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Résumé

Afin de développer des logiciels plus silirs pour des applications critiques, certains ana-
lyseurs statiques tentent d’établir, avec une certitude mathématique, I’absence de certains
types de bugs dans un programme donné. Une limite possible a cette approche est 1’éven-
tualité d’un bug affectant la correction de I’analyseur lui-méme, éliminant ainsi les garanties
qu’il est censé apporter.

Dans cette these, nous proposons d’établir des garanties formelles sur ’analyseur lui-
méme : nous présentons la conception, 'implantation et la preuve de siireté en Coq de
Verasco, un analyseur statique formellement vérifié utilisant l'interprétation abstraite pour
le langage ISO C99 avec l'arithmétique flottante IEEE754 (a l'exception de la récursion
et de l'allocation dynamique de mémoire). Verasco a pour but d’établir ’absence d’erreur
a P'exécution des programmes donnés. Il est congu selon une architecture modulaire et
extensible contenant plusieurs domaines abstraits et des interfaces bien spécifiées. Nous
détaillons le fonctionnement de l'itérateur abstrait de Verasco, son traitement des entiers
bornés de la machine, son domaine abstrait d’intervalles, son domaine abstrait symbolique
et son domaine abstrait d’octogones. Verasco a donné lieu au développement de nouvelles
techniques pour implémenter des structures de données avec partage dans Coq.

Abstract

In order to develop safer software for critical applications, some static analyzers aim at
establishing, with mathematical certitude, the absence of some classes of bug in the input
program. A possible limit to this approach is the possibility of a soundness bug in the static
analyzer itself, which would nullify the guarantees it is supposed to deliver.

In this thesis, we propose to establish formal guarantees on the static analyzer itself:
we present the design, implementation and proof of soundness using Coq of Verasco, a
formally verified static analyzer based on abstract interpretation handling most of the ISO
C99 language, including IEEET754 floating-point arithmetic (except recursion and dynamic
memory allocation). Verasco aims at establishing the absence of erroneous behavior of the
given programs. It enjoys a modular extendable architecture with several abstract domains
and well-specified interfaces. We present the abstract iterator of Verasco, its handling of
bounded machine arithmetic, its interval abstract domain, its symbolic abstract domain
and its abstract domain of octagons. Verasco led to the development of new techniques for
implementing data structure with sharing in Coq.
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Chapter

Introduction

0.1. Software Safety and Formal Methods

We rely heavily on software for many tasks. The amount of work and money needed to
develop useful software is enormous, which leads to the development of better tools and
methods to ease this task. In particular, one problem that needs to be addressed is the
presence of bugs. Bugs, which arise when a program does not behave as expected because
of a defect in its design or implementation, seem to be an unavoidable side effect of software
development. They range from innocuous easily fixable annoyances for the user to serious
defects in critical devices leading to catastrophic consequences such as destruction of very
costly equipment or even death. We can cite many infamous examples of software bugs
such as the death of patients due to buggy software controlling the Therac-25 radiotherapy
equipment [LT93], or the destruction of the first Ariane 5 prototype rocket [ari96].

Therefore, much effort is made to avoid bugs during the development of software and
before its deployment. To this end, the most common method is testing: the program
is run on a set of inputs in a more or less realistic context and its behavior is checked
to correspond to what is expected. Even if this can be very efficient at all the stages of
the development, testing suffers from the fundamental issue that it cannot cover all the
possible inputs, and hence it can miss bugs. Moreover, in the context of critical software,
the coverage requirements needed for tests make them very costly.

As a result, research is conducted to avoid bugs using formal tools relying on mathematics
that would prove the absence of bug with strong certitude. These tools differ from bug
finders (such as, e.g., Clang Static Analyzer or Coverity) that aim at easing the search for
bugs by reporting suspicious code to developers: instead, formal verification tools guarantee
with strong mathematical certitude the absence of some classes of bugs in the program.

Formal verification of software can target very different objectives. We can classify these
objectives depending on the kind of formal guarantees established. One of the first goal
that can be targeted is the absence of runtime error. In this scenario, the only guarantee
given by the formal method is that the program will not have an erroneous behavior. In
particular, this does not mean that the output of the program will be correct. Depending on
the case, the erroneous behaviors handled by the method can include, for example, illegal
memory accesses (such as accessing an array out of its bounds, or dereferencing an invalid
pointer), arithmetic errors (such as divisions by 0 or overflows), uncaught exceptions or
even non-termination.



Chapter 0. Introduction

On the other end of the spectrum, one could want to formally verify the functional
correctness of programs. In this other scenario, in addition to the absence of runtime
error, we formally verify that the program computes the expected result. This goal is more
ambitious than the previous one, because of two main reasons. The first difficulty is the
need to define precisely what we mean by “expected result”. This definition needs to be
done using formal tools with mathematical strength. This definition is called the formal
specification of the program. In the case of complex software, the specification problem is
particularly challenging or even sometimes practically impossible. The second difficulty is
the complexity of the reasoning needed to prove functional correctness: indeed, the program
can use complex algorithms, advanced data structures or an intricate design architecture.

A common obstacle of all verification methods is Rice’s theorem. Informally, this the-
orem states that any non-trivial properties on the semantic properties of programs is not
decidable. More precisely, if we have a property P on the behavior of programs that is
not always true or false, then there does not exist a program that can decide whether the
behavior of a given program meets P. In the context of formal verification of software, this
means that we cannot build a universal tool that will guarantee some interesting property
for any given valid program. This applies to proving functional correctness, but also to
checking the absence of runtime error.

In order to mitigate the impossibility of a universal verification tool stated by Rice’s
theorem, a wide range of tools have been developed in the area of formal verification,
sacrificing either completeness or decidability. Some of them, such as static analyzers based
on abstract interpretation, aim at being fully automated, but can often wrongly classify a
correct program as incorrect. Moreover, they typically do not have the reasoning strength
necessary to prove functional correctness. At the other extreme, some other tools, such as
proof assistants, are able to prove correct a large variety of programs, but they need a lot
of user interaction. Several of these methods are used throughout this thesis for different
purposes: we use the reasoning power of the Coq proof assistant in order to prove the
soundness of an automatic static analyzer, and this proof uses some techniques borrowed
from deductive verification.

0.2. Context and Goals of this Project

A static analyzer based on abstract interpretation is a tool that analyzes programs without
executing them, and establishes some of their properties, such as the absence of runtime
error. A good example of such a static analyzer is Astrée [BCCT02], used to check the
absence of runtime error in large critical embedded software. Astrée has been used to verify
the fly-by-wire systems used in the A340 and A380 planes, which are large safety-critical
programs comprising several hundreds of thousands of lines of code. In order to achieve
such a goal, the designers of Astrée needed to develop complex algorithms using difficult
mathematics. Therefore, it is far from obvious that the implementation of Astrée itself is
free from any bugs, which decreases the strength of the guarantees it provides.

More generally, a natural candidate for formal verification are formal verification tools
themselves: indeed, a common criticism made to these tools is that they can themselves be
buggy, and hence they can miss wrong behaviors in the software they verify. In particular,
we propose, in this thesis, to check the checker, or, more precisely, to see how far we can go
verifying a static analyzer aimed at guaranteeing the absence of runtime error in a program.
Several attempts have been made toward the formal verification of static analyzers based
on abstract interpretation [Pic05, CKCY13]: in our case, the aim is to build a realistic
tool that could be used to check real programs. Our tool, called Verasco, takes as input a
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realistic language, C, and contains a complex combination of abstract domains in order to
do advanced reasoning on the behavior of the analyzed programs. We worked in cooperation
with the designers of Astrée in order to leverage their experience in writing such a powerful
analyzer. Of course, Verasco is not as powerful as Astrée, but it shares many of its design
ideas. Its main advantage over a non-verified static analyzer such as Astrée is the guaranteed
absence of soundness bugs in its design and implementation, owing to the formal proof
accompanying its code.

The formal verification of a complex tool such as a static analyzer is an ambitious goal.
Fortunately, this project builds on previous achievements in formal verification, in particular
CompCert [Ler09a], a formally verified compiler for the C language. It includes, using
mathematical tools, the description of its source language, which is a large subset of C99 and
the description of its target language, PowerPC, ARM or x86 assembly. The full functional
correctness of its implementation is formally proved: it comes with a mathematical argument
stating that the behavior of the generated assembly code is permitted by the input C code.
CompCert is written using Coq [Coqa], which is both a programming language, allowing
us to write software, and a proof assistant, allowing us to prove mathematical properties
about this software.

Recent advances in computer-aided theorem proving in Coq, Isabelle/HOL and other
proof assistants made possible the development of formally verified software with growing
complexity at the cost of a reasonable effort. For example, recent achievements in formal
verification of software include the formal verification of the CompCert compiler [Ler09a], of
the seL4 [seL] and mCertiKOS [Cer| operating system kernels and of the FSCQ [CZCT15]
file system.

Therefore, for Verasco, using Coq, the same implementation and proof language as Comp-
Cert, seems natural. We not only use the experience learned from the development of
CompCert: indeed, as a formally verified compiler, CompCert describes formally its input
language. Hence, reusing in Verasco the formally verified front-end of CompCert makes us
able to combine the formal guarantees of Verasco and CompCert in order to enforce the
absence of runtime error all the way down to the assembly code generated by CompCert.
This makes CompCert an essential dependency of our work.

0.3. Contributions and Structure of this Document

In this thesis, we describe the design, implementation and formal verification of Verasco, a
static analyzer based on abstract interpretation entirely written within the Coq proof assis-
tant. Verasco comes with a formal proof of soundness guaranteeing that, if the analyzer does
not warn for any potential runtime error, then the analyzed program will execute without
any runtime error. These runtime errors include arithmetic errors and invalid memory ac-
cesses. Verasco handles most of its input language, C99. It contains many different abstract
domains, to achieve good precision of analysis: a precise memory abstract domain and sev-
eral numerical abstract domains, some of which are relational. These abstract domains are
organized modularly, using interfaces and specifications, so that they can be easily modified
independently of each other.

Verasco is the work of a team, as part of the ANR project Verasco. Most impor-
tantly, Verasco received contributions from Vincent Laporte [Lapl5] and his advisors David
Pichardie and Sandrine Blazy for the preliminary implementation and for the memory ab-
stract domain and from Alexis Fouilhé, Sylvain Boulmé, David Monniaux and Michaél
Périn [FMP13, FB14] for the polyhedral abstract domain.

Specifically, this thesis describes the design, implementation and formalization of the
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abstract iterator of Verasco, and of most of its numerical back-ends. We detail in the
following our contributions:

e We designed modular interfaces between the different components of the analyzer,
with their formal specifications (Chapter 3). In particular, we implemented and proved
correct a communication system between numerical abstract domains, inspired from
that of Astrée.

o We formalized and proved correct a large variety of algorithms and theorems essential
to the soundness of Verasco. The proved theorems go from the arithmetic and “bit
twiddling” properties of integers and floating-point numbers (Chapter 5, Chapter 6
and Chapter 8) to the symbolic reasoning needed to prove correct, among others,
our symbolic abstract domain (Chapter 7). The formalization work also includes
the soundness proof of a specially crafted Hoare logic for the C#minor intermediate
language and its use for the correctness evidence of the abstract iterator of Verasco
(Chapter 2). To the best of our knowledge, some of the methods used to prove
properties of this logic are novel.

e We describe in Section 8.2 an improvement of the usual algorithms for the abstract do-
main of octagons: we give algorithms that keep sparse the representation of difference
bound matrices.

e We give in Chapter 9 several techniques to maintain sharing in data structures used in
a program developed in Coq. This includes a technique for soundly using the physical
equality operator within Coq programs and several techniques for implementing hash-
consing.

This thesis is structured as follows. In Part I, we give an introduction to the context
of this work: Chapter 1 introduces several tools and methods for formal verification, and
Chapter 2 gives an overview of the abstract interpretation methodology for building static
analyzers. In Part II, we describe the design of Verasco as a static analyzer: Chapter 3 de-
scribes its architecture and many design decisions, and Chapter 4 gives a precise description
of the abstract interpreter, which is the module directly in contact with the input program.
In Part ITI, we describe the multiple numerical abstractions present in Verasco: Chapter 5
explains how we deal with overflow and wraparound behavior of bounded machine arith-
metic, Chapter 6 reports on the implementation of two non-relational abstract domains
(the abstract domain of intervals and the abstract domain of arithmetical congruences),
Chapter 7 depicts an abstract domain of symbolic equalities and Chapter 8 describes the
weakly relational abstract domain of octagons, together with its accompanying linearization
abstract domain. Part IV heads towards conclusion: Chapter 9 describes the methods that
we use or could have used for improving the memory sharing in Verasco’s data structures,
and Chapter 10 concludes.

This document is a more precise and more recent description of Verasco than the de-
scription presented in our previous paper at the POPL conference [JLB'15]. We also refer
the reader to the thesis of Vincent Laporte [Lapl5] for a precise description of the state
abstract domain, which is not presented here. The Coq code of Verasco can be downloaded
and browsed online at http://compcert.inria.fr/verasco/. In the following table, we give
an informative correspondence between sections and chapters of this thesis and files of the
development:


http://compcert.inria.fr/verasco/
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Files in the development Description in this thesis

verasco/lib/AdomLib.v Section 3.1

verasco/AbMemSignatureCsharpminor.v  Section 3.2.1

verasco/AbMachineEnv.v Section 3.2.2

verasco/AbIdealEnv.v

verasco/IdealExpr.v Section 3.2.3

verasco/AbIdealEnv.v

Section 3.3
verasco/AbIdealEnvProduct.v
cfrontend/Csharpminor.v Section 4.1
verasco/CsharpminorLogic.v Section 4.2
verasco/CsharpminorIter.v .

, Section 4.3
verasco/CsharpminorIterproof.v
verasco/IdealEnvToMachineEnv.v Chapter 5
verasco/AbIdealNonrel.v .

, Section 6.1
verasco/IdealBoxDomain.v
verasco/FloatIntervals.v
verasco/FloatIntervalsForward.v
verasco/FloatIntervalsBackward.v .

Section 6.2
verasco/ZIntervals.v
verasco/Ideallntervals.v
verasco/IdealIntervalsNonrel.v
verasco/Zcongruences _defs.v .

Section 6.3
verasco/Zcongruences.v
verasco/AbVarExpEq.v Chapter 7
verasco/AbLinearize.v .

. Section 8.1
verasco/LinearQuery.v
verasco/0Octagons.v Section 8.3
verasco/lib/ShareTree.v Section 9.1
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Chapter

Introduction to Functional Formal
Verification of Software

In order to improve the confidence in software, many different technologies have been de-
veloped to write programs that meet their specifications. In particular, formal verification
methods aim at using formal arguments based on logic and mathematics with the help of
computers for guaranteeing the correspondence between a program and its specification. In
this chapter, we give a quick overview of some of these techniques. In particular, we empha-
size the concepts and methods we use throughout the thesis: operational semantics, Hoare
logic, and the Coq proof assistant. We focus, in this chapter, on techniques targeted at
proving precise functional specifications: in Chapter 2, we describe abstract interpretation,
which usually proves less precise specifications with less user interaction.

1.1. Formalizing Proofs of Programs

Formal verification methods are based on strong mathematical foundations. As a conse-
quence, it is necessary to view programs as well-defined mathematical objects. We give an
example here with the Toy programming language. Then, we give an overview of different
formal verification techniques and tools.

1.1.1. The Toy Language and its Operational Semantics

This introduction is based on a simplistic programming language, called the Toy language.
We take a formal point of view for the description of Toy: Toy is seen as a mathematical
object, so that we will be able to write theorems and proofs on this language.

The syntax of Toy is described in Figure 1.1. It depends on a finite set V of program
variables. The expressions of this programming language are built using program variables,
standard arithmetical operators and integer constants. A statement (or instruction) of this
programming language is either an assignment, a sequence of two statements (to be executed
one after the other) or a while loop that repeats its body until the given expression evaluates
to 0. Finally, in Toy, a program using a variable € V as input is defined by a statement,
constituting its body, followed by the return construct producing the result value of the
program.
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Expressions:
en=2x,y,2€V variables
|...—2,-1,0,1,2 ... integer constants
| —e|e+e|exel|e+e arithmetic operations
Statements:
su=x:=e assignment
| 558 sequence
| while e do s done while loop
Programs:
pi=x = s,returne

Figure 1.1: Syntax of Toy

As an example, the following Toy program, when given a non-negative integer as input,
returns the factorial of this number:

T = r:i=1
while z do
Ti=x XT;
zi=x+ —1
done;

return r

The next steps towards defining Toy as a mathematical object is to give meanings to Toy
programs, that are, for now, bare syntax trees. Such a definition is called a semantics of
the Toy language. There are different kinds of semantics for programming languages: we
describe here an operational semantics for Toy, in small-step style. This kind of semantics
describes the behavior of Toy programs closely to the actual behavior of a machine executing
a Toy program.

We describe the behavior of the program as a sequence of machine states. For Toy, a
machine state is given by a pair (p,[) of an environment p : V — Z giving integer values to
variables, and of a list [ of statements that remain to be executed. The first component, the
environment p, represents the memory of the program: it stores the values of the variables,
and is modified when a variable is assigned. The second component, [, represents at which
position the machine is in the code. This component stores literally the pieces of the program
that remain to be executed before its end.

The semantics of Toy statements is given by an initial state, a transition relation between
states describing the steps of computations, written (-, ) — (-, ), and a final state from which
we can extract the result of the execution of the program. Intuitively, this corresponds to
giving a formal description of the “physical” behavior of a computer executing the program.

Consider the Toy program x = s;return e, for some arbitrary statement s and expres-
sion e. When given the value v as input, we define the initial state of this program as
being the state {(p0, ,, s :: nil), where p{, , is the environment such that p9, , (z) = v and

10
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ey n ez pFeln pkFe Un p el ng
pEal plx) pEnln pk—el —n pher+esng+no
pFerdn pkealno prerdm pFexdng ng # 0
phel Xesl ning pher +exl [ni/na|

Figure 1.2: Big-step operational semantics for Toy expressions

P2 ,(y) = 0if y # x; and s :: nil is the list of statements containing the statement s only.
The state transition relation of the language is defined by giving rules under which a
transition may happen. For example, the rule for the sequence statement is the following:

(p, (s1582) :: kY = (p,s1 :: 89 :: k) (1.1)

That is, if we have to execute the sequence of two statements s; and ss, followed by a list
k of other statements, we just queue the execution of s; followed by s, and k.

The rule for assignment depends on the semantics of Toy expressions. We write p e || v
to denote the fact that, in environment p, the expression e evaluates to the value v. The
definition of this judgment is given in Figure 1.2. It follows the structure of the syntax
tree of the expression: this method for defining the semantics of expressions is said to be in
big-step style. We do not give more detail on this definition, the understanding of which is
not essential for the following. The rule for the assignment follows:

pFelwv
(or (@ =) = k) = (pres F)

(1.2)

where p.. , denote the environment p modified with the new value v for variable x. The
rule is stated as an inference rule: if the condition stated above the vertical line is true,
then we can deduce the property under the vertical line. This rule says that executing an
assignment amounts to evaluating the expression and modifying the environment with a new
binding for the assigned variable. The assignment is discarded from the list of statements
to be executed.

There are two rules for while, depending on whether the expression evaluates to 0 or not.

The first one follows:
pFel0

(p, (while e do s done) :: k) — (p, k)

(1.3)

That is, if e evaluates to 0, the loop can be discarded and the environment stays unchanged.
The other rule follows:

pFelwv v#0
(p, (while e do s done) :: k) — (p, s :: (while e do s done) :: k)

(1.4)

That is, if the expression evaluates to a non-zero integer, we place the body of the loop as
the next statement to be executed, followed by another copy of the loop, which will take
care of the following iterations once s will be finished. It is worth noting that the body of
the loop can modify the environment, so that the expression will not necessarily evaluate
to the same value in the following iterations.

11
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It remains to describe the final states of Toy. They are of the form (p,nil), where nil is
the empty list.

Putting all the pieces together, we can say that a program = = s; return e returns value
v, when given input v; if there exists a sequence of states Sp,...,S, such that the two
following properties hold:

S (1.5)

{(p&_vi,s i) =S = S1 — ... = S — S, = (p,nil)

Toy programs can have runtime errors. For instance, when evaluating a division in an
expression e, if the divisor evaluates to 0, there is no value v such that p e || v. As a
consequence, if the expression e appears in the next statement to be executed, there is no
following state defined by the transition relation (-,-) — (-,-). In this situation, we say
that we are in an erroneous or stuck state. In a practical implementation of Toy, this could
correspond to an undefined behavior (i.e., anything can happen), or to a runtime exception
(the implementation stops the execution of the programs and shows an error message). In
any case, a programmer wants to avoid these erroneous states.

A fundamental property of this semantics for Toy is that a given program can return
at most one value: either it does not terminate, or it stops in an erroneous state, or it
does terminate, and in this latter case there is only one path to a final state for a given
input value. This property is called determinism, and is not valid for every programming
language. For example, it is well-known [Krel5, ISO99] that the C language does not fully
specify the evaluation order of expressions, making it non-deterministic: an implementation
of C can choose among several orders for evaluating expressions, leading to potentially
different results.

Of course, Toy is an over-simplified language compared to real-life languages such as C.
Many features are missing, such as functions, complex data-structures or even if-then-
else statements. We develop in Section 4.1 the syntax and operational semantics of a
much more realistic language, the C#minor intermediate language. We refer the reader
to [BDLO06, Krel5] for formal semantics of C, which is even more realistic as a language.

1.1.2. Reasoning on Toy Programs

The operational semantics of Toy describes precisely the behavior of programs. It has the
right level of detail to prove correct some programming tools, such as compilers [Ler06].
However, using this formalism directly for proving properties of programs is not convenient.
To ease this task, formal verification scientists often design another kind of semantics for
their programming language. These so-called aziomatic semantics are well-adapted for
reasoning, but describe the meaning of programs in a way that is further to the actual
“physical” behavior of the program, when compared to operational semantics. In order to
fill this gap, which can lead to a loss of confidence in the proofs of programs, axiomatic
semantics often come with a soundness proof with respect to an operational semantics.
Informally, this proof guarantees that any property proved on programs using the axiomatic
semantics is actually valid when interpreted in the context of the operational semantics.
Soundness proofs for Hoare logic are technical: we omit them in this introductory chapter,
but refer the reader to Section 4.2.5 for the soundness proof of such a logic.

We give here an example of an axiomatic semantics for Toy, in the style of Hoare [Hoa69].
The idea is to give to each statement of the program a pre-condition and a post-condition.
The combination of a pre-condition P, a program statement s and a post-condition @ forms
a Hoare triple, noted {P} s {Q}. Both the pre-condition P and the post-condition @ are

12



1.1. Formalizing Proofs of Programs

logical properties over the values of the variables of the program. The intuitive meaning of
the Hoare triple { P} s {Q} is that if P holds when the execution of s starts, then s will not
produce any runtime error (i.e., in Toy, a division by 0), and @ will hold when s terminates,
if it does.

Similarly to the transition relation of the small-step operational semantics, we give a set
of rules to build Hoare triples. As an example, here is the rule that lets us build a Hoare
triple for a sequence of two statements:

{P}s1 {Q}  {Q} s2 {R}
{P} 51382 {R}

(1.6)

Recall that this rule is given in the style of an inference rule: in order to deduce what is
under the line, one has to prove what is above the line. This rule says that, to prove correct
the Hoare triple {P} s1;s2 {R} for the sequence of the two statements s; and sz, we have
to provide an intermediate predicate ) that will be valid in between the execution of s;
and so. Then, we will have to prove that the two corresponding Hoare triples for s; and sg
are also valid.

Another important rule is the consequence rule. It says that if we were able to prove
a Hoare triple, then it is always possible to weaken the post-condition and strengthen the
pre-condition: strengthening the pre-condition correspond to considering fewer program
executions, and weakening the post-condition correspond to lowering our requirements on
the final state of the execution of the statement. Formally, the consequence rule is stated

as follows:
PP=pr {P}s{Q} Q=¢q
{P'} s {Q'}
The pre-condition for an assignment should not only contain the necessary restrictions
to validate the post-condition, but also a condition ensuring the expression being assigned
evaluates without errors (such as division by 0). To this end, we introduce the notation e}

to denote the fact that, in the current environment, e evaluates without errors, i.e., does
not divide by zero. Then, the rule for assignment follows:

(1.7)

{e} A Plz + €]} z:=e {P} (1.8)

In logic, A is the notation for “and”: the logical property P A @ holds whenever P holds
and @ holds. Moreover, the notation P[z <+ e] denotes the property P where all the
occurrences of x have been replaced by e. The rule (1.8) states that, in order to prove
that a post-condition P holds after the execution of an assignment, we have first to assume
that the expression involved will evaluate correctly. Second, we have to assume something
to deduce P, but P may contain references to the variable x that may not have the same
value before the assignment. Therefore, we replace all the occurrences of z in P with the
expression it is assigned to. It can seem counter-intuitive that we have to do the substitution
in the post-condition in order to find the pre-condition. There exists another formulation of
this rule using a substitution in the pre-condition, but the deduced post-condition is more
complex and involves an existential quantifier.

The last rule of our Hoare logic for Toy is the rule for while loops. The usual way
of reasoning on loops is to exhibit an invariant, a logical property that will hold at the
beginning of any iteration of the loop. We have to prove that the invariant is preserved by
the body of the loop: that is, if it is valid before the execution of the loop body and the loop
condition evaluates to a non-zero value, then it should hold at the end of the execution of
the body. Moreover, the invariant should guarantee that the condition of the loop does not

13
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have a division by 0. Given all these hypotheses, we can deduce a Hoare triple for the loop,
giving the invariant as a pre-condition (the invariant should hold for the first iteration), and
the invariant as a post-condition, together with the fact that the loop condition evaluates
to 0. Formally, this can be written as follows:

I=el {I Ne#0}s{l}
{I} while e do s done {I A e =0}

(1.9)

It is worth noting that this rule does not guarantee that the loop terminates: our axiomatic
semantic for Toy does not ensure termination of programs. We say that such program
correctness proofs are partial, in contrary to correctness proofs guaranteeing termination,
which are called total correctness proofs. Our rule for the while loop could be adapted to
total correctness, but we do not need total correctness in the context of this thesis.

Finally, suppose we want to prove correct a program x = s;return e. More precisely,
suppose we want to prove that, if given the input v, the program either does not terminate
or returns a value verifying the logical predicate P,. Then, the only thing we have to prove
is the following Hoare triple for the statement s:

{z=v}s{Pu(e)} (1.10)

The kind of logical predicate that can be used as pre- and post-conditions depend on
the context. The Hoare logic we presented is well adapted for languages with variables and
possibly arrays, but is not convenient for languages with pointers or references. Often, for
pointer-based programs, a variant of separation logic [Rey02] is used. Separation logic gives
a formalism for proving properties about ownership and organization of memory, which is
useful when proving correct realistic programs.

Hoare logic at work!

We have just given the rules of our Hoare logic for Toy, but they may seem abstract. We
give here an example of application of this logic. Namely, we are going to prove that the
program for factorial given earlier actually computes the factorial of its input. Let n be
such an input, with 0 < n. It suffices to prove valid the following Hoare triple:

{z=n}
r:=1;
while z do
ri=xXr;
r:=x+ —1
done

{r=nl}

The body of the program is the sequence of the assignment » = 1 and of the loop.
Therefore, we have to apply the rule (1.6), and to exhibit an intermediate predicate that is
valid in between. A good candidate is x = n A7 = 1. Then, we have to prove the following
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two Hoare triples:

{r=nAr=1}
while x do
{z=n}r=1{z=nAr=1} TI=T X7
ri=z+—1
done

{r=n!}

For the first one, we are tempted to use the rule for assignments (1.8), but the precondition
do not have the required form: it only let us prove the following Hoare triple:

{IlAhz=nAl=1}r=1{z=nAr=1}

We can easily see, however, that z = n implies 1y Az =n A 1 =1. As a result, we can
apply successively the assignment rule (1.8) and the consequence rule (1.7) to deduce the
desired Hoare triple.

Similarly, in order to prove the Hoare triple of the loop, we use successively the rule for
loops (1.9) and the consequence rule (1.7). We choose as invariant “0 < z Ar = 247 It
remains to prove the following lemmas:

(x:n/\r:l):>0§x/\r:n—' (1.11)
x!
n!
(ng/\rzx'/\xz )ﬁr:n! (1.12)
n!
(OS:E/\T:'> =z (1.13)
x!
n! n!
{O<x/\r—'/\x#O}r:—xxr;x:—x—k—l {O<x/\r—'} (1.14)
x! x!

The first two properties are the premises of the consequence rule (1.7) and can be proved
using basic maths. The last two are the premises of the rule for loops (1.9). The proof of
(1.13) is trivial. The proof of (1.14) is also easy: it involves applying the consequence rule
(1.7), the sequence rule (1.6) and the assignment rule (1.8) twice.

1.1.3. Weakest Preconditions and Deductive Verification

As can be seen in the example of the factorial program, even proofs of simple programs
involve many intermediate steps. Hopefully, many of these steps can be automated, so that
much less user interaction is needed.

The first step towards automation is to notice that, for any given post-condition and non-
looping statement, it is easy to build the weakest pre-condition. The weakest pre-condition
is a valid pre-condition for a given statement and post-condition that is implied by all
other valid pre-condition. For example, in our Hoare logic for Toy, the computation of the
weakest pre-condition for assignments is a direct application of (1.8). For computing the
weakest pre-condition of a sequence si;ss, we first compute for the weakest pre-condition
for statement sp. Then, following (1.6), we use this pre-condition as a post-condition for
s1 and compute the weakest pre-condition of sy. This latter pre-condition is the weakest
pre-condition of s1; ss.
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Continuing the example of the factorial program, the following Hoare triple for the loop
body can be automatically deduced by this algorithm:

! !
{Oéx—i-—l/\xxrz e 1)|} ri=xXr; r:=v+-1 {ng/\r:n;} (1.15)

(x+— x!

In order to prove (1.14) by using the consequence rule (1.7), it remains to prove the simple
implication:

n! n!

Therefore, in order to prove correct a Hoare triple for a statement that does not contain
any loop, we can automatically compute the weakest pre-condition for the given post-
condition and statement. It remains to prove that the desired pre-condition implies the
computed weakest pre-condition. This can be done manually, but, in practice, most of
these so called wverification conditions can be proved by automated theorem provers, which
are able to do basic but tedious logical reasoning efficiently.

We have just described the basic operating principle of deductive verification tools, which
are one of the popular approaches to software verification. In this approach, the user gives
pre- and post-conditions to pieces of program, such as functions or loop bodies, and the tool
tries to prove them using some sort of weakest pre-condition computation and a theorem
prover. This category of tools includes, for example, Why3 [Why], FramaC-WP [Fwp],
Boogie [Boo] and many others. In order to discharge the generated verification conditions,
they use many different automated theorem provers, such as Alt-Ergo [Alt], Z3 [Z3] or
CVC4 [CVC]. In case these automated provers cannot prove automatically a verification
condition, some tools allow the user to fall-back to a fully manual proof assistant such as
Coq [Coqa] or Isabelle [Isal.

A common problem with deductive verification is the fact that weakest precondition
computation does not usually handle loops. Indeed, an invariant has to be computed in
a way or another, and this process cannot be automated in all cases. That is why many
of these deductive verification tools require the user to give the loop invariants explicitly.
Others use heuristic algorithms to infer loop invariants. As we will see in Chapter 2, a
generic method for inferring loop invariants is provided by abstract interpretation.

1.1.4. Model Checking

Model checking is another software verification technique. We do not use this method at all
in the context of this thesis. For the sake of completeness, we give here a rough description
of this active research domain.

The idea of model checking is to explore systematically the set of states the program can
reach during its execution, and to check that all the paths that may be taken by the system
meet the specification. The possible specifications are potentially not limited to a set of
erroneous states to exclude: they are usually expressed in temporal logic, enabling the user
to express properties over the whole program trace.

A common problem with model checking is that the set of states can be large and po-
tentially infinite, thus impractical to explore. Several solutions exist to circumvent this
problem:

o Instead of verifying the actual program that will be executed, the users of model
checking often use a model of the program. Such a model is described in an idealized
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formalism (such as Biichi automata, Petri nets or even over-simplified programming
languages). Typically, the behaviors of such models are much easier to explore sys-
tematically than realistic programs which may contain many implementation details.

e The model checking algorithms need not explicitly explore each state one by one.
Instead, designers of model checking tools have developed efficient algorithms using
symbolic methods. Schematically, they use logical formulae to represent sets of states.
To this end, they typically depend on binary decision diagrams, Boolean satisfiability
solvers or satisfiability modulo theory solvers.

o Model checking tools may be used to explore only a subset of the set of reachable
states. That is, they will enumerate all the states reachable after & computing steps,
where k is a parameter of the tool. By doing so, the tool becomes unsound: it may
miss a bug in the software, but it is still useful in improving the confidence in the
software.

Compared to the other functional verification tools described in this chapter, model checking
has advantages: once the model and the specification are described in the right formalism,
the tool is mostly automatic. Moreover, when such a tool finds a bug, it also provides
an example of an erroneous program execution, which can be useful in debugging. These
two advantages make model checking popular in industry. However, it suffers from seri-
ous scalability problems that make difficult the use of model checking for large realistic
programs.

1.1.5. Dependent Type Systems

Type systems are a popular method to improve reliability and ease development of software.
In this methodology, a set of rules lets a type-checker (which is usually a component of the
compiler) assign a type to each value to be computed. A typ