the holders on which the molecules reside.
This decision is communicated as a response to each request. Due to the usage
of reliable FIFO channels, a requester will always get a response for each sent
request. Based on the received responses, it will either perform the reaction or
abort it and continue its execution.

Lemma 2. If an optimistic node sees its reactions continuously aborted, it
eventually switches to the pessimistic sub-protocol.

Proof. When a request of a node is aborted, the node decreases its value of
σ (see Section 3.3). With each message sent, a node includes the information
about its local σ, and collects the values received from other nodes. If there
are many conflicts during a certain period of time, all the more so if there is
no successful reaction, the local values of σ of all of the nodes decrease. This
effect leads to a situation where the computed value of σr for all new reactions
is lower than the threshold s, which forces nodes to use the pessimistic protocol
upon the initiation of new requests.

Lemma 3. Eventually, at least one node will succeed in performing a reaction.

Proof. Initially, and hopefully most of the time, nodes use the optimistic sub-
protocol for their requests. In case of a conflict between two optimistic re-
questers, both requests can easily be aborted. Consider the example where
two concurrent requesters try to capture two molecules, A and B. If the first
requester succeeds in grabbing A while the second captures B, then the two
requests will be aborted. If such scenarios persist, as per Lemma 2, nodes will
switch to the pessimistic sub-protocol.

For the pessimistic sub-protocol, we define a total order based on the number
of successfully completed reactions by a node and its unique id. In case of a
conflict, all of the reactions might be aborted except for one — the reaction
initiated by the node which comes first as per the total order. Since that node
has got the highest priority system-wide, all of the holders it contacts will decide
in its favour.

Following Lemmas 1—3 we have:

Theorem 2. The protocol assures the system’s liveness property holds.

We now prove that the protocol is starvation-free.

Lemma 4. A node cannot see its reactions infinitely aborted.
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Proof. There are two possible outcome scenarios when a node enters in a conflict
over molecules: (i) the molecules exist long enough for a node to capture them;
and (ii) the molecules are taken by another node. Following Lemma 2, a node
trying to obtain molecules will eventually switch to the pessimistic sub-protocol.

Because the total order is based on the number of successful reactions, if
the node, in case of an abort, tries again infinitely to request molecules for its
reaction, eventually, provided the requested molecules are still available, the
reaction will take place, given the fact that its position moves up the total order
when other nodes succeed in executing their reactions.

If, however, the node does not have the highest priority amongst the nodes
in conflict for the molecules, another node will grab them, in this way raising
other nodes’ positions up the total order. The original node will then try to
grab another combination of molecules. It will change the combination until it
becomes the node with the least number of reactions performed, at which point
it will have the highest priority in the total order.

3.6.3. Convergence Time

When presenting algorithms for atomic capture, it is common to study their
convergence times. However, any discussion about convergence when dealing
with the chemical programming model is not feasible, as convergence itself, and
thus the convergence time, is an application-specific property. However, the
next section presents an evaluation of the proposed algorithm, and sheds some
light on the subject.

4. Evaluation

Our protocol was simulated in order to better capture its performance. We
developed a Python-based, discrete-time simulator, including a DHT layer per-
forming the random dissemination of a set of molecules over the nodes, on top
of which the layer containing the capture protocol itself was built. At this layer,
any message issued at step t will be received and processed by the destination
node at time t + 1. Moreover, each time a capture attempt either led to a re-
action, or to an abort, the node tries to fetch another set of r randomly chosen
molecules, where r depends on the program being simulated atop the protocol.

Unless otherwise noted, all presented experiments simulate a system of 250
nodes trying to execute a chemical program containing a solution with 15000
molecules. The reactions’ durations are assumed negligible, as this allows us to
concentrate exclusively on evaluating the capture protocol itself, without having
to deal with application-specific problems. For all of the simulations, we used
the following constants: a = 10; δ = 20; εδ = 4; and s = 0.7. Each simulation
was run 50 times and the figures presented below show the values obtained by
averaging result data from these runs. As the deviation for each simulation is
negligible, we here present only the averaged values.

There are two sets of experiments. In the first one we extensively tested the
protocol’s behaviour, its performance and the network traffic generated by a
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simple program with a single rule. The second set of experiments examines the
system’s behaviour when faced with the execution of programs with multiple
rules.

For the purpose of evaluating the protocol and its characteristics we simu-
lated five different programs on top of the protocol itself. Note that the programs
do not represent concrete implementations of applications since the actual reac-
tions and their results are not taken into account. Rather, they were conceived
in such a way as to examine the protocol in detail. The programs are designed
to ensure inertia will be reached in a finite number of steps, since the problem
of distributed inertia detection is out of the scope of this paper. These five pro-
grams cover all of the rule-dependency patterns described in Section 3.5, and
thus provide a complete insight into the protocol’s characteristics. The next sec-
tion presents the results obtained by simulating the single-rule program, while
Section 4.2 describes the multiple-rule programs and the outcomes of their ex-
perimentations.

4.1. Experiments with One Rule

In the first set of experiments we concentrated on the characteristics of the
devised protocol itself, namely its performance and network overhead. Thus,
the single-rule program was used throughout this set of experiments.

Single-rule Program. The first program simulated is a simple one consisting
only of a straightforward rule which simply consumes two molecules without
producing new ones. Having only one rule in the solution allows us to concen-
trate and analyse solely the protocol, its sub-protocols and the switch between
them.
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Figure 3: Performance comparison of the protocol’s variants.

Experiment 1 (Execution Time). Firstly we evaluate separately the performance
characteristics of both sub-protocols. Figure 3 shows the averaged number of
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reactions left to execute at each step, until inertia, using only the optimistic
mode, only the pessimistic mode, and the complete protocol with switches be-
tween protocols (using s = 0.7) with and without the optimisation of dormant
nodes, respectively. The theoretic optimum curve represents the amount of steps
needed to complete the execution in an ideal distributed system, i.e. with the
highest possible parallelism degree and no conflicts during the whole computa-
tion. Considering that we need at least two steps to fetch molecules (one to
request them and one to receive them), this hypothetical ideal system needs
2 ∗ m

nr steps to conclude the computation. This represents a lower bound on
the number of steps, regardless of the model of computation, be it chemical or
other. Note that a logarithmic scale is used for the number of reactions left.
The figure shows that, when using only the optimistic protocol, there is a strong
decline in the number of reactions left at the beginning of the computation, i.e.
when a lot of reactions are possible and that thus there are only few conflicts
in the requests. However, it gets harder for nodes to grab molecules when this
number declines. In fact, the system is not even able, for most of the runs,
to finish the execution, as the few reactions left are never executed, constantly
generating conflicts at fetch time. When the nodes are all pessimistic, there is
a steady, linear decrease in the number of reactions left, and the system is able
to reach inertia in a reasonable amount of time, thanks to the liveness ensured
in this mode. For most steps, the mixed curve traces the exact same path as
the optimistic one, which means that during this period the nodes employ the
optimistic sub-protocol. However, at the end, the system is able to quickly fin-
ish the execution as an aftermath of switching to the pessimistic sub-protocol.
After the switch, it diverges from the optimistic one to mimic the pessimistic
curve, exhibiting a 42% performance boost compared to the performance of the
pessimistic sub-protocol. Comparing the theoretic optimum to our protocol, we
notice an increase of 166% in the number of steps needed to reach inertia. This
is understandable, because there is usually a coordinator in centralised systems
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with which conflict situations can be circumvented, but it opens the door to
serious defaults, such as single-point-of-failure or bottleneck problems. Finally,
as far as performance is concerned, including dormant nodes leads to similar
results.
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Experiment 2 (Switch Threshold Impact). Next, we want to assess the impact
of s (the switch threshold) on the overall performance of the system. Figure 4
depicts, in the same logarithmic scale, the number of reactions left after each
step for different threshold values, varying from 0.1 to 0.9. As suspected, the
curves overlap during most steps, most nodes employing the optimistic sub-
protocol. The first curve to diverge is the one where the switch threshold is
set very high, to s = 0.9. Because the system depicted by that curve did not
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fully exploit the optimistic sub-protocol, it is the last to finish the execution.
Although slightly, the other curves start diverging at different moments, and,
thus, complete the execution after a different number of steps. Figure 4 shows
that, out of the five values tested for the switch threshold, s = 0.7 yields the
best performance results in this particular scenario. Looking at completion
times for different switch threshold values brings us to the conclusion that the
switch threshold can have a significant impact on performance; in this case the
execution time can be decreased by up to 20%. Finding an optimal value for s
for any application falls out of the scope of this paper.

Experiment 3 (Switch Behaviour). Here we examine the properties of the pro-
cess of switching from one protocol to the other, represented in Figures 5 and 6.
Figure 5 depicts the evolution of the number of nodes in each mode during the
execution. We can see that, at the beginning of the execution, all of the nodes
start grabbing molecules by using the optimistic sub-protocol. The switch hap-
pens about half way through the execution. Around that time, optimistic nodes
start aborting more and more reactions, and thus can no longer efficiently cap-
ture molecules, so they switch to the pessimistic sub-protocol. We observe that,
thanks to the systematic exchanges of local σ values, nodes in the system reach
a global consensus rather quickly — for a system with 250 nodes, at most 15
steps are needed for all of the nodes to switch to the pessimistic protocol. In
other words, the complete transition from using the optimistic sub-protocol to
using the pessimistic one constitutes at most 10% of the execution time. For
the following 15 steps all of the nodes are active – and pessimistic – and try to
capture molecules. However, as the concentration of molecules further drops,
the number of dormant nodes increases, in this way reducing network traffic and
allowing the still active nodes to capture the wanted molecules with more ease.
Note that, while the overall number of dormant nodes increases, nodes wake up
after a certain period and become pessimistic again. Still, one can observe that,
overall, there are more nodes asleep than pessimistic ones.

Figure 6 illustrates the number of nodes that switch from the optimistic to
the pessimistic sub-protocol on each step during the transition period. One can
observe that the more nodes in the system, the greater the number of nodes
that switch per step. This behaviour comes from the fact that an increase in
the number of nodes implies a greater accuracy of the system’s state estimation
σ as each node communicates with a wider spectre of nodes. This shows that
the system, regardless of its size, can react quickly to changes, even though
there is no global view of the situation.

As discussed in Section 3.3, pessimistic requests are favoured over optimistic
ones. However, we also conducted simulations when the inverse is true, i.e.
when optimistic requests are favoured. The results obtained are similar to those
shown in Figure 5: there is no difference in the total execution time nor in the
switch speed. The figure is, therefore, omitted from the paper. The similarities
stem from (i) the quick propagation of local σ values; and (ii) the pessimistic
requests’ higher chance of completing a capture cycle. Indeed, even though
optimistic requests are favoured, as the concentration of available molecules in
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the system drops, it get harder for nodes employing the optimistic sub-protocol
to capture all of the molecules needed for their reactions.

Figure 7: Generated messages when only the
optimistic sub-protocol is active.

Figure 8: Generated messages when only the
pessimistic sub-protocol is active.

Figure 9: Messages generated by the pro-
posed protocol (without the dormant state).

Figure 10: Messages generated by the pro-
posed protocol when pessimistic nodes can
become dormant.

Experiment 4 (Communication Costs). Next, we investigate the communication
costs involved in the process. Figures 7, 8, 9 and 10 depict the number of
messages sent per cycle in a system of 250 nodes. One cycle comprises 12
simulation steps, as it is the lowest common multiple of 4 and 6; at most 4
steps are needed for the optimistic sub-protocol to complete, and at most 6
steps for the pessimistic sub-protocol. The messages are classified into two
categories: useful messages (ones which led to a reaction, in blue) and useless
messages (those which did not induce a reaction, in grey). When looking at the
communication costs of the optimistic sub-protocol (Figure 7), one can observe
that a high volume of reactions is done in the beginning of the execution with
a small percentage of conflicts, and thus a small amount of useless messages.
However, as the execution progresses, the percentage of useful messages drops
rapidly, while the total number of messages is kept high. Figure 8 shows that the
pessimistic sub-protocol consumes less messages, with the percentage of useful
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messages dropping steadily and slowly. At the same time, as there are less and
less molecules in the system, the total number of messages slowly grows before
peaking at 8000 messages per cycle and then rapidly decreasing towards the
end of the execution. When comparing Figure 9 to the previous two, we note
that the protocol takes over the best properties of both of its sub-protocols.
Firstly, it takes over the elevated number of useful messages of the optimistic
sub-protocol. After the switch, the pessimistic protocol kicks in, bringing with
it a decrease in the total number of messages. Consequently, using a simplistic
and lightweight sub-protocol when possible and then falling back on a heavier
one reduces network traffic and improves scalability — a decrease of 30% in the
number of messages can be observed when compared to the pessimistic sub-
protocol alone. In addition, Figure 10 reveals that using the policy of dormant
nodes further improves the scalability of the protocol, as it significantly reduces
the total number of messages towards the end of the execution where there is the
highest number of conflicts. Finally, Figure 11 shows the number of messages
sent when the system’s size varies from 50 to up to 10000 nodes and confirms the
protocol’s scalability: the number of messages linearly grows with the system’s
size. Moreover, the scalability greatly improves by using dormant nodes — the
slope is gentler, rapidly widening the gap between the two curves.

4.2. Experiments Involving Multiple Rules

Now we are shifting our focus onto the rule-changing mechanism described
in Section 3.5. We want to examine its decision-making policy as well as look
at the behaviour of the protocol during the execution of programs comprised of
multiple rules. There are four experiments in this set, each evaluating one of
four multiple-rule programs, the descriptions of which follow.

4.2.1. Multiple-rule Test Programs

Independent-rules Program. A natural extension of the single-rule program, this
one contains three rules — R0, R1, R2 — which are independent, i.e. no two
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rules consume or produce the same type of molecules. Thus, reactions using
these rules can be done fully concurrently, without any interference, mutual
exclusion or synchronisation. The rules consume two molecules of type T0, T1
and T2, respectively. They produce no output.

Figure 12: Input/output
links between rules for the
dependent-rules program.

Figure 13: Input/output
links between rules for the
circular program.

Figure 14: Input/output
links between rules for the
workflow program.

Dependent-rules Program. Developing the previous program further we come
to the next one. In this new program, the three rules are now dependent — the
molecules produced by one rule are consumed by another. These input/output
links are illustrated in Figure 12. Each rule still consumes two molecules of its
own type. However, to create the dependencies between them, in this program
R0 produces two molecules of type T1 (used as input by R1), while R1 produces
two molecules of type T2 (consumed by R2). R2 produces no output.

Circular Program. This program exploits the circular-dependency pattern, as
shown on Figure 13. Its characteristics are the same as those of the dependent-
rules program, except that another input/output link has been established be-
tween the rules R2 and R0 in order to create the circular flow diagram: R2 now
produces a single molecule of type T0. Note that the fact that R2 produces
less molecules (only one) than it consumes (two) ensures inertia will be reached;
outputting two would cause an infinite execution loop.

Workflow Program. The last program is somewhat more complex than the oth-
ers, as it is a small split/merge workflow of rules comprising both dependent
and independent rules. The links between rules are depicted in Figure 14. It
consists of four rules: R0, R1, R2 and R3. The rule R0 consumes two molecules
of type T0 and produces two molecules: one of type T1, the other of type T2.
These are used as input by R1 and R2, respectively. These rules can, thus, be
run concurrently and independently of each other. R1 produces one molecule of
type T3, while R2 produces one of type T4. Finally, their outputs are merged
by the rule R3, which consumes one molecule per type — T3 and T4 — and
produces no output.

4.2.2. Evaluation

Experiment 5 (Independent-rules Program). The first program containing mul-
tiple rules we examined was the simplest one — independent-rules. Figure 15
depicts the flow of its execution: the number of nodes executing each rule is
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Figure 15: Number of nodes executing each rule (top), the number of pessimistic vs opti-
mistic nodes (middle) and the number of molecules of each type in the solution (bottom, in
logarithmic scale) during the execution of the independent program.
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shown in the top of the figure, in the middle the number of nodes employing
each sub-protocol is depicted, while the bottom illustrates, in logarithmic scale,
the number of molecules of each type present in the solution. It reveals that an
equal number of nodes execute each rule, which is to be expected since all of the
rules are executable in parallel and are not in conflict (no two rules share their
input molecule types). All the while, all of the nodes employ the optimistic
sub-protocol as the concentration of molecules is high enough for nodes to avoid
conflicts. As soon the number of optimists starts to decline (around step 75), the
nodes start to change rules, causing the fluctuations observed in the upper part
of the figure. From that point on we can see a constant decrease in the number
of optimists since more and more nodes enter into conflict over molecules, which
start to become rarer and rarer. At the same time, there is an increase in the
number of pessimistic (and then dormant) nodes, suggesting that most nodes
keep employing the pessimistic sub-protocol even after changing rules.

Due to the almost-perfectly equal distribution of nodes over rules they use
for reactions we conclude that the rule-changing mechanism correctly decides
which rule a node should execute. Moreover, as a result of changing rules, there
are nodes employing the optimistic sub-protocol all throughout the execution,
in this way speeding up the computation.

Experiment 6 (Dependent-rules Program). Figure 16 illustrates the course of the
execution of the dependent-rules program. At the beginning of the execution,
all of the nodes but R1’s and R2’s rule keepers, are applying the rule R0 since
there are only molecules of type T0 present in the system. Indeed, the discovery
protocol (abstracted out in this paper) is not able to discover molecules of
other types, prompting the nodes to change their active rule to R0 immediately.
Then, as the computation progresses, it becomes harder for nodes to grab T0-
molecules and they start turning pessimistic. As T1-molecules appear, some
nodes opt to change their active rule. More specifically, as there are more
T1-molecules around step 75, most of the nodes choose to execute the rule
R1, while a minority changes for R2 since the rule keeper of R1 managed to
produce a few T2-molecules. Due to this change of rules, all of the nodes become
optimistic again. Then, as they successfully perform reactions, the number
of T1-molecules rapidly drops, inducing another cycle of mass rule changing.
This time, R2 is favoured due to the high concentration of T2-molecules. This
change prompts nodes to become optimistic again. Because there are some
T1-molecules left around step 250, half of the nodes change back to R1 to
complete its execution, causing a sudden drop in the number of optimists and
the oscillation between being optimistic and pessimistic. At the same time, the
number of dormant nodes increases, meaning that nodes increasingly perceive
both rules as pessimistic. This is in accordance with the state of the solution
— there are very few molecules left in the system. In spite of the pessimism,
towards the end of the execution all of the nodes gradually switch back to R2,
finishing the execution either as pessimists or dormant nodes.

The conclusion drawn from the experiment is that the local decisions taken
by the rule-changing mechanism follow the flow of dependency between rules and
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Figure 16: Number of nodes executing each rule (top), number of pessimistic vs optimistic
nodes (middle) and number of molecules of each type in the solution (bottom, in logarithmic
scale) during the execution of the dependent program.
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are, thus, correctly taken in the case of multiple-rule dependency. In addition,
changing rules causes the nodes to become optimistic again, which allows the
system to progress faster.

Experiment 7 (Circular Program). Next, we simulated the circular program
using two distinct initial configurations, for which the results are shown in
Figures 17 and 18. In the first case the initial solution contained exclusively
T0-molecules, while in the second all three types of molecules were equally rep-
resented.

When examining Figure 17, one can see that at the beginning of the exe-
cution all of the nodes use the rule R0, which is consistent with the fact that
there are only T0-molecules in the solution. However, the concentration of T1-
molecules rapidly grows, causing the nodes to pass to the execution of R1 once
they have become pessimistic. In the same vein, around step 150 they opt for
R2, after which we can see the R0-R1-R2 execution pattern appear again. As
about step 200 the overall concentration of molecules is rather low, dormant
nodes begin to appear, while the number of optimists quickly drops to zero.
By the end of the execution, there are only a few molecules left and most of
the nodes are thus dormant, while only a small minority completes the few
remaining reactions.

The scenery drastically changes when all types of molecules are present in
the initial solution, as shown on Figure 18. The course of the execution bears a
strong resemblance to that of the independent-rules program (Figure 15): since
all types of molecules are constantly being consumed and produced, the nodes
are able to behave as if there are no dependencies between the rules. There are
slight differences in the two programs, though. Unlike in the independent-rules
program, here one can notice the cyclic change of the rules’ dominance from
Figure 17 (on a smaller scale though). Furthermore, the number of optimists
drops much faster here towards the end of the execution because a decrease
in concentration of molecules of one type implies an immediate decrease in
concentration of all the others’.

This experiment shows that, while the dependency between rules plays an
important role in the course of the execution, so do the data contained in the
initial solution when it comes to cyclic dependences between rules. However,
both the algorithm and the rule-changing mechanism are able to properly detect
the reaction potential of rules in each case, and thus follow the dependency flow
brought about by the program.

Experiment 8 (Workflow Program). In the last experiment, we observed the
behaviour of the system during the execution of the workflow program. The
results, depicted in Figure 19, show a substantial similarity to those of the
dependent-rules program (Figure 16). This behaviour is to be expected, since
this program is a variant of the dependent-rules program, whereby instead of
one middle rule there are two parallel ones independent of each other.

The rule-changing pattern reveals that the nodes first massively execute
R0 until the concentration of T0-molecules drops below those of T1- and T2-

29



 50

 100

 150

 200

 250

 300

N
u

m
b

e
r 

o
f 

n
o

d
e

s

R0
R1
R2

 50

 100

 150

 200

 250

N
u

m
b

e
r 

o
f 

n
o

d
e

s

Optimists
Pessimists
Dormant

1

10

100

1k

 10k

0 50 100 150 200 250 300 350 400

N
u

m
b

e
r 

o
f 

m
o

le
c

u
le

s

Time (in steps)

T0
T1
T2

Figure 17: Number of nodes executing each rule (top), number of pessimistic vs optimistic
nodes (middle) and number of molecules of each type in the solution (bottom, in logarithmic
scale) during the execution of the circular program.
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Figure 18: Number of nodes executing each rule (top), number of pessimistic vs optimistic
nodes (middle) and number of molecules of each type in the solution (bottom, in logarithmic
scale) during the execution of the circular program with different initial conditions.
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Figure 19: Number of nodes executing each rule (top) and the number of pessimistic vs
optimistic nodes (middle) and the number of molecules of each type in the solution (bottom,
in logarithmic scale) during the execution of the workflow program.
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molecules. The nodes then distribute themselves over the rules in such a way
as to consume mostly these molecules — around 100 nodes per rule for R1 and
R2. As they produce T3- and T4-molecules, about 50 nodes start executing the
last rule, R3. As T1- and T2-molecules are consumed at a faster pace, nodes
start abandoning R1 and R2 and pick R3. All the while, most of the nodes
are employing the optimistic sub-protocol. Then, in between steps 200 and
250 about half of the nodes change back to R1 and R2 in order to consume the
remaining T1- and T2-molecules, respectively, causing a decrease in the number
of optimists, due to the globally low concentration of molecules. Aat the end
of the execution almost all of the nodes use R3, with most of them dormant.
Indeed, as there are only a few reactions left at that point, it is impossible for
most of the nodes to perform reactions in spite the fact that they have correctly
picked the rule to execute.

This experiment confirms that the rule-changing mechanism is able to follow
more complex dependency patterns. Moreover, we can see that during most of
the execution the majority of nodes uses the optimistic sub-protocol, confirming
that the protocol is able to adapt itself to the current situation in the system.

5. Related Works

The chemical paradigm was originally conceived for programs which need
to be executed on parallel machines. The pioneering work of Banâtre et al. [3]
provides two conceptual approaches to the implementation problem, in both of
which each processor of a parallel machine holds a molecule and compares it
with the molecules of all the other processors. A slightly different approach
was proposed in the work of Linpeng et al. [14], where a program is executed
by placing molecules on a strip, and then folding them over after each vertical
comparison. Recently, Lin et al. developed a parser of GAMMA programs for
their execution on a cluster exploiting GPU computing power [17]. All works
mentioned exhibit significant speed-up properties, but the platforms on which
the authors experimented were rather restricted.

Mutual exclusion and resource allocation algorithms have been studied ex-
tensively. Most research focuses on sharing one specific resource, or critical
section, amongst many processes [27, 8]. A basic solution for the k-out of-M
problem was given by Raynal [25]. This early work is a static permission-based
algorithm in which only the number of a predefined set of resources varies from
node to node. In addition, the solution supposes a global knowledge of the sys-
tem. On the other hand, an execution environment for chemical programs is a
dynamic system in which nodes need to obtain different molecules, which can
be thought of as resources, at different times.

The three-phase commit protocol was originally proposed as a crash recovery
protocol for distributed database systems [30]. The authors study the two-phase
protocol and add to it a third, the so-called prepare commit phase, thanks
to which they are able to obtain a system which is able to abort database
transactions in any moment. Although in its essence similar to the three-phase
commit protocol, the goal of the pessimistic sub-protocol proposed in this paper
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is to secure the liveness of the system by ensuring that at least one node will
be able to complete its reaction in a situation where multiple requesters are in
conflict over different molecules.

6. Conclusion

While the chemical metaphor is gaining interest in the context of autonomic
computing, the actual deployment of programs following the chemical program-
ming model over distributed platforms is a widely open problem.

In this paper, we have described a protocol to capture several molecules
atomically in an evolving multiset of objects distributed on top of a large-
scale platform. The protocol consists in the association of two sub-protocols
intended to face different levels of density of potential reactions in the multiset.
By dynamically switching from one sub-protocol to the other, our protocol fully
exploits their good properties (the low communication overhead and speed of
the optimistic protocol, when the density of reactants is high, and the liveness
guarantee of the pessimistic protocol, when this density drops), without suffer-
ing from their drawbacks. We also propose a communication-reduction scheme
which is activated during the low-density period. Furthermore, we provide a
rule-changing mechanism able to guide the nodes’ computation when a pro-
gram with multiple rules is being executed. The paper provides a formal proof
of the protocol’s correctness and its different aspects have been experimented
with through simulation.

This protocol is part of an ambitious work which aims at building a dis-
tributed runtime for chemical programs. This work is also worth pursuing in
that it revisits classical problems in distributed systems, but with the specifici-
ties of the chemical model in mind. In this way, this paper tackles the mutual
exclusion with the liveness property as a system property while, while more
traditionally, liveness is a process’ property.

Among the directions planned for this work, one is to refine the execution
model to, for instance, balance the load of reactions among the nodes of the
platform.
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