
HAL Id: hal-00949762
https://hal.inria.fr/hal-00949762v3

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distem: Evaluation of Fault Tolerance and Load
Balancing Strategies in Real HPC Runtimes through

Emulation
Cristian Ruiz, Joseph Emeras, Emmanuel Jeanvoine, Lucas Nussbaum

To cite this version:
Cristian Ruiz, Joseph Emeras, Emmanuel Jeanvoine, Lucas Nussbaum. Distem: Evaluation of Fault
Tolerance and Load Balancing Strategies in Real HPC Runtimes through Emulation. CCGRID - 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2016, Cartagena,
Colombia. �hal-00949762v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49373813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00949762v3
https://hal.archives-ouvertes.fr


Distem: Evaluation of Fault Tolerance and Load
Balancing Strategies in Real HPC Runtimes through

Emulation

Cristian Ruiz, Joseph Emeras, Emmanuel Jeanvoine and Lucas Nussbaum

Inria, Villers-lès-Nancy, F-54600, France
Université de Lorraine, LORIA, F-54500, France
CNRS, LORIA - UMR 7503, F-54500, France

Abstract—The era of Exascale computing raises new chal-
lenges for HPC. Intrinsic characteristics of those extreme scale
platforms bring energy and reliability issues. To cope with those
constraints, applications will have to be more flexible in order to
deal with platform geometry evolutions and unavoidable failures.
Thus, to prepare for this upcoming era, a strong effort must be
made on improving the HPC software stack. This work focuses
on improving the study of a central part of the software stack, the
HPC runtimes. To this end we propose a set of extensions to the
Distem emulator that enable the evaluation of fault tolerance
and load balancing mechanisms in such runtimes. Extensive
experimentation showing the benefits of our approach has been
performed with three HPC runtimes: Charm++, MPICH, and
OpenMPI.

Keywords—Experimentation, HPC runtimes, Fault tolerance,
Load balancing, Emulation

I. INTRODUCTION

During the last decade, numerical simulations have become
a key component of most advances in today’s society, science
and engineering. Those simulations, computing interactions
of many complex models, leverage the computing power of
modern HPC infrastructures. The increasing scale and volume
of those simulations is a driver for infrastructure evolution, and
before 2020, HPC infrastructures will likely reach Exascale.
Several projects around the world have studied the challenges
of computing at Exascale and numerous improvements need to
be achieved. In particular, The International Exascale Software
Project [1] explored those challenges from the software stack
point of view. One identified direction is the improvement
of the HPC runtimes to ease the programming of Exascale
applications. Among other directions, the report recommends
to focus on the support of platform heterogeneity, load bal-
ancing, and resilience. Experimentation is fundamental in the
HPC context. Evaluating current HPC runtimes under complex
realistic conditions is critical for application developers and
researchers.

This work contributes to enabling experimental evaluation
of HPC runtimes. Starting from Distem, which is a versatile
emulator for studying distributed systems, we designed an
emulator suitable for the evaluation of HPC runtimes, enabling
specifically: (1) introduction of heterogeneity and dynamic
imbalance among the computing resources; (2) introduction
of failures. Those features provide runtime designers with the

ability to experiment their prototypes under a large range of
conditions.

This paper is organized as follows. First, Section II de-
scribes how the Distem emulator was extended to address
the specific challenges of the evaluation of HPC runtimes.
Then, Section III presents experiments that demonstrate the
benefit of such a tool for HPC runtime evaluation. Finally,
Section IV compares our approach to related works, and
Section V concludes this paper and discusses our future work.

II. DESIGN OF AN EMULATOR TO STUDY HPC RUNTIMES

This section first highlights the important points when
studying HPC runtimes and presents the difficulties when eval-
uating them. Then, it presents the design of Distem and how it
enables testing HPC runtimes in heterogeneous environments,
possibly under evolving conditions and in presence of failures.

A. Study of HPC runtimes

To design interesting features for studying HPC runtimes,
we first have to delve what is important to achieve such studies
and why it is difficult to achieve.

Compared to typical computing environments, the main
characteristic of HPC environments is the high number of
computing resources and its critical density. Furthermore,
typical HPC workloads imply a large amount of computations
that are likely to be executed for several days or months.
Because of the high number of resources, the probability that
failures hit one or more resources while computing is very
high. High density of the resources also increases failures since
it is complicated to extract the generated heat from computers
and since heat is known to damage electronic components.
Thus, it is quite obvious that HPC runtimes have to deal with
failures.

To cope with the heat, hardware manufacturers and OS
developers offer several solutions that usually aim at reducing
the computing power dynamically (for instance by reducing the
frequency of some CPU cores, or by disabling some cores).
For classical applications this has almost no impact but parallel
codes usually used in HPC applications would be disrupted.
Indeed, a typical parallel application runs the same workload
on all the computing units using network communications to
synchronize and exchange required data among the computing



units. To avoid inactivity of some computing CPU while
other are performing a computation with a reduced computing
power, HPC runtimes also have to implement load-balancing
strategies. In this paper, we will focus on the way to study
fault-tolerance and load-balancing features in HPC runtimes.

When implementing such features, HPC runtime designers
and developers tackle the difficulty to ensure that runtimes
are working as expected and to tune them according to the
execution platform.

Regarding fault-tolerance, fault injectors can be used to
validate the recovery mechanisms. Those injectors can be
embedded in the runtime but this often suffer from a lack
of realism, like the one implemented in Charm++ [2]. Indeed,
the runtime can stop some running processes but it cannot
simulate an hardware or a network failure since it does not
control the kernel. Some frameworks exist with various level of
realism. However, realistic ones imply intrusive kernel modifi-
cations [3]. Regarding load-balancing, ad-hoc mechanisms are
usually used, leveraging CPU scaling to reduce the frequency
of some CPU. This approach lacks accuracy as it is hard to
perform such operations on a lot of nodes at the required time
to show precisely the benefit of a given load-balancing strategy.
Furthermore, CPU scaling cannot set any frequency on any
processor: only few frequencies are usually available, which
can be an issue to subtly study a load-balancing strategy.

B. A framework for the evaluation of HPC applications

1) General overview of Distem: The features, general ar-
chitecture and evaluation of Distem were presented in [4],
but are shortly summarized here. Distem is able to emulate
a heterogeneous virtual platform on top of a homogeneous
cluster in order to meet the experimenter’s requirements. A
virtual platform is composed of virtual nodes and virtual
networks.

On the networking side, Distem can emulate a complete
and complex network topology. Virtual nodes can belong to
different virtual networks and can act as gateways between
several networks. Network links can be configured in order to
provide specific performance (latency, available bandwidth).
On the computing side, Distem can use two methods to
emulate slower nodes in the virtual platform: a) CPU scaling
and b) a specific method designed to work independently from
the native supported frequencies of a CPU.

Distem also proposes two operating modes. In the real-
scale mode, the total number of emulated resources will be the
same as the number of physical resources on the platform. In
the node-folding mode, Distem uses lightweight virtualization
to launch several virtual nodes (vnodes in Distem’s terminol-
ogy) on the same physical resource, that will be shared among
them. Lightweight virtualization is based on Linux containers
which is a strong advantage since applications are executed on
the same hardware as classical execution. This is not really
the case when running applications on the top of classical
virtualization solutions.

2) Emulate heterogeneous and evolving experimental con-
ditions: We have previously shown [4] that Distem can be
used to create virtual heterogeneous platforms from a homo-
geneous cluster, with vnodes with different frequencies and

number of cores, different IO capabilities and network links
with different bandwidth and latency. In the context of this
work, we extended Distem so that those characteristics of the
vnodes could be updated dynamically without redeploying the
virtual platform. This is useful to achieve complex experiments
where the platform is modified, like it could happen in the
reality. Thus, evaluating CPU- or communication-aware load-
balancers of HPC runtimes is possible and easy.

3) Support for fault-tolerance: Handling failures is crucial
for HPC runtimes, thus being able to generate realistic failures
is required to perform accurate experiments. Unexpected loss
of nodes in a computing infrastructure is normally due to a
hardware failure. Nodes can be lost in three different ways:

• Graceful: the node is shut down cleanly, using an oper-
ating system command. All applications are notified and
they have some graceful period to perform some cleaning
tasks (usually some seconds).

• Soft: The node is forced to shut down. Applications
running on the node as in the previous case are noti-
fied, however the node is shut down immediately. The
application do not have the possibility to react.

• Hard: The node failed abruptly. The operating system is
not able to terminate cleanly. The peer application are not
notified (network communications are still seen as active
until the failure is detected by the peer, using a timeout).

Distem is able to emulate these three behaviors using Linux
containers and Netfilter. More specifically, the failures are
implemented as follows:

• Graceful: classical stop of LXC containers (lxc-stop),
this sends a TERM signal to all the processes belong-
ing to the container. If applications are able to handle
specifically this signal, they can perform some cleaning
operations.

• Soft: forced stop a LXC containers (lxc-stop -k),
this sends a KILL signal to all the processes belonging
to the container. The effect is immediate.

• Hard: we drop all the packets received and sent by a
vnode using iptables.

Speaking in the fault-tolerance terminology, Graceful and
Soft failures are fail-stop failures, Hard failures are a kind
of omission failures. Performance failures can be emulated as
well by setting a very high latency on some virtual network
interface or by radically decreasing the CPU performance of
some nodes, implying very slow responses to requests. Distem
is not able yet to generate byzantine failures but it could be
added, if you consider the network point of view, leveraging
Netfilter. Indeed, libnetfilter_queue offers an API to
alter packets received by the kernel and allows to re-inject
them.

4) Event injection framework: Introducing a platform mod-
ification manually is convenient to test a given feature but
does not allow complex and realistic experimentation. Thus,
being able to modify the virtual platform automatically and in
a deterministic way during an experiment is required. For that
purpose, we added an event injection framework.

The following automatic modifications are supported for a
given set of vnodes: (1) modification of the CPU frequency; (2)



modification of the network interfaces capabilities (latency and
bandwidth); (3) start and stop (in the three different presented
ways). The events can be specified in two ways. First, it is
possible to use an event trace that specifies which modification
occurs at which date (relatively to the start of the experiment).
Second, it is possible to define automatically the date of event
arrival according to various probability distributions. Currently,
uniform, exponential and Weibull distributions are supported.
The virtual platform description (CPU frequency modification,
network link modification, and virtual node arrival/disappear-
ance) can be updated dynamically and upon request during an
experiment.

Thanks to this framework, the orchestration of complex and
realistic platform modifications can be performed in order to
achieve advanced experiments in a great variety of contexts.

III. EXPERIMENTAL EVALUATION

This section validates the benefits of Distem in the context
of HPC runtimes evaluation. For that purpose we performed
four kinds of experiments. First, we show how three HPC
runtimes detect failures and behave when a process of the ap-
plication is hit by a failure (Section III-A). Second, we validate
the fault injection mechanisms of Distem depending on the
degree of over-subscription (Section III-B). Third, we evaluate
the fault-tolerance strategies implemented in Charm++ using a
predetermined failure trace and probabilistic failures following
several MTB values (Section III-C). Finally, we evaluate the
behavior of some Charm++ load-balancers using Distem to
create heterogeneous platforms and to dynamically change
performance of nodes (Section III-D).

Experimental evaluation often suffers from poor repeata-
bility [5], which is a major problem to trust the results. Using
Distem alleviates this issue as emulated platforms can be
reproduced identically between two experiments, even when
performed on different physical platforms. For the sake of
reproducibility we also provide our experiments’ output logs
and scripts to generate the figures. These are available at 1.

Experimental Setup: The experiments have been performed
on three clusters of the Grid’5000 testbed2:

• Graphene, in Nancy, 144 nodes (1 Intel X3440 CPU at
2.53 GHz, 4 cores/CPU, 16GB RAM, 1 GbE);

• Griffon in Nancy, 92 nodes (2 Intel Xeon L5420 CPU at
2.5GHz, 4 cores/CPU, 16 GB RAM, 1 GbE);

• Paravance in Rennes, 72 nodes (2 Intel Xeon E5-2630v3
CPU at 2.4GHz, 8 cores/CPU, 128 GB RAM, 10 Gbe).

We used the following software stack: Debian Jessie, Linux
kernel version 3.16, Charm++ version 6.6.0, OpenMPI 1.8.5
and MPICH 3.1. We used two applications for Charm++:
a) Jacobi3D a 7-point 3-dimensional stencil that computes
the transmission of heat on a three dimensional space. It
implements in-memory checkpoint-restart [6] and b) Stencil3D
a 6-point 3-dimensional stencil that iteratively average values
in a 3D grid. This application has been chosen since it is

1https://gforge.inria.fr/frs/?group id=3519
2Experiments presented in this paper were carried out using the Grid’5000

testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr).

relevant to observe the benefit of Charm’s LB functionality. For
the MPI based runtimes, we used the set of NAS benchmarks.

A. Evaluating failure detection of HPC runtimes

Failure
Framework

Charm++ OpenMPI MPICH
Detected Action Detected Action Detected Action

Graceful Yes C Yes H Yes E
Soft Yes C Yes H Yes E

Hard No - Yes H Yes E

TABLE I: Failure detection. C refers to the roll-back of the application to
the previous checkpoint, H refers to the fact that processes hang, E refers to
the termination of MPI processes

In this section, we use Distem to assess the failure detection
capacity of HPC runtimes. The experiment consist in injecting
a failure with Distem and observe if the failure is detected
and what is the action taken by the runtime. We use Jacobi3D
application for Charm++ and the NAS benchmarks for the MPI
based runtimes. The parameters and specific application are not
mentioned as the results remained unchanged for a large set
of applications and parameters.

The results are summarized in Table I. Charm++ detects
Graceful and Soft failures. Charm++ reacts in the same way to
both kind of failures: it rolls back the execution to the previous
checkpoint. In the first case the runtime catches the signal but it
ignores it. When Hard failures are injected Charm++ is unable
to detect them and the application freezes 3.
OpenMPI detects the three types of failures. However, the
runtime does not abort the execution. For the first two types
of failures the runtime clean up all the processes running on
the different nodes but the main application blocks. In the
presence of a Hard failure the runtimes does not clean the
processes running on the other machines 4.
MPICH detects the three types of failures. It aborts the
execution when a failure is detected which is the expected
behavior.

Testing HPC runtimes under the presence of failures is very
important and it has to be integrated into the software devel-
opment cycle. Distem simplified the uncovering of problems
in the failure handling for widely used HPC runtimes.

B. Validity of fault injection mechanism

In this experiment, we validate the Distem fault injection
mechanism. To do so, we compare three mechanisms of fault
injection: a) the mechanism built into Charm++, b) real faults
using a classical OS reboot (/sbin/reboot), c) Distem fault
injection mechanism when running 1,2, or 4 containers per
physical machine.

We run 1000 iterations of Jacobi3D using 64 physical
machines in the Graphene cluster. The checkpoint frequency
was set up to each 100 iterations. A failure trace was defined,
that injects faults after the first, second and third checkpoint.
Faults here, refer to Soft shutdown. We inject a total of 10
failures that were distributed in a way that the probability
of making replica nodes crash is reduced. The same trace of
failures is used for the three mechanisms.

3Charm++ developer team was notified about this behavior
4This problem has been fixed in the latest OpenMPI version 1.10.1

https://gforge.inria.fr/frs/?group_id=3519
https://www.grid5000.fr


Mechanism % termination Mean walltime (secs)
Charm++ Injection 100% 268.55

Real Injection 66% 267.19
Distem 1vn 56% 286.43
Distem 2vn 50% 287.05
Distem 4vn 56% 294.45

TABLE II: Percentage of successful application executions

In Table II we observe that Charm++ fault injection
provides a very optimistic and unrealistic scenario where
the application always finishes its execution successfully. We
include in the table the walltime of the application in order
to show the overhead introduced by Distem which goes from
6.17% to 9.25% due to the use of containers and the degree of
over-subscription. Additionally, it is shown that the walltime
remains in an acceptable range to be meaningful and to be
comparable with real injection. In this experiment, we show
that fault injection mechanisms at the application level have to
be complemented with a more realistic approach.

We demonstrate that Distem offers realistic experimental
conditions and that the level of realism is maintained in the
presence of over-subscription.

C. Study of fault tolerance strategies in Charm++

In this experiment, we use Distem to evaluate the fault
tolerance capacity of the Charm++ runtime [2]. The exper-
iment has been divided in two parts. The first part uses a
static and predetermined trace of failures like described in
the previous section whereas the second part uses events that
are generated following a probabilistic law. We use the event
generator described in Section II-B2 which is able to manage
these two aforementioned scenarios.

1) Trace of predetermined failures: For this experiment, we
use the Graphene cluster. We run 1000 iterations of Jacobi3D
on 128 cores (32 nodes, 4 vnodes per node, 1 core per vnode)
with a problem size of 1024×1024×1024 and a decomposition
of 1283 and configured with different frequencies for the
checkpoint: {10, 25, 50, 100, 120, 130, 140} iterations.

This experiment evaluates the cost and trade-off of different
checkpoint frequencies. This is summarized in the resulting
application walltime (Figure 1). The most important overheads
are at both extremes of the range: 10 and 140 which represent
the overhead of performing a checkpoint very often and the
overhead of loosing a large number of iterations. The overhead
due to the loss of iterations is around 20% larger than the loss
due to checkpointing.

This experiment illustrates how Distem can be used to
fully automate the tunning of fault tolerant applications by
choosing the best checkpointing frequency. This is necessary
given that the cost of checkpointing will vary according to the
application.

2) Trace of failures that follow MTBF: For this experiment,
we use the Griffon cluster. We run 1000 iterations of Jacobi3D
on 256 cores (32 nodes, 8 vnodes per node, 1 core per
vnode) with a problem size of 2048 × 2048 × 1024 and a
decomposition of 2563. We set the frequency of checkpointing
to 200 iterations.

In this experiment instead of using a deterministic trace we
use a probabilistic distribution: the Weibull distribution. This

0

300

600

900

10 25 50 100 120 130 140
Checkpoint frequency

W
al

tim
e 

(s
ec

s)

Fig. 1: Overhead of different checkpoint frequencies under the presence of
failures

ERRORERRORERRORERRORERRORERRORERRORERRORERRORERROR

0

500

1000

1500

2000

1 7 14 30 60 90 180 365 No
Failure

No
FT

MTBF per core (in days)

W
al

lti
m

e 
(s

ec
s)

Failures
0

1

2

3

5

6

Fig. 2: Execution runtime of Jacobi3D application under different values of
MTBF.

distribution is suitable for approximating MTBF behaviors [7],
[8]. We use decreasing Weibull’s scale parameter from 1 year
(one of the classical MTBF values for one processor) to
1 day (to simulate faulty machines) and we use this event
management feature on every vnode to ensure that they can
fail independently and following the selected MTBF. We also
choose a small shape parameter k = 0.5 (typical values being
0.5 and 0.7) to ensure that failures will arrive rapidly. With
this, we increase the probability of encountering a failure in
our experiments without changing the scale.

Figure 2 presents the results of the study of Charm’s fault
tolerance (FT) feature with different MTBF values. One can
observe that the overhead of replication is quite low compared
to the gain in case of failure (as already shown in the previous
experiment). The replication only induces a slowdown of a few
seconds on a 20 minutes run.

MTBF
Iterations Lost

Totalat Failure #
1 2 3 4 5 6

365 40 40
180 140 110 250
90 50 20 120 190
60 30 0 60 70 140 300
30 50 0 0 30 80 60 220

TABLE III: Number of iterations lost in failures.

It is interesting to observe that a single failure (in the case
of a 365 days MTBF) leads to a noticeable loss of time.
When comparing with Table III, which presents the number
of iterations lost at a given failure5, we see that for a 180 days
MTBF, the total number of iterations lost is larger than for a 90
days MTBF but with a total run time being smaller. This is due
to the fact that failure detection and restart preparation took
between 10 and 20 seconds instead of the 3 seconds measured
in the other cases.

In this experiment, thanks to Distem’s failure generation
framework, we were able to easily simulate node failures

5A loss of 0 iteration is due to 2 contiguous failures, in this case, the 2nd
failure does not impact the number of iterations lost.



with different MTBF values and thus to observe Charm’s
FT efficiency. Using a probabilistic law to generate events is
suitable to achieve realistic evaluations. However, depending
on the time and the scale of an experiment, results might not
be fully reproducible because of the probabilistic aspect.

D. Evaluating load balancing strategies in Charm++

In this experiment we use Distem to generate hetero-
geneous conditions from a homogeneous platform and to
generate dynamic perturbation on the nodes. With this setup,
we illustrate Charm’s load balancing (LB) behavior in het-
erogeneous conditions. We used 8 physical machines of the
Paravance cluster. For each machine a vnode is configured
per core, making a total of 128 vnodes. We run 100 iterations
of Stencil3D application with a 10243 problem size and a 1283

decomposition. We create two different scenarios:

• heterogeneous: A platform where half of the vnodes have
a CPU clock reduced by Distem from 2.4GHz to 1.2GHz.
This case is an interesting study of what would be the
result of running Stencil3D on 2 cluster partitions with
different CPU clock speeds.

• dynamic: A homogeneous platform where the available
CPU power of a sub-part of the vnodes is dynamic. Each
two minutes, 1/8 of vnodes are downclocked by Distem
for two minutes, then set back to their original frequency.
This scenario can mimic a cooling failure in a data center
or CPU performance variation due to oversubscription [9].

For both scenarios we evaluate two load balancers (Re-
fineLB and Hybrid) provided by Charm++. Therefore we test
the following variations: LBOff: load balancing is deactivated.
Charm++ objects will not be migrated and no processor
imbalance check will be done by Charm++ runtime. RefineLB:
centralized load balancer that moves objects away from the
most overloaded processors to balance the workload. It also
limits the number of objects being migrated. Hybrid: dis-
tributed load balancer that uses a hierarchical strategy.

Figure 3 shows the CPU utilization for each of the 128 vn-
odes in the two scenarios and the different variations. Figure 3a
shows the CPU utilization for an heterogeneous hardware with
not load balancer activated (LBOff ). It is observed that half of
the vnodes have a lower CPU utilization which is the result
of running a tightly coupled application in an heterogeneous
platform. Figures 3b,3c depict a smooth curve for the CPU
utilization as a result of the activation of the load balancers.
Although Hybrid shows a better CPU utilization, the final run-
time of the application is bigger than the normal execution time
(LBOff ). This is due to CPU utilization generated by the load
balancer itself. RefineLB shows a CPU utilization of 5.67%
and a reduction of 6.40% in the walltime. Figure 3d shows
the CPU utilization for a dynamic platform. Again the curve
of utilization is smoothed by both load balancers. We observe
here, as in the previous case that RefineLB behaves better
than Hybrid. In this experiment, the vnode 0 is downclocked
periodically. For the test without LB, it is visible that vnode 0
is globally slower than others and, it delays vnodes 1, 2 and
3 that show a lower CPU utilization than the others.

This experiment demonstrated that Distem enables experi-
menters to easily simulate perturbations and heterogeneity of
nodes in order to evaluate load balancing strategies.

IV. RELATED WORKS

There exists a large number of works that aim at building
experimental environments providing controlled performance
of CPU or network. These are more extensively detailed in our
previous works [10] and [4]. However, none of them provide
the complete integration of the chain of tools for the full
control of all the environment characteristics as Distem does.

In the context of HPC runtime evaluation, no standard
method is used to run experiments. As the Charm++ team is
seen by most as doing state-of-the-art research in the field of
HPC runtimes, we use them as an example and survey some
of their recently published papers to see how their experiments
have been carried out.
[11] proposes to evaluate a distributed load balancer for
Charm++ using an ad-hoc simulator and a real application trace
from IBM BG/Q. Building one’s own simulator and extracting
trace from real application is time consuming. Simulation is
valuable to deal with extreme-scale platform, but it might not
represent all the details of real applications.
[12] describes a temperature-aware load balancer for Charm++.
Their experiments leverage the DVFS capabilities of proces-
sors to study the load balancer behavior. DVFS is not always
available or is available only for few frequencies; the same
study could have been carried out with Distem without specific
hardware support. Indeed, Distem is able to emulate DVFS
at core level. A similar experiment using DVFS is presented
in [13]. However, it could not be performed at the core level
since DVFS was only available at the socket level. Such a
limitation does not exist on a Distem platform.
[14] and [15] present fault tolerance mechanisms on top of
Charm++. Studying such properties of the HPC runtimes is
probably one of the most difficult things. Generating realistic
failures is not easy: one possibility is to mimic a failure in
the application; another is to kill the application’s processes,
or to shutdown some nodes. Distem removes the burden of
managing this manually by providing users with an event
injection framework. This framework allows the experimenter
to define realistic failure conditions, like MTBF, frequently
used as a failure model in the literature.
[16] proposes to study network link utilization of different
applications according to the underlying network topology. To
create new network topologies, this work required advanced
network management capabilities to switch off some links.
Such experiment could be performed on any platform with
Distem since virtual network topologies can be redefined.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented how Distem was extended to
support the evaluation of HPC runtimes and applications. After
detailing some relevant design parts of Distem with respect to
the HPC context (heterogeneous and evolving experimental
conditions, realistic fault-injections), we carried out several
experiments, studying two key properties of HPC runtimes
that are included on the targeted challenges to reach before
2020: (1) fault-tolerance and (2) load-balancing properties of
HPC runtimes. A lot of other experiments could have been
carried out but the goal was to prove the usefulness of Distem
with respect to enabling those experiments. In each experiment,
we were able to draw conclusions that might be useful for
the designers of runtimes. For instance, new load balancing



0

25

50

75

100

0 50 100
vnode id

C
PU

 u
til

iz
at

io
n 

[%
]

(a) LBOff - Walltime: 341.51 secs
Average utilization: 55.58%

0

25

50

75

100

0 50 100
vnode id

C
PU

 u
til

iz
at

io
n 

[%
]

(b) RefineLB - Walltime: 320.96 secs
Average utilization: 61.25%

0

25

50

75

100

0 50 100
vnode id

C
PU

 u
til

iz
at

io
n 

[%
]

(c) Hybrid - Walltime: 356.04 secs
Average utilization: 65.71%

0

25

50

75

100

0 50 100
vnode id

C
PU

 u
til

iz
at

io
n 

[%
]

(d) LBOff - Walltime: 347.52 secs
Average utilization: 41.87%

0

25

50

75

100

0 50 100
vnode id

C
PU

 u
til

iz
at

io
n 

[%
]

(e) RefineLB - Walltime: 322.67 secs
Average utilization: 46.55%

0

25

50

75

100

0 50 100
vnode id

C
PU

 u
til

iz
at

io
n 

[%
]

(f) Hybrid - Walltime: 359.07 secs
Average utilization: 42.65%

Fig. 3: Figures (a), (b) and (c) represent the execution in a virtual infrastructure where half of the nodes CPU clock is reduced to half of the frequency. Figures
(d), (e) and (f) represent the execution in a virtual infrastructure where the CPU clock of some machines is varying.

strategies could be implemented in Charm++ in order to fit
the next-generation HPC platform characteristics. Being able
to execute experiments on a large set of platform configurations
in a repeatable way, as made possible by Distem, is a sound
basis to design and improve the HPC runtimes of the future.

Future works will follow three directions. First, we will
carry out experiments related to I/O evaluation. As seen
in the paper, it would be an interesting feature to evaluate
mechanisms using on-disk checkpointing. Distem already has
support for I/O throttling that leverages a Linux feature called
blkio but extensive evaluations still have to be achieved
and maybe some design refactoring will have to be performed
since in some cases the throttling might not work as expected
(case of buffered I/O for instance). Second, we would like to
emulate more node characteristics, such as power consumption,
heat dissipation in order to perform realistic experiment that
focus on future HPC and Cloud challenges like power-aware
scheduling. We could also imagine introducing an energy
cost model to be able to evaluate fancy scheduling/load-
balancing algorithms like follow-the-sun algorithms. Finally,
we look forward to working with HPC runtime and application
developers in order to contribute to designing a better next
generation of HPC software.

REFERENCES

[1] J. Dongarra, P. Beckman, T. Moore et al., “The International Exascale
Software Project Roadmap,” International Journal of High Performance
Computer Applications, vol. 25, no. 1, February 2011.

[2] L. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in OOPSLA’93, September 1993.

[3] C. Coti and N. Grenèche, “Os-level failure injection with systemtap,”
CoRR, vol. abs/1502.01509, 2015.

[4] L. Sarzyniec, T. Buchert, E. Jeanvoine, and L. Nussbaum, “Design
and Evaluation of a Virtual Experimental Environment for Distributed
Systems,” in PDP2013, Belfast, Royaume-Uni, February 2013.

[5] O. S. Gómez, N. Juristo, and S. Vegas, “Replications Types in Experi-
mental Disciplines,” in ESEM’10, October 2010.

[6] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: An In-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI,” in
Cluster’2004, San Diego, CA, September 2004.

[7] Y. Robert, “Models for fault-tolerance at very large scale,” University
of Tennessee Knoxville, 2013.

[8] I. Koren and C. M. Krishna, Fault-tolerant systems. Morgan Kaufmann,
2010.

[9] A. Gupta, O. Sarood, L. Kale, and D. Milojicic, “Improving HPC
Application Performance in Cloud through Dynamic Load Balancing,”
in CCGRID’2013, May 2013.

[10] T. Buchert, L. Nussbaum, and J. Gustedt, “Methods for Emulation of
Multi-core CPU Performance,” in HPCC-2011, September 2011.

[11] H. Menon and L. V. Kale, “A Distributed Dynamic Load Balancer for
Iterative Applications,” in SC’2013, Denver, CO, USA, November 2013.

[12] O. S. et al., “A ’Cool’ Way of Improving the Reliability of HPC
Machines,” in SC’2013, Denver, CO, USA, November 2013.

[13] H. Menon, B. Acun, S. De Gonzalo, O. Sarood, and L. Kale, “Thermal
aware automated load balancing for HPC applications,” in Cluster’2013,
September 2013.

[14] X. Ni, E. Meneses, N. Jain, and L. V. Kale, “ACR: Automatic
Checkpoint/Restart for Soft and Hard Error Protection,” in SC’2013,
November 2013.

[15] X. Ni, E. Meneses, and L. V. Kale, “Hiding Checkpoint Overhead in
HPC Applications with a Semi-Blocking Algorithm,” in Cluster’2012,
September 2012.

[16] E. Totoni, N. Jain, and L. V. Kale, “Toward Runtime Power Man-
agement of Exascale Networks by On/Off Control of Links,” in HP-
PAC’2013, May 2013.


