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Abstract—Stochastic computing was extensively studied for
artificial neural networks (ANN) implementation with a good
time/area trade-off on up-to-date FPGAs. We propose here to use
the same paradigm for the hardware implementation of dynamic
neural fields (DNF) on FPGAs. The all-to-all connectivity of
these neural population models make straight-forward hardware
mappings impossible for high density fields. It is necessary to
adapt the architecture to fit the cellular nature of computing
substrates such as FPGAs. Following the previous work on
randomly spiking dynamic neural fields, we propose here a new
implementation inspired by stochastic ANNs. We introduce here
the Cellular Array of Stochastic Asynchronous Spiking DNF
model, or CASAS-DNF. While keeping the fully decentralized
cellular characteristics, this new approach is much more com-
petitive in terms of speed and area. We also show that the basic
behaviors of DNFs are preserved. The low hardware cost and the
cellular design of this model make it easily scalable.

I. INTRODUCTION

Artificial neural networks (ANNs) are well known as a tool
inspired from biology and applied successfully in several fields
such as pattern recognition, language processing, classification,
etc. Numerous hardware options have been developed to rise
the processing power of these ANNs. Different implemen-
tations include analogue or digital hardware substrate [1].
Among digital hardware FPGAs are often retained as the best
trade-off between logic density and design time.

The usual limiting factor of hardware implementation of
ANN is the synaptic density. Usual ANN have 10 to 1000 time
more synapses than neurons and their hardware implementa-
tion is costly as a synapse requires multiplying a neural activity
by a specific synaptic weight. Several options were proposed
to address this issue: time multiplexing, serial arithmetic or
stochastic arithmetic.
Stochastic arithmetic (reviewed in [2]) describes a real value
with a bit-stream where a bit has a probability p to be high and
1−p to be low. The advantages are numerous as the operators
for complex operations are very light. The multiplication can
be computed with a simple AND gate while the sum can
be approximated by an OR gate (to some extent) or by a
multiplexer. These principles have been successfully applied
to FPGA-based ANN implementations (see [3], [4]).

We focus here on using the same principles to implement a
widely used tool for bio-inspired cognition: the dynamic neural
fields (DNF) introduced by Beurle [5] and Wilson [6]. The
DNF is a mathematical tool built on the continuous neural field
theory (CNFT), which models the layers of cortical columns

in the brain as a continuous field. Many applications exist,
especially for perceptual tasks and autonomous robotics [7].

In [8], we introduced the randomly spiking dynamic neural
fields (RSDNF). The idea was to adapt DNF to hardware
in a cellular way. We used randomly propagated spikes in a
regular mesh of von Neumann connected neurons so as the
spike propagation and randomization would induce a virtually
fully connected neural network with a Gaussian shaped lateral
weights function. If functionally the random behavior was
not altering the model abilities, the hardware performance of
this decentralized model was not competitive compared to a
centralized spike routing approach [9]. Besides this attempt,
no dedicated hardware implementation has been proposed for
dynamic neural fields. In this paper we propose a new approach
based on stochastic computation. It maintains the idea of using
a regular mesh but instead of propagating spikes randomly,
stochastic bit streams are propagated taking advantage of the
simplicity of their operators. This approach has resulted in
the cellular array-based stochastic and asynchronous spiking
dynamic neural field (CASAS-DNF) model that we describe
in this paper.

II. RELATED WORK

A. Hardware implementations of stochastic artificial neural
networks

In the 90’s, two works explained the potential of stochastic
neurons (bit-stream neurons or pulse mode neuron) for ANN
FPGA implementation, see [3] and [4]. But the area consumed
by pseudo random number generators was limiting the applica-
tions at that time. With the rising power of FPGAs, stochastic
ANNs were studied more recently by [10], [11] and [12].

The idea of stochastic computing is to represent numbers
with the frequency of ’1’s in a bit-stream. For instance we
can represent the number v = 1/3 with a bit stream of
size s = 9 with 3 ’1’s and 6 ’0’s. More generally the bit
stream of arbitrary size s and value v will be generated with
a probability p = v. The definition can then be extended
to encode values v > 1 (unipolar representation) and even
negative values (bipolar representation). The main advantage of
stochastic bit streams is that multiplication can be implemented
with a single AND gate. Neuron activation functions can
also be implemented with simple operators. The sum is less
straight forward than the multiplication: the OR gate with two
bit streams A and B gives a bit stream A + B − AB (see
fig 1). Another solution is to use a multiplexer which will
return a bit stream encoding (A + B)/2. To encode numbers



0,0,1,1,0,1,1,0 (4/8)
A

1,1,1,0,1,0,1,0 (5/8)
B

0,0,1,0,0,0,1,0 (2/8)
AB

(a) Stochastic Multiplication

0,0,1,1,0,1,1,0 (4/8)
A

1,1,1,0,1,0,1,0 (5/8)
B

1,1,1,1,1,1,1,0 (7/8)
A+B −AB

(b) Stochastic Addition

Fig. 1. Bit stream operators. AND gate can approximate 4/8 x 6/8 while OR
gate can approximate 4/8 + 5/8 with an error of -4/8 x 6/8. The results are
not very precise as a stream of size 8 is shown in this example.

into stochastic bit streams, stochastic number generator (SNG)
requires a pseudo random number generator (PRNG). The
pseudo random numbers are then compared to a probability
p and the result will generate a bit stream of probability p.
The quality of the PRNG and the precision of the comparison
with p are two parameters which will influence the precision of
stochastic computation. The number of PRNG has to be scaled
with the number of SNG as the random numbers correlation
leads to critical drop of stochastic bit stream quality. The
historical approach to produce pseudo random numbers used
linear-feedback shift registers [13]. Their quality can be very
good but their area cost has motivated research for new
biomorphic cellular hardware (see [14] and [15]). To decode a
stochastic number, the stochastic number decoder (SND) has
to count the number of ones in a bit stream with a simple
counter.

In summary the operators to manipulate stochastic bit-
streams are very competitive in term of area except for the
SNG which is heavier and critical for computation quality. The
quality of the stochastic representation depends on the size of
the bit-streams, the quality of the stochastic number generators,
the quality of the operators and the bit stream correlation. This
limits will have to be tuned carefully to optimize the speed-
area trade-off.

B. Cellular computing and spiking neural networks

Despite their intrinsic parallelism and the simplicity of
their computation, neural networks are not easy to map onto
parallel hardware devices. With the rising computational power
needed for precise simulations of neuro-biological models,
a whole field of science, namely neuromorphic engineering
[16], is trying to find new hardware paradigms for large-
scale spiking neural networks simulation. The main problem
for vast neuron dynamic simulation is the non-locality of the
computation which is highly incompatible with state of the
art computing devices. The spiking neural networks (SNN)
address partly this issue by reducing the non-local informations
size to 1 bit. Specific networks on chip (NoC) for SNN were
developed to improve the speed of spike propagation based on
the Address Event Representation paradigm (AER) [17]. The
idea is to sequentially address every spike to its destinations
using a dedicated high speed bus or a binary tree [18]. These
solutions can be an inspiration for hardware artificial network
implementations, and the speed-area trade-off is generally
very competitive. In [9], we derived an AER-based hardware
implementation of spiking DNFs with good performance.

However, this sequential processing of spikes is not satis-
fying as it lacks the main characteristic of the brain: its
decentralization. We are more interested in the advantages of
decentralized cellular hardware for their numerous advantages
[19]. It perfectly fits our current hardware paradigm with the
local computation and good parallelism. It is fault tolerant as
the loss of one element does not alter the general behavior.
And finally, the computation is an emergent property of the
system exactly like in the brain. This emergence confers a
very competitive robustness to noise and is thus compatible
with the introduction of stochastic computation.

Attempts to mix cellular computing and neural networks
already exist: locality in hardware implementation of ANNs
was achieved with FPNAs (in [20] and in [21] with up-to date
boards), while cellular neural networks are already well-known
[22] but they handle purely local communications between
neurons.

III. FROM DNFS TO HARDWARE FRIENDLY DNFS

A. Dynamic neural fields

Dynamic neural fields (DNFs) were first introduced to
model neural activity at a mesoscopic level of a cortical
column. It is an approximation initially based on the very sim-
ple assumption of the continuum neural field theory (CNFT)
introduced by Wilson [6] and developed by Amari [23]. In
this theory, the neural population of a cortical column is
approximated by a locally cooperative and globally competitive
neural field. The neurons are rate-coded and their potential
(ux,t for neuron x at time t) depends on the whole potential
field M , following the equation (already discretized with an
Euler method):

ux,t+dt = ux,t +
dt

τ
(−ux,t +

∑
M

ω(||x− x′||)σ(ux′,t)dx
′

+Ix,t + h),
(1)

where dt is the discretizing step, Ix,t the input feeding, h
the resting potential, τ the time constant and ω is the lateral
weights function. σ is the activation function which can be
a sigmoid and ω models inhibitory and excitatory synaptic
weights according distance d between neurons. This lateral
weights function ω is a difference of Gaussians (DoG):

ω(d) = Ae
d2

a2 −Be
d2

b2 , A, a,B, b ∈ R∗+. (2)

The dynamic of the DNF (reviewed in [24]) is very rich
and interesting. The characteristics we are interested in for
visual processing applications are the selection and tracking
abilities [25]. It relies on a trade-off between the afferent
feeding (the inputs I) and the lateral feeding term

∑
M ω(||x−

x′||)σ(ux′,t)dx
′. The global competition within the field is

the negative part of the lateral weights function (representing
inhibitory connections), while the local cooperation is the
positive part of ω (representing local excitatory connections).

Taken as it is, a straightforward hardware implementation
of a DNF would be problematic as it would need a very
costly convolution operator to compute the lateral feeding.



B. Spiking dynamic neural fields

The first step towards an easier hardware implementation
was to introduce spiking neurons which would exchange only
binary informations. Spiking dynamic neural fields have been
introduced by [26] and developed by [27]. This model is based
on Leaky Integrate-and-Fire (LIF) neurons which have the
property to fire a spike and reset their potential when the
potential reaches a threshold. The discretized version of the
SDNF equation follows:

ux,t+dt = ux,t +
dt

τ
(−ux,t + Ix,t + h) + Isynx,t . (3)

The lateral influence is computed by applying the synaptic
weight (ωM ) of eq. 2 to each received spike(S):

Isynx,t =
∑
x′

ω(||x− x′||)σ(ux′,t). (4)

Finally the neurons emit a spike when their potential reaches
a threshold θ.

σ(x) =

{
1 if x ≥ θ
0 if x < θ.

(5)

If a spike is fired, the potential is reset: ux,t = h.

The dynamics being harder to describe with analytical
tools, more work need to be done to fully understand their
behavior. However, basic abilities like selection, tracking and
robustness were demonstrated to surpass DNF abilities [27].

C. Randomly spiking dynamic neural fields

Despite their reduced 1-bit bandwidth, the spiking dynamic
neural fields are fully connected neural networks. Therefore
their hardware implementation remains problematic as we need
a personalized all-to-all connectivity in the network.

The first attempt to reduce neuron connectivity to 4 neigh-
bors was introduced with the randomly spiking dynamic neural
field model (RSDNF) [8]. To simulate global connectivity with
local 4-neighbors connectivity, we need to be able to simulate
as precisely as possible the lateral weights function ω. As the
connections are local, information between neurons (in our
case spikes) can only be transferred from cell to cell. This
induces a propagation delay to wait for every information to
reach its destination.

In RSDNFs, the idea is to simulate the DoG’s shape by
using probabilities. For that, every spike activation information
is propagated from the activated neuron to the borders of the
map with a probabilistic network on chip (NoC). A spike is
subdivided in N packets of one bit, which are then sent through
the network where every hop depends on a probability p. The
NoC is designed such that there can only be one path between
two neurons a and b and such that its distance (in number of
hop) is the Manhattan (or XY) distance between the neurons:
distXY (a, b) = |ax − bx| + |ay − by|. There is one NoC
for the excitatory weights (the probability of each hop is pa)
and another one for the inhibitory weights (the probability of
each hop is pb). Consequently the decentralized lateral weights
function is, on average,

ω(a, b) = ω(d = distXY (a, b)) = Apde −Bpdi . (6)

The shape of the corresponding curve is different from equa-
tion 1 (see Fig. 2), but new optimal parameters where derived
from optimization methods (see [28] and [29]).

Fig. 2. Difference between the DNF lateral weights function which is a
difference of Gaussian (DoG) and the RSDNF lateral weights function which
is a difference of exponentials (DoE).

Behavioral simulation results confirmed the validity of the
approach and the scalability of the cellular architecture of this
model. However, the RSDNF speed×area product is not very
competitive, and asynchronous neuron updates are not possible
as a neuron has to wait for the end of spikes propagation to
compute its next potential. This can be a problem to extend
the RSDNF to synaptic delayed DNF [30], or to implement
asynchronously computing DNFs [31].

IV. THE CASAS-DNF MODEL

As in the RSDNF paradigm, the hardware mesh is regular
and composed of relatively simple identical cells. Each cell
contains one neuron, two dendrites, eight synapses and eight
routers (one inhibitory and one excitatory for each neighbor).
The cells are disposed on a regular mesh connecting each other
to their north, south, east and west neighbors.

A. Stochastic decentralized lateral weights

The challenge of cellular simulation for a globally con-
nected neural networks is to have a good simulation of the
synaptic weights between every neuron: in our case it is
the lateral weights function ω. To assert the quality of the
model we introduce in this work two criteria: the curve
comparison (we compare our theoretic lateral weights function
with the DNF one), and behavioral comparison (we compare
our model dynamic with the standard model dynamic on a
set of simulation scenarios). In this paragraph we present the
analytical results for the shape of the CASAS-DNF lateral
weights.

As we saw in eq. 2, the DNF lateral weights function ω
only depends on the distance between neurons. Thus, following
the idea introduced in RSDNF, we propose to simulate the



lateral weights using probabilities that decrease with distance,
since it was proved to have a good curve similarity (Fig. 2)
and a similar behavior despite the introduced randomness (see
[8]).

We are using stochastic computation (or bit-stream arith-
metic) to reproduce the lateral weights decreasing with the
distance. The representation of a real number a is made by a
bit-stream abs generated with a probability ap = a, such that
P (abs = 1) = ap = a. To simplify the demonstration, we
consider that the value of a bit stream is its probability.

Every activated neuron generates a bit-stream δbs of size s
representing a spike of real value δ with a probability δp = δ.
The spike will then be propagated throughout the network,
being multiplied by synaptic weights at each hop. The synaptic
weights do not depend on the neuron or synapse: the constant
weight We is used for the excitatory layer, and Wi for the
inhibitory layer.

To compute the lateral weights function for one spike we
need to model the excitatory bit-stream received by the exci-
tatory dendrites (E) and by inhibitory dendrites (I), assuming
these dendrites belong to a neuron at a distance d from the
activated neuron:

P (Ebs = 1) = E = δW d
e

P (Ibs = 1) = I = δW d
i

(7)

Hence, the probabilistic lateral feeding equation integrated
by the neuron is:

ωM (d) = IeδW
d
e − IiδW d

i , (8)

where Ie and Ii are respectively the intensity of excitatory
spikes and inhibitory spikes, defined by:

Ie =
A

δ
and Ii =

B

δ
(9)

As this lateral weights equation is very similar to (eq. 6),
we will use similar parameters. However, the bad quality of
stochastic addition performed by the OR gate will bias these
lateral weights.

The cellular nature of the network and the connectivity
graph of the routers result in horizontal routers (east and west)
having 4 predecessors, while vertical routers (north and south)
have 2 predecessors (see fig. 4). Every router generates its
outputs by summing the predecessors bit-streams, and as we
saw in the stochastic computation paragraph, there is no perfect
way to perform stochastic bit-stream addition. The reason is
that as we sum numbers in the interval [0, 1], the sum can be
greater than the output bit-stream interval which is also [0, 1].

Let A be an activation patch of n neurons (a set of n
contiguous neurons that spike simultaneously). Let b represent
one neuron at distance d from the patch (to simplify we assume
that the neuron b is at distance d from every neuron of the
patch). If we adapt the bit-stream integration in eq. 7 for the
integration of n spike bit-streams instead of one, we have:

E = nδW d
e

I = nδW d
i

(10)

It is important to note that the bit-stream additions are per-
formed in several places: in the routers when several bit-
streams are going through the same router and in the dendrite
module as it receives the 4 neighbors bit-streams. Equation 10
is valid for a standard addition. However, as we are using OR
gate for addition, we need to adapt it.

The generalized stochastic sum on n stochastic bit-streams
of probability p using OR gate is∑

n

pbs = 1− (1− p)n. (11)

Consequently eq. 10 becomes

E = 1− (1− δW d
e )

n

I = 1− (1− δW d
i )

n
(12)

Modifying eq. 8 to take into account the integration of n
bit-streams using OR gates, the lateral influence of the patch
of neurons A on neuron b becomes:

ωM (A, b) = Ie(1− (1−δW d
e )

n)− Ii(1− (1−δW d
i )

n). (13)

This is an approximation as we assumed that all the neurons
of the patch A were at the same distance from neuron b and
we did not take into account the precision of the bit-streams
(their length s) which influences the quality of encoding and
decoding. But it is enough to predict the influence of the
different parameters on the lateral weights quality of the model.
On Fig. 3 we see that the error rises with δ and n. When δ
is greater than 0.01 and n is greater than 5 the error with
the RSDNF lateral weights function is too important to be
neglected. Consequently a new set of parameter has to be
found. In this work we used particle swarm optimization
techniques to find optimal parameters for the set of task we
are presenting in the results section.

B. Spiking neuron

The dendrite module is a stochastic number decoder
(SND). This modules receives the 4 neighbors bit-streams, sum
them with an OR gate and add a quantum of excitation (qe)
or a quantum of inhibition (qi) to a register when the output
of the OR gate is high (qe = Ie/s and qi = Ii/s) . When
the neuron computation is activated, this lateral influence is
integrated in the neuron potential, and the dendrite register is
reset. The spiking neuron computation was made as close to
the spiking neuron definition as possible (see Fig. IV-B). The
only modification was made to transform the leaking factor
division by a right bit shift to avoid a division. Details are
available in [8].

C. Pseudo random numbers generation

The stochastic number generator module (SNG) uses
pseudo random numbers (PRNs). We have shown in [8] that
an 8-bit precision is enough for synaptic weight probabilities.
However, the efficient generation of pseudo random numbers is
often a complex question. Standard implementations use linear
feedback shift registers but we are using massively replicated
cellular automata which are a scalable and distributed way
to generate multiple high quality PRNs [32]. To be fair with



(a)

(b)

Fig. 3. The error between the RSDNF lateral weights function (ωRSDNF )
and the CASAS DNF lateral weights function (ωCASAS) as a function of
the neural distance from the activation patch (in number of neurons). Fig. 3a
show the error with a rising value for spike probability δ and a fixed number
of activated neurons n = 9 and Fig. 3b show the error with a rising number
of activated neuron n and with δ = 0.1.

RSDNFs, we never use twice a random bit, but it can be
noted that a high random numbers re-utilization is compat-
ible with our simple applications. For this architecture we
need to generate four random numbers per synapse and per
propagation cycle and one random number per neuron for the
spike bit-stream generation. For a network of 35x35 neurons
with excitatory and inhibitory synapses, it results in 11025
random numbers with 8 bits minimum. These 88200 random
bits are simultaneously generated by Cellular Automata-based
Pseudo-Random Number Generators (CAPRNG) that are very
well adapted to FPGA devices and to our cellular computation
requirement: non-homogeneous cellular automata with high
random quality emerging from simple logic rules:

σt+1
(i,j) = X ⊕ C.σt

(i,j) ⊕N.σ
t
(i−1,j) ⊕Wσt

(i,j−1)

⊕S.σt
(i+1,j) ⊕ Eσ

t
(i,j+1) (14)

where σt
c is the state of the cell c at time t, and where
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Fig. 4. Design of the routers and their connectivity. The CASAS cells
(white circles) are organized on a 2D-grid. Every router’s direction (square)
contains one OR gate performing a sum approximation of the inputs stochastic
bit-streams. The vertical OR get input from the opposite direction neighbor
while horizontal OR get input from opposite direction and vertical directions
neighbors. Every direction receive as well an input from the spike’s stochastic
bit stream generated by the CASAS Cell’s neural activation (gray circle). The
CASAS map contains two layer of this routers: one for the excitatory bit
streams and one for the inhibitory bit streams.

TABLE I. SIMULATION PARAMETERS FOR BEHAVIORAL COMPARISON
BETWEEN RSDNF AND CASAS-DNF MODELS

Model A B pe pi s
CASAS-DNF 1.16 0.87 0.035 0.99 100
RSDNF 1.25 0.70 0.004 0.90 100

XCNWSE ∈ [0, 1]6 are the control variables determining the
rule of each cell in the cellular automaton. In [33], [34], genetic
algorithm were used to find the best rules for 8x8 CA grid.
This PRNG shows very good behavior in standard tests while
offering an outstanding compacity for FPGA implementation.

V. RESULTS

The CASAS-DNF model was implemented in software
and hardware to study more precisely its dynamics and
performance. Software simulation was programmed with a
Python/C++ framework simulating the cellular computation of
CASAS-DNF. The simulation parameters are shown in Table
I.

A. Behavioral results

Behavioral software simulations of the two models SDNF
and RSDNF have already been reported. In [27] a behavioral
study shows the properties of spiking DNF for basic visual
attention tasks. In [8], the random behavior of the RSDNF is
compared to the behavior of spiking DNF to assert the validity
of the cellular approach in basic visual tasks. A short summary
of the main results is presented here.

We consider three different scenarios to test the error during
basic visual selective attention and tracking tasks. The error is
measured with the euclidean distance between the barycenter
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the potential of the neuron. When the potential reaches a threshold it activates
the activation module which will stay activated during s cycles. A AND gate
will mutliply this activation signal with a stochastic number of probability δ.
Note that every SNG modules are fed with pseudo random numbers (PRNIn)
generated with a cellular automata.

Spiking
Neuron

SRL
>θ

Potential

rst

Activation

Potential

1

10

Input

Dend.
Exc.

Dend.
Inh.

11

11

11

set

Fig. 6. Leaky integrate and fire neuron design. The input lateral excitation
and inhibition are computed and added to the previous potential value. The
leak is applied to the old potential with a division by 8 using a shift right
logical (SRL) of 3 bits. Once the leak has been removed from the potential,
the new potential is compared with the activation threshold δ. If the neuron
is activated, the potential will be reset. Otherwise, the new potential is output
and will update the potentials register.

of the field’s activated neuron coordinates and the stimulus
the field is focusing at. For instance we can see on Figure
7 the tracking scenario and the measured error. After nine
computation iterations the neural field is spiking close to one
stimulus: this is the selective attention or focus. When the
stimulus circles, the activation of the field follows the stimulus.

Fig. 7. Example of the competition scenario. The Inputs maps consist of
two Gaussian bubbles rotating clock-wise. The Focus map which represents
the neural field activations, tracks one bubble. The error distance between the
barycenter of the field activation and the tracked bubble center is displayed
on the bottom.

Figure 8a shows 50 iterations of tracking scenario for dif-
ferent sizes of the bit-stream s for CASAS-DNF and RSDNF.
We can see that for CASAS-DNF s is optimal around 100. For
Fig. 8b, we chose s = 100 and we repeated 50 experiments on
the three different scenarios. The error bars show the bootstrap
95% confidence intervals. The model seems to be less tolerant
to noise and distracters than RSDNF. It can be explained by the
OR summation sensibility to the number of activated neurons
n (see previous section discussions on lateral weights function
quality).

B. Hardware utilization

The synthesis and placement was done on a FPGA Xil-
inx xc6vlx760t-3ff1156, the results on Fig. 9 show that
the speed×area product is much better and scalable for the
CASAS-DNF model. The speed is not only computed with the
maximum clock frequency of the design but also taking into
account the computation speed of the model. All these models
need time to propagate the spikes information throughout
the neural map. This time is expressed in terms of propaga-
tion iterations. For CASAS-DNF, the propagation time lasts
s+2res as a bit-stream of size s needs s iterations to be fully
generated, and needs (at worse) 2res iteration to go through
the whole map (2res is the maximum Manhattan distance for
our XY propagation with a resolution res). The update rate
is computed with the division of the maximal frequency by
the simulated propagation time and the SpeedxArea product is
then computed with the division of the number of slice by the
update rate.

We are comparing our architecture to RSDNF and to a
completely centralized architecture based on the address event
representation (AER) that we introduced in [9].

We can see on Table II that while CASAS-DNF has a
slightly slower propagation time than RSDNF, it takes much
less hardware resources. However the centralized AER-based
implementation is still more competitive in terms of speed and
area, though future CASAS-DNF optimizations (by partially
sharing PRNs for example) might reverse this conclusion.



(a) (b)

Fig. 8. 50 repetitions of simulation for RSDNF and CASAS-DNF. On 8b we compare RSDNF and CASAS-DNF behaviors for 3 different scenarios. On 8a
we show the distance error for rising qualities of stochastic bit-streams.

TABLE II. RESOURCE UTILIZATION AND PERFORMANCE OF THE
ARCHITECTURE ON A XILINX FPGA DEVICE, XC6VLX760T-3FF1156, FOR

35X35 NEURONS NEURAL MAP.

Model Registers LUTs Slices Freq (Mhz)
CASAS-DNF 90497 112207 31851 127
RSDNF 233155 261011 86106 95.7
AER 74870 121266 46543 54.4

Prop. it. theory and simu. Update Rate (Mhz) SpeedxArea
CASAS-DNF O(s + 2res) 170 0.36 42635
RSDNF O(nN + 2res) 120 0.7975 107970
AER n 10 5.44 8556

Fig. 9. Time×area performance for the different models and for different
neural map sizes.

VI. CONCLUSION

We presented in this work a new DNF model with the
main aim of facilitating its FPGA implementation. Using
principles from stochastic computing, the CASAS-DNF model
is a cellular array substratum which is able to simulate an
all-to-all connectivity between thousands of neurons with a
hardware friendly 4-neighbors connectivity.

Neuronal computations are by nature very robust. Stochas-
tic bit stream operators are thus perfectly adapted as their
intrinsic noise will not disturb the emergent behavior of the
dynamic neural field. Therefore it is not surprising that they
represent a very competitive speed-area trade-off for cellular
computation of a globally connected neural network. It is also
expected that precision and quality of the random numbers
are not critical to the behavior. To be fair with the previous
implementations, we used very good random numbers quality
(one 8bit pseudo random number generation by propagation
cycle and by cell routing layer direction: 88200 bits per cycle).
But first simulations show that this number can be dramatically
reduced. It seems that 5 bits precision is enough and that using
the same 5 bits for every SNG of each CASAS cell is enough to
maintain an identical behavior. Thus only 6125 pseudo random
bits by cycle of bit propagation would be enough reducing the
amount of CA-PRNG from a 37x38 grid to a 10x10 grid of
64 cells cellular automaton. Thus if the CA-PRNG are taking
now more than 60% of the area a decreasing of the random
number quality would reduce the overall area by 50%.

Beyond the improvement for hardware resources utilization
compared to the RSDNF model, this architecture is adapted
to much more DNF extensions than RSDNF. In this archi-
tecture the lateral-weights bit propagation is symmetric in
every direction. It means that it will be possible to update
neuron potentials on every bit reception instead of waiting
the whole lateral-weights propagation time before updating



the neurons. With this architecture the pipelined simulation of
DNF with synaptic delays will be possible, inducing a highly
satisfactory time×area product. Future work will also focus
on stronger predictions for lateral-weights quality and on the
implementation of learning abilities.
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