
HAL Id: hal-01326930
https://hal.inria.fr/hal-01326930

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rule-driven service coordination middleware for
scientific applications

Héctor Fernández, Cédric Tedeschi, Thierry Priol

To cite this version:
Héctor Fernández, Cédric Tedeschi, Thierry Priol. Rule-driven service coordination middle-
ware for scientific applications. Future Generation Computer Systems, Elsevier, 2014, 35,
�10.1016/j.future.2013.12.023�. �hal-01326930�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49374207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01326930
https://hal.archives-ouvertes.fr


Rule-Driven Service Coordination Middleware

for Scientific Applications

Héctor Fernández1, Cédric Tedeschic, Thierry Priolb

aIRISA. University of Rennes 1 / INRIA
bINRIA

cVrije University Amsterdam

Abstract

With the proliferation of Web services, scientific applications are more and
more designed as temporal compositions of services, commonly referred to as
workflows. To address this paradigm shift, different workflow management
systems have been proposed. While their efficiency has been established over
centralized static systems, it is questionable over decentralized failure-prone
platforms.

Scientific applications recently started to be deployed over large dis-
tributed computing platforms, leading to new issues, like elasticity, i.e., the
possibility to dynamically refine, at runtime, the amount of resources dedi-
cated to an application. This raised again the demand for new programming
models, able to express autonomic self-coordination of services in a dynamic
platform.

Nature-inspired, rule-based computing models recently gained a lot of at-
tention in this context. They are able to naturally expressing parallelism,
distribution, and autonomic adaptation. While their high expressiveness and
adequacy for this context has been established, such models severely suffer
from a lack of proof of concepts. In this paper, we concretely show how to
leverage such models in this context. We focus on the design, the imple-
mentation and the experimental validation of a chemistry-inspired scientific
workflow management system.

Keywords: Service coordination; Workflow execution; Nature-inspired
computing; Rule-based programming; Decentralization

Preprint submitted to Future Generation Computer Systems



1. Introduction

Until recently, scientific applications were commonly hard-to-maintain
unreadable scripts, leading to a poor reusability level and high maintenance
costs. With the proliferation of Web services and the increasing adoption
of service-oriented computing, whose primary goal is to make a collection of
software services accessible through the network, scientists started to develop
their applications as compositions of Web services, today commonly referred
to as workflows. This shift of paradigm recently led to more reutilization,
and experiment sharing in the community. The specification and execution
of such workflows are managed by workflow management systems, responsi-
ble for the coordination of involved services. Addressing the limitations of
initial workflow languages such as the BPEL business standard [1], differ-
ent systems, for example Taverna [2], Kepler [3], Triana [4], Pegasus [5], or
Askalon [6] provide nice features such as implicit parallelism and data-driven
coordination, increasing the level of abstraction regarding execution manage-
ment as well as improving the manageability of science workflows, as it was
formulated by Zhao, Raicu and Foster in 2008 [7].

Science workflows need to be deployed over more and more distributed
environments, to face the computing power they require. Let us for instance
cite the Magellan project, which aims at providing a large and elastic dis-
tributed infrastructure for science [8]. Such platforms are the new target
for scientists needing to run their applications. They appear as one major
solution to face their computing requirements. Thus it appears that future
scientific workflow systems and languages should provide a natural way to
express both workflows and platform characteristics. We identify several crit-
ical features the future WMS must address: (i) the high degree of parallelism
and distribution of services deployed, (ii) the potential issues brought by a
centralized coordinator such as single points of failure and scalability, and
(iii) the dynamicity and distribution of the next generation of distributed
infrastructures. These features call for new specification tools, able to easily
express them.

Lately, nature metaphors, and in particular chemistry-inspired analogies
have been identified as a promising source of inspiration for developing new
approaches for autonomous service coordination [9]. Among them, the chem-
ical programming paradigm is a rule-based programming model built atop
a high level execution model within which a computation is basically seen
as a set of reactions consuming some molecules of data interacting freely

2



within a chemical solution producing new ones (resulting data). Reactions
take place in an implicitly parallel, autonomous, and decentralized manner.
More recently, the Higher-Order Chemical Language (HOCL) [10] raised the
chemical model to the higher-order, providing a highly-expressive paradigm :
every entity in the system (in our case data, services and their dependencies,
and the platform itself) is seen as a molecule. Moreover, rules can apply
on other reaction rules, programs dynamically modifying programs, opening
doors to dynamic adaptation. This model is now envisioned as an alterna-
tive to naturally express autonomous coordination [11]. However, while its
expressiveness and adequacy to service coordination have been established,
the actual experimentation of the chemical model has remained quite limited
until now. There is a strong need of a proof of concept to show its viability,
in particular compared to current WMSs.

Contribution. In this paper, we present a workflow managment system able
to solve a wide variety of workflow patterns both in a centralized and a
decentralized way following the chemical model. Its implementation and
performance evaluation on different classic scientific workflows presenting
different characteristics are discussed. For the sake of comparison and dis-
cussion, workflows tested were also executed on top of Taverna and Kepler
WMS, validating our software prototype, and establishing the viability of the
concept.

Outline. Section 2 introduces the preliminaries of our work, namely workflow
management systems and the Higher-Order Chemical Language (HOCL).
Section 3 describes the architecture and workflow engine we have built. We
show how a workflow is described in our model, and how chemical rules
are defined and combined so that they can solve a wide variety of workflow
patterns. Section 4 focus on the implementations of both centralized and de-
centralized versions of the system defined. Section 5 details the experimental
campaign and its results. Section 6 discusses related works. Section 7 draws
a conclusion.

2. Background

In this section, we introduce the two background areas of this work :
workflow management systems and the chemical computing model.

3



2.1. Workflow Management for e-Science

The increase in the reliance on service-oriented architectures (SOA) in
e-sciences resulted in applications to be more and more defined as work-
flows of services. As a natural consequence, workflow management systems
have gained recently considerable attention. The BPEL standard [1] and
its followers [12] were at first briefly adopted by the scientific community.
Then, science-oriented workflow languages and systems were designed, to
cope with the different characteristics of scientific applications, such as a
high parallelism degree and the need for scheduling. In this way, a number
of systems were designed for the expression and execution of scientific work-
flows. Taverna [2], Kepler [3], Triana [4], Pegasus [5] or Askalon [6] provide
nice features such as implicit parallelism and data-driven coordination, in-
creasing the abstraction regarding execution management while improving
the efficiency and manageability. All typically provide a visual notation for
service composition.

The remainder of this section reviews the two open-source workflow sys-
tems used for the sake of validation of our work : Taverna and Kepler. We
chose Kepler and Taverna because they are among the most used and mature
open-source scientific WMS. As mature as it can be, we chose not to use Pe-
gasus as the resource management is integrated into the workflow manager,
which is not our primary concern here.

Taverna [2] builds upon service-oriented architectures, and the web service
standards. Interactions between services (referred to as processors) are de-
fined using the XML-based Scufl language or a GUI. Taverna is data-driven.
Data-dependencies specify links among different services, so parallelism is
implicit, and optimized at run time. Note that control-dependencies can
also be specified by links that define precedence conditions among proces-
sors. Taverna’s workflow engine is centralized ; a unique coordinator manages
the coordination of all computation blocks.

Kepler is a centralized workflow engine built upon Ptolemy II [13], ini-
tiated in part by the members of the Science Environment for Ecological
Knowledge (SEEK)1. It also relies on a data-driven model for simulating and
designing real-time and concurrent workflows using a proprietary modeling
markup language called MoML. This language is based on the actor-oriented
modeling paradigm which consists in a composition of computation blocks

1http://seek.ecoinformatics.org/

4



called actors representing operations or data sources. Thanks to its data-
driven behavior, Kepler provides an intuitive and implicit parallel execution.
However, it may hinder the execution of more complex workflow patterns.
In recent versions, some control structures can be supported through more
sophisticated programming.

The limitation of both Taverna and Kepler is the lack of (i) facilities to
describe more complex control-flow patterns, and (ii) support for a decen-
tralized coordination of the workflow execution.

2.2. Rule-Based Chemical Programming

Nature analogies, and more specifically bio-chemical metaphors, have re-
cently gained momentum in the construction of programming models coping
with the requirements of the Internet of Services [9]. Initially proposed to nat-
urally express highly parallel programs, the chemical programming paradigm
exhibits properties required in emerging service platforms and naturally ex-
presses autonomic coordination.

According to the chemical metaphor, molecules (data) float in a chemi-
cal solution, and react according to reaction rules (program) producing new
molecules (resulting data). These reactions take place in an implicitly par-
allel, autonomous, and non-deterministic way until no more reactions are
possible, a state referred to as inertia. The computation is carried out ac-
cording to local conditions without any central coordination, ordering or
serialization. This programming style allows writing programs cleared of any
artificial sequentiality, so the programmer can concentrate on the functional
aspects of the problem solved. The execution model is reactive, in the sense
that the presence of a molecule suffices to trigger a reaction requiring such
a molecule. Nevertheless, as it will be shown, it can express sequentiality if
needed.

Such a model takes its roots in concurrent multiset rewriting and was
formalized in [14], and then put in practice through the Higher-Order Chem-
ical Language (HOCL) [10]. In HOCL, every entity is a molecule, including
reaction rules. A program is a solution of molecules, formally a multiset of
atoms, denoted A1, A2, . . . ,An, “,” being the associative and commutative
operator of construction of compound molecules. Atoms can be constants
(integers, booleans, etc.), reaction rules, tuples of n atoms, denoted A1:A2:
. . . :An, or sub-solutions, denoted 〈Mi〉, where Mi is the molecule content
of the sub-solution. A reaction involves a reaction rule replace P by M if
V and a molecule N satisfying the pattern P and the reaction condition V .

5



The reaction consumes the molecule N to produce a new molecule M. This
rule can react as long as a molecule satisfying the pattern P exists in the
solution. Its one-shot variant, denoted one P by M if V , reacts only once,
and is consumed in the reaction. Rules can either appear explicitly or be
directly named using the let operator, allowing to use only this name in the
solution. Let us consider the simple HOCL program below that extracts the
maximum even number from a set of integers.

1.01 let selectEvens = replace x, ω by ω if x%2 ! = 0 in
1.02 let getMax = replace x, y by x if x ≥ y
1.03 in
1.04 〈
1.05 〈selectEvens, 2, 3, 5, 6, 8, 9〉,
1.06 replace-one 〈selectEvens = s, ω〉 by getMax, ω
1.07 〉

The selectEvens rule removes odd numbers from the solution, by re-
peated reactions with an integer x, ω denoting the whole solution in which
selectEvens floats, deprived of x. The getMax rule reacts with two integers
x and y such that x ≥ y and replaces them by x. In a solution of integers, this
rule, by its repeated application, extracts the maximum value. The solution
is composed by (i) a sub-solution containing the input integers along with
the selectEvens rule, and (ii) a higher-order rule (on Line 1.06) that will
open the sub-solution, extract the remaining (even) numbers and introduce
the getMax rule.

Solving the problem requires the sequentiality of the reactions of the two
rules. This can be achieved by the higher order : in an HOCL program,
a sub-solution can react with other elements as soon as it has reached the
state of inertia. In other terms, the higher-order rule will react with the
sub-solutions only when no more reactions are possible within it, i.e., when
it contains only even numbers. (Note that the order in which odd numbers
are deleted is non-deterministic.) The result is then as follows :

〈
〈selectEvens, 2, 6, 8〉,
replace-one 〈selectEvens = s, ω〉 by getMax, ω

〉

6



Then, the higher-order rule reacts with it, extracting remaining numbers,
introducing dynamically the getMax rule, and in this way triggering the
second phase of the program where the maximum value is kept. The solution
is then :

〈2, 6, 8, getMax〉

getMax then reacts with pairs of integers until only 8 remains. Note
that, due to the higher order, putting both rules directly in the solution of
integers could entail a wrong behavior as the pipeline between the two rules
would be broken, possibly leading to a wrong result. For instance, if getMax
reacts first with molecules 8 and 9, 8 would be deleted.

While this example is quite simple, it already provides the intuition be-
hind autonomic coordination and adaptation, and its simple programming
style. These features are explored in more detail in [15, 16, 17]. Furthermore,
as a rule-based language, HOCL provides a high level of abstraction for the
modelling of the service interactions, as rules allow to define the collabora-
tions without having to interact with the individual services.

3. Chemistry-Inspired Workflow Management

In this section, we describe an HOCL-based workflow management sys-
tem. First, the coordination mechanisms developed, which build upon
higher-order chemistry, are presented. Then, the architecture underlying
it, for both centralized or decentralized coordination are described. The con-
cepts presented in this section take their origin in the founding work presented
in [18].

3.1. Workflow Representation

Let us consider a simple workflow expressed using BPMN (Business Pro-
cess Modeling Notation) [19], and composed of the four services S1, S2, S3

and S4, as illustrated in Figure 1. In this example, after S1 completes, S2 and
S3 can be invoked in parallel. Once S2 and S3 have both completed, S4 can
be invoked. Using any of the existing BPMN editors [20], we assume data
and control dependencies are translated to a traditional workflow definition
language, such as the well-known BPEL [1] or SCUFL [21]. For instance, a
BPEL specification could be translated into a chemical program, as is de-
tailed in [22]. Even though HOCL is used to describe and execute workflow

7



specifications, our purpose is to show its potential as executable workflow
language. Thus, the general shape of the chemical representation of a work-
flow is as follows : the main solution is composed of as many sub-solutions
as there are WSes in the workflow. Each sub-solution represents a WS with
its own data and control dependencies with other WSes. More formally, a
WS is a molecule of the form WSi : 〈. . .〉 where WS i refers to the symbolic
name given to the service whose connection details and physical location are
hidden.

Figure 1: Simple workflow example.

Based on the workflow shown in Figure 1, an example of its chemical
representation is illustrated by Figure 2. In this example, WS1 : 〈. . .〉 to
WS4 : 〈. . .〉 represent WSes in the solution. The relations between WSes
are expressed through molecules of the form Dest:WSi with WSi being
the destination WS where some information needs to be transferred. For
instance, we can see in the WS1 sub-solution that WS1 will transfer some
information (its outcome) to WS2 and WS3 (Line 2.02).

2.01 〈 // Workflow’s solution

2.02 WS1:〈Call:S1, Param:〈in1〉, Dest:WS2, Dest:WS3〉, // WS1 sub-solution

2.03 WS2:〈Dest:WS4, replace Result:WS1:value1 by Call:S2, Param:〈value1〉〉,

2.04 WS3:〈Dest:WS4, replace Result:WS1:value1 by Call:S3, Param:〈value1〉〉,

2.05 WS4:〈replace Result:WS2:value2, Result:WS3:value3 by Call:S4, Param:〈value2〉〉

2.06 〉

Figure 2: Chemical workflow representation.

Let us have a more precise look on these dependencies. WS2 contains
a data dependency: it requires a molecule Result:WS1:value1 containing

8



the result of S1 to be invoked (second part of Line 2.03). The two molecules
produced by the reaction represent the call to S2 and their input parameters.
They are expressed using a molecule of the form Call:Si, and a molecule
Param:〈in1, ..., inn〉, where in1, ..., inn represent the input parameters to
call service Si. In Figure 2, this input parameter corresponds to the result
of some previous service Sj. WS3 works similarly. WS4 performs a control
pattern known as synchronization. It needs to wait until both WS2 and WS3
have completed, in other words, until the molecules Result:WS2:value2 and
Result:WS3:value3 appear in its own sub-solution, to start its execution.
In addition, a data dependency is also expressed in WS4 : the result of S2 is
required to call S4.

To ensure the execution of a chemical workflow, additional generic chem-
ical rules (i.e., independent of any specific workflow) must be defined. These
rules consume and generate additional molecules to manage transfer of in-
formation between services, condition checking, fault detection, and more
complex control flows. To express the whole logic of a workflow, these rules
are composed relying on the analogy of molecular composition. This consists
in the composition of several molecules, which are combined based on data
molecule dependencies, and whose reactions produce new molecules reacting
in their turn, and so on, until the workflow is completed.

3.2. Generic Rules for Invocation and Transfer

Common tasks in a workflow of services are service invocation and in-
formation transfer between services. We now review three generic rules il-
lustrated in Algorithm 1, responsible for these basic tasks, and that will be
commonly encountered in the compositions presented later. The invokeServ
rule encapsulates the actual invocation of services. Upon reaction, it invokes
the Web Service Si, by consuming the tuple Call:Si representing the invoca-
tion itself, and Param:〈in1, ..., inn〉 representing the input parameters, and
generates the molecules containing the results of the invocation in the WSi
sub-solution. The molecule Flag Invoke is a flag whose presence in the
solution indicates that the invocation can take place. The preparePass rule
is used for preparing the messages aimed at transferring the results to their
destination services, that will in turn trigger the execution of the passInfo
rule.

Rule passInfo transfers molecules of information between WSes. This
rule reacts with a molecule WSi:〈Pass:d:〈ω1 〉〉 that indicates that some
molecules (here denoted ω1) from WSi needs to be transferred to d. These

9



Algorithm 1 Basic generic rules.

3.01 let invokeServ = replace WSi:〈Call:Si, Param:〈in1, . . . , inn〉, Flag Invoke, ω 〉,

3.02 by WSi:〈Result:WSi:〈value〉, ω 〉

3.03 let preparePass = replace WSi:〈Result:WSi:〈value〉, Dest:WSj, ω〉

3.04 by WSi:〈Pass:WSj:〈Completed:WSi:〈value〉 〉 〉

3.05 let passInfo = replace WSi:〈Pass:WSj:〈 ω1 〉, ω2 〉, WSj:〈 ω3 〉

3.06 by WSi:〈 ω2 〉, WSj:〈 ω1, ω3 〉

molecules, once inside the sub-solution of d will trigger the next step of the
execution. Therefore, the molecule ω1 will be transferred from sub-solution
WSi to sub-solution d, when reacting with the passInfo rule.

3.3. Complex Workflow Patterns

With the generic rules described until now, the engine can only support
data flows which induce a deterministic behavior to the execution of our pro-
grams. However, more complex control flows should be taken into account,
in order to solve a broader range of workflow definitions. We now illustrate
how HOCL can be leveraged to deal with complex control flows, by detailing
a particular pattern known as Simple Merge.

As illustrated in Figure 3, a simple merge pattern resembles a XOR oper-
ation. It involves a structure where two or more source service flows (denoted
S1 to Sn on Figure 3 converge into a single destination (denoted SD) asyn-
chronously. The destination service must however be launched only once,
regardless of the number of incoming branches. In other words, only the
first source service to complete will influence the remainder of the workflow
execution.

10



Figure 3: Simple merge pattern.

To enhance our workflow engine with the support of the simple merge
pattern, we need to define the appropriate generic rules and dispatch them
in the sub-solutions of WSs involved. These rules are given in Algorithm 2.
The sm preparePass reaction rule is used to add, in the sub-solution of ev-
ery incoming service, a particular Merge molecule to the information to be
transferred to the destination service (see Lines 4.01 and 4.03). The destina-
tion WS waits for this molecule and only the first Merge molecule received
in its sub-solution will be consumed. Next, sm setFlag reaction rule takes
place, producing one molecule of the form Flag Invoke, that allows to
trigger the service invocation. The following Merge molecules received will
be ignored. In terms of molecular composition, each source WS will have in
its sub-solution one sm preparePass rule (A on Figure 3) and one passInfo
rule (denoted B on Figure 3), they are composed with sm setFlag rule (C )
in the destination WS.

Algorithm 2 Generic rules - Simple merge pattern

4.01 let sm preparePass = replace Dest:WSj, Result:WSi:〈value〉

4.02 by Pass:WSj:〈Result:WSi:〈value〉, Merge〉

4.03 let sm setFlag = replace-one Merge by Flag Invoke

Note that we omit more complex control flows, such as synchronization
merge, exclusive choice or discriminator, as it is not the scope here. The

11



description of the support for a wide range of control flow patterns, as well
as its design process, can be found in the research report [23].

On the other hand, even though the design of large workflows could lead
to the creation of a large number of rules, which is a problem inherent to
rule-based languages, one point is that, the HOCL engines themselves include
the generic rules needed to execute the specific workflows described. More
precisely, it means that the workflow itself, as defined by the programmer,
is quite reduced, as, as discussed before, only the name of the rules to be
used, and not the rule itself needs to be included by the programmer. In our
work, we consider that handling errors is delegated to the HOCL compiler
and runtime, which is in charge to validate the definition and to execute the
rules.

To sum up, the coordination is achieved through a set of autonomic and
local reactions taking place within each WS’s sub-solution (or between two
WSs’ sub-solutions), providing adequate abstractions for a natural expres-
sion of a decentralized coordination for virtually all identified workflow pat-
terns [24].

3.4. Execution Example

To better understand how the coordination between chemical engines
works, we here present the execution of the workflow example illustrated in
Figure 2, for which we focus on each step of the coordination logic. These
steps are listed in Figures 4 (steps 1-3), 5 (steps 4-7) and 6 (steps 8-10). Recall
that, thanks to the higher-order property, reaction rules react themselves
with other molecules. As we have discussed already, the example is composed
by four ChWSes applying parallel split and synchronization patterns. More
precisely, the execution is as follows: After ChWS1 completes, it forwards
the result to ChWS2 and ChWS3 in parallel. Once ChWS2 and ChWS3
have completed, ChWS4 can start. Consider that each chemical local engine
is responsible for the reactions taking place within its sub-solution in the
multiset, thus respecting at runtime the decentralization designed. Indeed,
for the sake of clarity, we only mention the molecules that take part in the
logic of the coordination.

The first step (Lines 5.02-5.05) corresponds to the initial state of the
multiset, illustrated in Figure 4. Initially, the only possible reaction is inside
ChWS1, the invokeServ rule is triggered by the HOCL interpreter of ChWS1,
producing the outcome molecule Result:ChWS1:〈val〉. This molecule rep-
resents the result of the invocation of S1. Then, the preparePass rule con-

12



sumes the molecules Dest:destination and Result:ChWS1:〈val〉, preparing
the parallel split. Therefore, it produces two new molecules for the dis-
tribution of this result to ChWS2 and ChWS3 (Line 6.02). Finally, still
through ChWS1, passInfo triggers it by transferring in parallel the outcome
of ChWS1.

Once the information is received by ChWS2 and ChWS3, the re-
actions (Lines 6.09 and 6.11) are triggered, in parallel, producing the
needed molecules to invoke S2 and S3. Thus, molecules of the form
Call:Si and Param:(val) contained into ChWS2 and ChWS3 respectively,
launch the invokeServ rule (Lines 6.08-6.10) that generates the result of
S2 and S3. Similarly to ChWS1, the molecules Result:ChWS2:〈val2〉 and
Result:ChWS3:〈val3〉 react with the preparePass rule. Finally, in ChWS2
and ChWS3, the passInfo rule propagates the molecule Pass:ChWS4:〈 in-
formation 〉 to ChWS4 (Lines 7.03-7.04).

The execution ends with the last steps of Figure 6, processed by ChWS4’s
local engine. Once the information from ChWS2 and ChWS3 is received by
ChWS4, the reaction rule (Line 7.12) can react with results molecules to pro-
duce two new molecules for invoking service S4 (Line 7.18). Finally, invoke-
Serv rule will take place producing the final result Result:ChWS4:〈val4〉.

To sum up, local engines of each ChWSes are co-responsible for applying
workflow patterns, invoking services, and propagating the information to
other ChWSes. The coordination is achieved as reactions become possible,
in an asynchronous and decentralized manner.

4. Architectures and Implementations

To put into practice and validate the concepts presented before, we have
developed an architectural framework (whose main ideas are taken from our
initial work in [18]) and three software prototypes exhibiting different levels of
decentralization regarding processing and communications. Firstly, we devel-
oped a shared space-based architecture referred to us as HOCL-TS, inspired
by [18]. Secondly, and also for the sake of comparison and discussion, two
other architectures were developed, namely HOCL-C and HOCL-P2P, fully
centralized, and fully distributed, respectively. These three architectures rely
in common on an HOCL-based workflow engine, enhanced with the molecu-
lar composition-based rules for the modelling of service interactions. Let us
briefly introduce these architectures. Figure 7 illustrates their relationships.

13



5.01 〈

5.02 ChWS1:〈Dest:ChWS2,Dest:ChWS3, invokeServ, preparePass, passInfo, Call:S1, Param:in1〉,

5.03 ChWS2:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S2, Param:(val)〉,

5.04 ChWS3:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S3 Param:(val)〉,

5.05 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉

5.06 〉

↓

5.07 〈

5.08 ChWS1:〈Dest:ChWS2,Dest:ChWS3, preparePass, passInfo, invokeServ, Call:S1, Param:in1 〉,

5.09 ChWS2:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S2, Param:(val)〉,

5.10 ChWS3:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S3 Param:(val)〉,

5.11 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉

5.12 〉

↓

5.13 〈

5.14 ChWS1:〈Dest:ChWS2,Dest:ChWS3, preparePass, passInfo, Result:ChWS1:〈val〉〉,

5.15 ChWS2:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S2, Param:(val)〉,

5.16 ChWS3:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S3 Param:(val)〉,

5.17 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉

5.18 〉

Figure 4: Workflow execution, steps 1-3.

14



6.01 〈

6.02 ChWS1:〈passInfo, Pass:ChWS2:〈Completed:ChWS1:〈val〉 〉,

Result:ChWS1:〈val〉, Pass:ChWS3:〈Completed:ChWS1:〈val〉 〉 〉,

6.03 ChWS2:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S2, Param:(val)〉,

6.04 ChWS3:〈Dest:ChWS4, invokeServ, preparePass, passInfo,

replace Completed:ChWS1:〈val〉 by Call:S3 Param:(val)〉,

6.05 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉by Call:S4, Param:(val2)〉 〉

↓

6.06 〈

6.07 ChWS1:〈Result:ChWS1:〈val〉 〉,

6.08 ChWS2:〈Dest:ChWS4, invokeServ, preparePass, passInfo, Completed:ChWS1:〈val〉,

6.09 replace Completed:ChWS1:〈val〉 by Call:S2, Param:(val)〉,

6.10 ChWS3:〈Dest:ChWS4, invokeServ, preparePass, passInfo, Completed:ChWS1:〈val〉,

6.11 replace Completed:ChWS1:〈val〉 by Call:S3, Param:(val)〉,

6.12 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉 〉

↓

6.13 〈

6.14 ChWS1:〈Result:ChWS1:〈val〉 〉,

6.15 ChWS2:〈Dest:ChWS4, invokeServ, preparePass, passInfo, Call:S2, Param:(val)〉,

6.16 ChWS3:〈Dest:ChWS4, invokeServ, preparePass, passInfo, Call:S3, Param:(val)〉,

6.17 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉 〉

↓

6.18 〈

6.19 ChWS1:〈Result:ChWS1:〈val〉 〉,

6.20 ChWS2:〈Dest:ChWS4, Result:ChWS2:〈val2〉, preparePass, passInfo〉,

6.21 ChWS3:〈Dest:ChWS4, Result:ChWS3:〈val3〉, preparePass, passInfo〉,

6.22 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉 〉

Figure 5: Workflow execution, steps 4-7.

15



7.01 〈

7.02 ChWS1:〈Result:ChWS1:〈val〉 〉,

7.03 ChWS2:〈Pass:ChWS4:〈Completed:ChWS2:〈val2〉 〉, passInfo, Result:ChWS2:〈val2〉 〉,

7.04 ChWS3:〈Pass:ChWS4:〈Completed:ChWS3:〈val3〉 〉, passInfo, Result:ChWS3:〈val3〉 〉,

7.05 ChWS4:〈invokeServ,

replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉

7.06 〉

↓

7.07 〈

7.08 ChWS1:〈Result:ChWS1:〈val〉 〉,

7.09 ChWS2:〈Result:ChWS2:〈val2〉 〉,

7.10 ChWS3:〈Result:ChWS3:〈val3〉 〉,

7.11 ChWS4:〈invokeServ, Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉,

7.12 replace Completed:ChWS2:〈val2〉, Completed:ChWS3:〈val3〉 by Call:S4, Param:(val2)〉

7.13 〉

↓

7.14 〈

7.15 ChWS1:〈Result:ChWS1:〈val〉 〉,

7.16 ChWS2:〈Result:ChWS2:〈val2〉 〉,

7.17 ChWS3:〈Result:ChWS3:〈val3〉 〉,

7.18 ChWS4:〈invokeServ, Call:S4, Param:(val2)〉

7.19 〉

↓

7.20 〈

7.21 ChWS1:〈Result:ChWS1:〈val〉 〉,

7.22 ChWS2:〈Result:ChWS2:〈val2〉 〉,

7.23 ChWS3:〈Result:ChWS3:〈val3〉 〉,

7.24 ChWS4:〈Result:ChWS4:〈val4〉 〉

7.25 〉

Figure 6: Workflow execution, steps 7-11.

16



Their design and implementation will be detailed in Sections 4.1 and 4.2,
respectively :

Figure 7: Three architectures.

• HOCL-C. Centralized, HOCL-C is an architecture composed of a sin-
gle chemical engine playing a role similar to that of traditional workflow
engines.

• HOCL-TS. Inspired by the architectural framework proposed in [18],
HOCL-TS (for TupleSpace) is composed of a set of distributed chemi-
cal engines coordinated through reading and (re)writing the multiset,
which now acts as a shared space containing the information about the
workflow to be executed. This architecture provide loosely-coupled in-
teractions between services. The execution is now decentralized, while
the multiset remains a central mean for services to communicate.

• HOCL-P2P. Fully decentralized, HOCL-P2P is based on the direct,
point-to-point communication of chemical engines, when executing the
workflow. The multiset is now distributed on the nodes involved prior
to the execution. Note that HOCL-P2P shares some similarities with
the work presented in [25].

4.1. Architectures

We now detail how an HOCL-based workflow engine can be powered over
both centralized and decentralized architectures.

17



4.1.1. HOCL-C

Following traditional workflow management systems, the coordination
can be managed by a single node, referred to as the chemical workflow ser-
vice, as illustrated by Figure 8. First, notice the S components, which act
as interfaces with the actual remote Web services to be called. Then, the
multiset contains the chemical workflow definition and its coordination in-
formation (as presented before). It is accessed by the chemical engine to
perform the required reactions.

Figure 8: HOCL-C architecture.

4.1.2. HOCL-TS

Distributing the workflow execution means that each service involved will
participate in the coordination process. In HOCL-TS, each Web service is
chemically encapsulated, to form what we refer to as a Chemical Web Ser-
vice (ChWS). There is as many ChWSes as Web service participating in a
service composition. Each ChWS is equipped with a chemical engine and
a local copy of a part of the multiset, which its chemical interpreter will
act on. The complete multiset, containing the workflow definition and thus
all required coordination information, will now act as a space shared by all
ChWSes involved in the workflow. In other words, ChWSes will communi-
cate by reading and writing it, as illustrated by Figure 9. This architecture
follows a loosely coupled interaction model, as ChWSes only keep a physical
connection with the shared space, not with the other ChWSes. Note that
however, the communication remains based on a centralized data space, that
may become a bottleneck.

18



Figure 9: HOCL-TS architecture.

4.1.3. HOCL-P2P

Suppressing this central space led to the design of HOCL-P2P, where both
computations and communication are fully decentralized. In HOCL-P2P, a
set of engines interact to execute a service composition in a peer-to-peer fash-
ion, as proposed before for instance in works such as [25] or [26]. ChWSes
now rely only on message passing to coordinate the workflow execution, as
illustrated by Figure 10. This communication mechanism involves the partic-
ipants in a more tightly coupled interaction, as they have to keep a physical
reference to other ChWSes they are supposed to interact with. Each ChWS
contains one portion of the workflow definition. These portions will be pro-
cessed by the chemical engines of each ChWS. Consequently, this architecture
assumes that the workflow portions are distributed prior to the execution.

19



Figure 10: HOCL-P2P architecture.

4.2. Software Prototypes

In this section, we discuss the actual implementation of three software
prototypes, one for each of the previously described architectures. The low
layer of our prototypes is an HOCL interpreter based on the on-the-fly com-
pilation of HOCL specifications [27]. The prototypes are fully written in
Java.

4.2.1. HOCL-C Prototype

The HOCL-C prototype is illustrated by Figure 11. As mentioned in Sec-
tion 3.1, the workflow definition is executed as a chemical program by the
chemical workflow service. The low layer of the architecture is the HOCL
interpreter. Given a workflow specification as input (an HOCL program),
it executes the workflow by processing the multiset initially fed with the
workflow definition, like any other HOCL program. The interface between
the chemical engine and the distant services themselves is realized through
the service caller component, which has been implemented with the DAIOS
framework [28]. DAIOS provides an abstraction layer allowing dynamic con-
nection to different flavors of services (SOAP or RESTFul), abstracting out
the target service’s internals. Note that for our purpose, DAIOS was specif-
ically extended to automatically generate dynamic bindings, as well as the
correct input and output messages required to realize the interface between

20



the chemical engines and a Web service. As such, web services can be easily
changed by only specifying a web service description file (WSDL).

Figure 11: HOCL-C implementation.

4.2.2. HOCL-TS Prototype

The HOCL-TS prototype is illustrated on Figure 12. On a software point
of view, the main difference between HOCL-TS and HOCL-C prototypes, be-
yond the obvious architectural difference, stands in the multiset implementa-
tion, as it now represents a shared space playing the role of a communication
mechanism and a storage system.

The multiset is initially fed with the HOCL specification of the workflow.
As we have detailed in Section 3.1, the workflow definition is comprised of one
sub-solution per Web service involved. The information in one sub-solution
can only be accessed by the corresponding ChWS. On each ChWS, a simple
local storage space acts as a temporary container for the sub-solution to be
processed by a local HOCL interpreter. The interface between a ChWS and
a concrete Web service is still realized by the service caller based on the
DAIOS framework, mentioned earlier.

21



Figure 12: HOCL-TS implementation.

ChWSes communicate with the multiset using the Java Message Service
(JMS) publisher/subscriber modules. Concretely, we use ActiveMQ (ver-
sion 5.4.1), an implementation of the JMS 1.1 specification, which can be
embedded in a Java application server. The multiset itself is encapsulated
into a JMS server to allow concurrent reading and writing operations. The
publish/subscribe messaging model is used by the ChWSes and the multiset
whereby message producers called publishers pushing each message to each
interested party called subscribers.

Initially, the multiset, through its JMS publisher (denoted PUB on Fig-
ure 12) pushes the content of each WSi sub-solution to the JMS listener
(denoted LIS on Figure 12) of the corresponding ChWS. Upon receipt, the
content of the ChWSi solution is copied into the local multiset. When a
ChWS has its HOCL interpreter that detected the inertia in its sub-solution,
its publisher sends its content back to the multiset’s listener.

4.2.3. HOCL-P2P Prototype

The HOCL-P2P prototype, illustrated by Figure 13 can be seen as a
static interconnection of HOCL-C prototypes, which are now Chemical Web
Services (ChWSes) each one corresponding to a service involved in the work-
flow. The workflow definition, which is comprised of one sub-solution per

22



Web service is now dispatched to each ChWS at build-time, informing each
Web service statically about which other Web services to communicate.

Figure 13: HOCL-P2P implementation.

Thus, ChWSes still communicate among them through Java Message
Service (JMS) publisher/subscriber, but without the need for the multiset to
become a shared space. A JMS server is included into each ChWS. So when
one node detects local inertia, its JMS publisher sends the outcome directly
to the JMS listener of its successors in the workflow. DAIOS is again used
to implement the service caller.

5. Experimentations

This section explores the viability and shows the benefits of using a
chemistry-inspired system for service coordination. For the sake of validation,
a series of experiments were conducted on our chemistry-inspired workflow
system with the following objectives in mind : (i) capture the behavior of
our approach when processing different types of workflows ; (ii) evaluate the
benefits of a decentralized coordination compared to a centralized one when

23



modelling and executing different workflow structures ; (iii) establish the via-
bility of a chemistry-based workflow management system in comparison with
what appears to be the most mature workflow management systems (WM-
Ses).

In the following, we present and analyse our experimental results. Five
engines have been used : Taverna Workbench 2.2.0 [2], Kepler 2.0 [3], HOCL-
C, HOCL-TS and HOCL-P2P. Note that we have considered Taverna and
Kepler as representing validated standards we will see as references to achieve
our objectives.

5.1. Workflow-based Applications

Three scientific workflows have been used. Illustrated by Figure 14 (left),
BlastReport is a home-built bioinformatics workflow which retrieves a blast
report of a protein in a database given its protein ID. The second one, Cardia-
cAnalysis, illustrated on Figure 14 (right), is a cardiovascular image analysis
workflow which extracts the heart’s anatomy from a series of image sequences
by applying image processing algorithms, developed by the CREATIS-LRMN
biomedical laboratory2. The third one, illustrated by Figure 15 is the well
known Montage3, a classic astronomical image mosaic workflow processing
large images of the sky.4

In order to transform these applications into chemical workflow defini-
tions, we first analyzed their code, exposing their building functions or ex-
ecutables as Web services, which will be part of the service composition.
Finally, we composed those services based on their control and data depen-
dencies to obtain the final outcome. For instance, the CardiacAnalysis appli-
cation relies at a given point of his execution on an executable script, called
Image Pyramid Decomposition. To construct the CardiacAnalysis workflow,
this executable was installed as a Web service named pyramideDecom and
composed with the other services, as more comprehensibly shown in Figure 14
(right). Please refer to [22] for more details.

These three workflows present different characteristics related to (i) the
number of services involved, (ii) the amount of data exchanged and (iii) the

2http://www.creatis.insa-lyon.fr/site/
3http://montage.ipac.caltech.edu/
4The workflow definitions used for each WMS are available

at https://www.irisa.fr/myriads/members/hfernand/hocl/workflows and
http://www.myexperiment.org/workflows/2058.html.

24



complexity of the coordination required (data processing included, such as
iterations of lists of objects). We attempt to characterize these workflows as
follows :

• The BlastReport workflow includes 5 services, and presents a medium
level of data exchange (simple objects, lists) and low coordination over-
head – it is composed mostly of sequences.

• The CardiacAnalysis workflow includes 6 services, presenting a high
amount of data exchange (complex objects, lists) and a high coordina-
tion overhead (synchronizations, loop iteration, parallelism). This over-
head does not appear on Figure 14 (right). It is due to the re-entrant
nature of the services. For each workflow instances, multiple instances
of tasks are created from the interpolation service to borderDetection
and gradient services (lists of lists of elements to be processed). Some
services produce lists of objects that need to be extracted one by one
by iterators, and transferred to the next service asynchronously.

• The Montage workflow includes 27 services, and exhibits a low amount
of data exchange (simple objects) and medium coordination overhead
(parallelism and synchronization patterns).

In these workflows, each service invocation was deployed in a different
ChWS to evaluate the decentralized coordination in the HOCL-TS and
HOCL-P2P prototypes.

Figure 14: BlastReport and Cardiac workflows structures.

25



Figure 15: Montage workflow structure.

5.2. Centralized Experiments

The workflows were first run using Taverna, Kepler, and HOCL-C, on a
local machine equipped with the Intel core-duo T9600 2.8 Ghz processor and
4GB of memory. Figures 16, 17 and 18 present the results. In Figure 16, a
first encouraging result is that the execution time for the Montage workflow,
(i.e., a workflow with limited data exchange and coordination overhead), on
Kepler, Taverna and HOCL-C are quite similar, and even slightly reduced
on the HOCL-C WMS.

26



Figure 16: Performance results, Montage.

For the BlastReport workflow on Figure 17, while results are again similar
for the different WMSes, HOCL-C takes a little more time. This can be
explained by the increased size of the multiset for the BlastReport workflow
(in terms of number of molecules). However, in terms of ratio, execution
times remain very close among the HOCL-* prototypes.

Figure 17: Performance results, BlastReport.

Finally, we can see in Figure 18 the increased coordination overhead of
the CardiacAnalysis workflow. As mentioned before, this workflow relies on
a lot of data processing related to the coordination itself, which, in the case

27



of HOCL-C, results in a significant increase of the size and processing time of
the multiset. Also, no support for parallel execution has been implemented in
the HOCL interpreter. These two optimization aspects will be investigated
in the future.

Figure 18: Performance results, CardiacAnalysis.

5.3. Decentralized Experiments
The workflows were also executed with the HOCL-TS and HOCL-P2P

prototypes. The experiments were conducted on the Grid’5000 platform [29],
specifically, on the adonis and edel clusters, located in Grenoble, each node
being equipped with two quad-core Intel Xeon E5520 processors, 24 GB of
RAM and 40GB InfiniBand Ethernet cards. We now focus on the two right-
most bars of Figures 16, 17 and 18.

A first observation is that the performance degradation using HOCL-
TS and HOCL-P2P on the Montage workflow, as illustrated on Figure 16.
Even though the coordination is executed locally on each ChWS (here the
coordination is shared among 27 services in both designs), the time wasted
with the network latency to coordinate the chemical nodes is higher than the
workload using HOCL-C to coordinate the involved services. We can also
notice that HOCL-TS performs slightly better than HOCL-P2P. This shows
that some nodes in HOCL-P2P can lead to some bottlenecks, for instance
when performing synchronization operations. In this case, in HOCL-P2P,
when the number of incoming branches increases for a node, its workload
can become important. In contrary, with HOCL-TS, such a load will be
distributed between this node and the multiset.

28



On the BlastReport, a performance gain over HOCL-C is obtained with
HOCL-TS and HOCL-P2P, thanks to the distribution of the coordination
over the 5 services involved, as shown by Figure 17. The BlastReport work-
flow starts to show the benefits by using decentralized prototypes, as an
increment of the amount of data exchanged and coordination workload pro-
vokes some degradations using centralized architectures. The decentralized
prototypes present an acceptable performance in comparison with Kepler and
Taverna, as depicted in Figure 17. For this workflow, HOCL-TS and HOCL-
P2P have similar performance. (There is no synchronization structures.)

For the CardiacAnalysis workflow, a considerable performance gain is
again obtained using HOCL-TS and HOCL-P2P, demonstrating the benefits
of a decentralized workflow execution when workflows present a high coordi-
nation overhead like CardiacAnalysis, which is considered as a computation
and data intensive workflow, as depicted in Figure 18. Exploiting the pro-
cessing resources of each ChWS, the list handling and adaptation tasks are
separately managed by each ChWS. Therefore, the time wasted with the
network latency is now gained by reducing the workload of a central engine.
Like for BlastReport, HOCL-TS and HOCL-P2P perform identically due to
the absence of synchronization patterns in CardiacAnalysis.

5.4. Discussion

This series of experiments leads to several conclusions. They constitute
a proof of the viability of a chemistry-based workflow engine, as for some
representative workflows, its performance are similar and sometimes better
to those of Kepler and Taverna. Kepler and Taverna are broadly considered
as the defacto standards.

Nevertheless, the network latency comes up as a limitation for decen-
tralized workflow engines when processing workflows such as Montage. Its
reduced computational load and low rate of data exchange provoke that the
coordination time in a decentralized architecture is higher than in a central-
ized engine, due to the communications (network latency). Even thought the
workflow execution time is affected by the network latency, the decentralized
workflow systems are highly competitive when processing large workflows, as
detailed in our previous work [30].

These experiments also show how HOCL-TS can perform slightly better
than a fully decentralized architecture such as HOCL-P2P, even if HOCL-TS
uses a central shared space as a communication mechanism. This should be
further investigated. To deal with the decentralization of the multiset itself,

29



and build a fully decentralized solution with loosely-coupled interactions,
some solutions based on peer-to-peer protocols, able to distribute and retrieve
objects (here, workflow molecules) at large-scale [31] are being proposed. One
of the next steps of this work is to build the HOCL-TS environment on top
of such approaches to suppress the potentiality of a bottleneck, and thus
propose a fully decentralized workflow engine.

6. Related Works

This section gives a more accurate comparison of our approach with some
close recent works. We have observed two methods of distributed coordina-
tion approach. In the first one, nodes interact directly. In the second one,
they use a shared space for coordination.

Earlier works proposed decentralized architectures where nodes achieve
the coordination of a workflow through the exchange of messages [32, 33].
Recently, some works [34, 25, 26] shown the increasing interest in this type
of coordination mechanism. In [34], the authors introduce service invocation
triggers, a lightweight infrastructure that routes messages directly from a
producing service to a consuming one, where each service invocation trigger
corresponds to the invocation of a service. In [25], an engine is proposed
based on a peer-to-peer architecture wherein nodes (similar to local engines)
are distributed across multiple computer systems. These nodes collaborate,
in order to execute a workflow with every node executing a part of it. Lately,
a continuation-passing style, where information on the remainder of the ex-
ecution is carried in messages, has been proposed [26]. Nodes interpret such
messages and thus conduct the execution of services without consulting a
centralized engine. However, this coordination mechanism implies a tight
coupling of services in terms of spatial and temporal composition. Nodes
need to know explicitly which other nodes they will potentially interact with,
and when, to be active at the same time. Likewise, a distributed workflow
system based on mobile libraries playing the role of engines was presented
in [35]. The authors, however, do not give much details about the coordina-
tion itself, and about where the data and control dependencies are located.

Our works deal with the information exchange among ChWSes by writ-
ing and reading the multiset which act as a shared space by all ChWSes.
Then, the communication can be completely asynchronous since the multi-
set guarantees the persistence of data and control dependencies. This gives
an increased loose coupling to our proposal, making it able to deal with dy-

30



namic changes in the workflow itself. (Still this was not the scope of this
paper).

According to this method of distributed coordination, a series of works
proposed relying on a shared space a mechanism to exchange information
between nodes of a decentralized architecture, more specifically called a tu-
plespace [36, 37, 38]. This idea was initially used in the Linda language [39].

A tuplespace works as a piece of memory shared by all interacting parties.
Thus, using tuplespace for coordination, the execution of a part of a workflow
within each node is triggered when tuples, matching the templates registered
by the respective nodes, are present in the tuplespace. In the same vein,
works such as [40], propose a distributed architecture based on Linda where
distributed tuplespaces store data and programs as tuples, allowing mobile
computations by transferring programs from one tuple to another. However,
the chemical paradigm allows an increased abstraction level while providing
support for dynamics.

Using a tuplespace for the execution of workflows, works such as [36],[37]
and [38] replace a centralized BPEL engine by a set of distributed, loosely
coupled, cooperating nodes. In [36] and [37], the authors present a coordi-
nation mechanism where the data is managed using a tuplespace and the
control is driven by asynchronous messages exchanged between nodes. This
message exchange pattern for the control is derived from a Petri net expres-
sion of the workflow. In [37], the workflow definition is transformed into a set
of activities, that are distributed by passing tokens in the Petri net. However,
while in these works, the tuplespace is only used to store data information,
our coordination mechanism stores both control and data information in the
multiset, which is made possible by the use of the chemical execution model
for the coordination of all data and control dependencies.

The recent work in [38] uses a shared tuplespace working as a commu-
nication infrastructure, the control and data dependencies exchange among
processes to make the different nodes interact between them. The authors
transform a centralized BPEL definition into a set of coordinated processes
using the tuplespace as a communication space. In contrast, the use of BPEL
as coordination language hinders from expressing dynamic and self-adaptive
behaviors.

31



7. Conclusion

Scientific applications are more and more built as workflows of services.
Workflow management systems gained recently a lot of attention in this con-
text. However, the emergence of new distributed platforms, where elasticity
and dynamic adaptation are strong requirements, led to a high demand for
new models able to represent both workflows and platforms, as well as their
inherent characteristics.

The chemical model is a promising paradigm naturally capturing par-
allelism, distribution and dynamics. While its advantages are now well-
established, this model still suffers from a lack of proof of concepts and
actual deployments.

In this paper, we have proposed concepts and software prototypes for a
family of chemistry-inspired workflow management system. A workflow de-
scription language and its execution model inspired by such abstractions is
discussed. The wide expressiveness (data-flows, control-flows, natural decen-
tralization) of the paradigm is highlighted. Then, its implementation based
on the HOCL language, for both centralized and decentralized environment
is given. Finally, experiments conducted show the viability of the concept,
lifting a barrier on the path to its actual adoption.

References

[1] OASIS, Web services business process execution language, (WS-BPEL),
Version 2.0 (2007).

[2] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, R. Stevens, A. Wipat, C. Wroe, Taverna: lessons in creating
a workflow environment for the life sciences: Research articles, Concurr.
Comput. : Pract. Exper. 18 (2006) 1067–1100. doi:10.1002/cpe.v18:10.

[3] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the
kepler system: Research articles, Concurr. Comput. : Pract. Exper. 18
(2006) 1039–1065. doi:10.1002/cpe.v18:10.

[4] I. Taylor, M. Shields, I. Wang, A. Harrison, The Triana Workflow En-
vironment: Architecture and Applications, in: I. Taylor, E. Deelman,

32



D. Gannon, M. Shields (Eds.), Workflows for e-Science, Springer, New
York, Secaucus, NJ, USA, 2007, pp. 320–339.

[5] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, D. S. Katz,
Pegasus: A framework for mapping complex scientific workflows onto
distributed systems, Sci. Program. 13 (3) (2005) 219–237.

[6] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, Jr., H.-
L. Truong, Askalon: a tool set for cluster and grid computing: Re-
search articles, Concurr. Comput. : Pract. Exper. 17 (2005) 143–169.
doi:10.1002/cpe.v17:2/4.

[7] Y. Zhao, I. Foster, Scientific workflow systems for 21st century, new
bottle or new wine, IEEE Workshop on Scienfitic Workflows.

[8] The Magellan Research Project., http://magellan.alcf.anl.gov/ (June
2011).

[9] M. Viroli, F. Zambonelli, A biochemical approach to adaptive service
ecosystems, Information Sciences (2009) 1–17.

[10] J. Banâtre, P. Fradet, Y. Radenac, Generalised multisets for chemi-
cal programming, Mathematical Structures in Computer Science 16 (4)
(2006) 557–580.

[11] J.-P. Banâtre, T. Priol, Y. Radenac, Chemical Programming of Future
Service-oriented Architectures, Journal of Software 4 (7) (2009) 738–746.

[12] A. Barker, J. van Hemert, Scientific Workflow: A Survey and Research
Directions, in: R. Wyrzykowski, J. Dongarra, K. Karczewski, J. Was-
niewski (Eds.), PPAM, Vol. 4967 of Lecture Notes in Computer Science,
Springer, 2007, pp. 746–753.

[13] J. T. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, Ptolemy: A frame-
work for simulating and prototyping heterogenous systems, Int. Journal
in Computer Simulation 4 (2) (1994) 155–182.

[14] J. Bantre, P. Fradet, Y. Radenac, Higher-Order chemical programming
style, in: Unconventional Programming Paradigms, 2005, pp. 84–95.

33



[15] J.-P. Banâtre, P. Fradet, Y. Radenac, The chemical reaction model re-
cent developments and prospects, in: Software-Intensive Systems and
New Computing Paradigms, 2008, pp. 209–234.

[16] J. Bantre, T. Priol, Y. Radenac, Service orchestration using the chemi-
cal metaphor, in: Software Technologies for Embedded and Ubiquitous
Systems, 2008, pp. 79–89.

[17] C. D. Napoli, M. Giordano, J.-L. Pazat, C. Wang, A Chemical Based
Middleware for Workflow Instantiation and Execution, in: ServiceWave,
2010, pp. 100–111.

[18] H. Fernández, T. Priol, C. Tedeschi, Decentralized Approach for Execu-
tion of Composite Web Services using the Chemical Paradigm, in: 8th
International Conference on Web Services (ICWS 2010), IEEE, Miami,
USA, 2010, pp. 139–146.

[19] J. Recker, BPMN modeling – who, where, how and why, BP-Trends
5 (5) (2008) 1–8.

[20] Intalio, Intalio business process management suite (2009).
URL http://www.intalio.com/products/bpms/overview/

[21] D. Turi, P. Missier, C. Goble, D. De Roure, T. Oinn, Taverna workflows:
Syntax and semantics, in: IEEE International Conference on e-Science
and Grid Computing, IEEE, 2007, pp. 441–448.

[22] H. Fernandez, Flexible Coordination based on the Chemical Metaphor
for Service Infrastructures, These, Université Rennes 1 (Jun. 2012).
URL http://tel.archives-ouvertes.fr/tel-00717057

[23] H. Fernández, C. Tedeschi, T. Priol, Self-coordination of Workflow Exe-
cution Through Molecular Composition, Research Report RR-7610, IN-
RIA (05 2011).
URL http://hal.inria.fr/inria-00590357/PDF/RR-7610.pdf

[24] The workflow patterns website., http://www.workflowpatterns.com/
(June 2011).

34



[25] R. A. Micillo, S. Venticinque, N. Mazzocca, R. Aversa, An agent-
based approach for distributed execution of composite web ser-
vices, in: IEEE International Workshops on Enabling Technologies,
IEEE Computer Society, Los Alamitos, CA, USA, 2008, pp. 18–23.
doi:http://doi.ieeecomputersociety.org/10.1109/WETICE.2008.20.

[26] W. Yu, Consistent and decentralized orchestration of BPEL pro-
cesses, in: Proceedings of the 2009 ACM symposium on Ap-
plied Computing, ACM, Honolulu, Hawaii, 2009, pp. 1583–1584.
doi:10.1145/1529282.1529636.

[27] Y. Radenac, Programmation “chimique” d’ordre supérieur, Thèse de
doctorat, Université de Rennes 1 (April 2007).

[28] P. Leitner, F. Rosenberg, S. Dustdar, Daios: Efficient dynamic web
service invocation, IEEE Internet Computing 13 (3) (2009) 72–80.

[29] Grid’5000, http://www.grid5000.fr (June 2011).

[30] H. Fernandez, C. Tedeschi, T. Priol, A Chemistry-Inspired Workflow
Management System for Decentralizing Workflow Execution, Rapport
de recherche RR-8268, INRIA (Mar. 2013).
URL http://hal.inria.fr/hal-00803406

[31] M. Bertier, M. Obrovac, C. Tedeschi, A Protocol for the Atomic Capture
of Multiple Molecules on Large Scale Platforms, in: 13th International
Conference on Distributed Computing and Networking, Vol. 7129, Hong-
Kong, China, 2012, pp. 1–15.

[32] M. G. Nanda, S. Chandra, V. Sarkar, Decentralizing execution of com-
posite web services, in: Proceedings of the 19th conference on object-
oriented programming, systems, languages, and applications, ACM,
2004, pp. 170–187. doi:10.1145/1028976.1028991.

[33] J. Yan, Y. Yang, G. Raikundalia, Enacting business processes in a de-
centralised environment with p2p-based workflow support, in: Advances
in Web-Age Information Management, 2003, pp. 290–297.

[34] W. Binder, I. Constantinescu, B. Faltings, Decentralized orchestration
of compositeweb services, in: Proceedings of the IEEE International

35



Conference on Web Services, IEEE Computer Society, 2006, pp. 869–
876.

[35] P. Downes, O. Curran, J. Cunniffe, A. Shearer, Distributed radiotherapy
simulation with the webcom workflow system, International Journal of
High Performance Computing Applications 24 (2010) 213–227.

[36] P. A. Buhler, J. M. Vidal, Enacting BPEL4WS specified workflows with
multiagent systems, In Proceedings of the Workshop on Web Services
and Agent-Based Engineering.

[37] D. Martin, D. Wutke, F. Leymann, A novel approach to de-
centralized workflow enactment, in: Enterprise Distributed Ob-
ject Computing Conference, IEEE International, IEEE Com-
puter Society, Los Alamitos, CA, USA, 2008, pp. 127–136.
doi:http://doi.ieeecomputersociety.org/10.1109/EDOC.2008.22.

[38] M. Sonntag, K. Gorlach, D. Karastoyanova, F. Leymann, M. Reiter,
Process space-based scientific workflow enactment, International Journal
of Business Process Integration and Management 5 (1) (2010) 32 – 44.
doi:10.1504/IJBPIM.2010.033173.

[39] D. Gelernter, N. Carriero, S. Chandran, S. Chang, Parallel programming
in linda, in: International Conference on Parallel Processing, 1985, pp.
255–263.

[40] R. D. Nicola, G. Ferrari, R. Pugliese, KLAIM: a kernel language for
agents interaction and mobility, IEEE Transactions On Software Engi-
neering 24.

36


