
HAL Id: hal-01327511
https://hal.archives-ouvertes.fr/hal-01327511

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MAPPING on UPMEM
Dominique Lavenier, Charles Deltel, David Furodet, Jean-François Roy

To cite this version:
Dominique Lavenier, Charles Deltel, David Furodet, Jean-François Roy. MAPPING on UPMEM.
[Research Report] RR-8923, INRIA. 2016, pp.17. �hal-01327511�

https://hal.archives-ouvertes.fr/hal-01327511
https://hal.archives-ouvertes.fr

MAPPING on UPMEM

Dominique Lavenier, Charles Deltel,
David Furodet, Jean-François Roy

N°	8923	
	
June	2016		
	
Project-Team	GenScale	

IS
SN

 0
24

9-
63

99

MAPPING on UPMEM

Dominique Lavenier1, Charles Deltel1
David Furodet2 , Jean François Roy2

Project-Team GenScale

Research Report 	N°	8923 — June	2016 —17 pages.

	

Abstract:	 	 This	 paper	 presents	 the	 implementation	 of	 a	 mapping	 algorithm	 on	 the	 UPMEM	 architecture.	 The	
mapping	 is	a	basic	bioinformatics	application	that	consists	 in	 finding	the	best	 location	of	millions	of	short	DNA	
sequences	on	a	full	genome.	The	mapping	can	be	constrained	by	a	maximum	number	of	differences	between	the	
DNA	 sequence	 and	 the	 region	of	 the	 genome	where	 a	high	 similarity	has	been	 found.	UPMEM’s	Processing-In-
Memory	 (PIM)	 solution	 consist	 of	 adding	 processing	 units	 into	 the	 DRAM,	 to	 minimize	 data	 access	 time	 and	
maximize	bandwidth,	 in	order	to	drastically	accelerate	data-consuming	algorithms.	A	16	GBytes	UPMEM-DIMM	
module	 comes	 then	 with	 256	 UPMEM	 DRAM	 Processing	 Units	 (named	 DPU).	 The	 mapping	 algorithm	
implemented	on	the	UPMEM	architecture	dispatches	a	huge	index	across	the	DPU	memories.	DNA	sequences	are	
assigned	 to	a	specific	DPU	according	 to	k-mers	 features,	allowing	 to	massively	map	 in	parallel	million	of	 them.		
Experimentation	on	Human	genome	dataset	shows	that	speed-up	of	25	can	be	obtained	with	PIM,	compared	to	
fast	mapping	 software	 such	 as	 BWA,	 Bowtie2	 or	 NextGenMap	 running	 16	 Intel	 threads.	 Experimentation	 also	
highlight	 that	data	 transfer	 from	storage	device	 limits	 the	performances	of	 the	 implementation.	The	use	of	SSD	
drives	can	boost	the	speed-up	to	80.	

	

Key-words:	Mapping,	genomic	banks,	Processing-in-Memory	
	

1 INRIA / IRISA – dominique.lavenier@inria.fr
2 UPMEM SAS – jroy@upmem.com

MAPPING on UPMEM

Résumé	:	 Ce	 rapport	 présente	 l’implémentation	 d’un	 algorithme	 de	 mapping	 sur	 l’architecture	 UPMEM.	 Le	
mapping	est	un	traitement	bioinformatique	de	base	qui	consiste	à	localiser	sur	un	génome	des	millions	de	courtes	
séquences	 d’ADN.	 Le	 mapping	 peut	 être	 contraint	 par	 un	 nombre	maximum	 de	 différences	 entre	 la	 séquence	
d’ADN	et	 la	 région	du	génome	où	une	 forte	similarité	a	été	 trouvée.	La	solution	de	Processing-in-Memory	 (PIM)	
UPMEM	consiste	à	ajouter	des	unités	de	 calcul	dans	 la	DRAM,	pour	minimiser	 le	 temps	d’accès	aux	données	et	
maximiser	 la	bande	passante,	de	manière	à	 accélérer	 significativement	 les	 algorithmes	gourmands	en	données.	
Une	 barrette	 UPMEM	 de	 16G	 Mo	 propose	 donc	 256	 DRAM	 Processing	 Units	 (appelé	 DPU).	 L’algorithme	 de	
mapping	implémenté	sur	l’architecture	UPMEM	réparti	un	 	 index	 	de	grande	taille	sur	 l’ensemble	des	DPUs.	Les	
séquences	d’ADN	à	mapper	sont	aiguillées	vers	les	DPUs	en	fonction	de	leur	composition	en	k-mers,	permettant	
ainsi	 une	 parallélisation	 massive	 du	 traitement.	 Les	 expérimentations	 effectuées	 sur	 des	 jeux	 de	 données	 du	
génome	humain	montrent	un	facteur	d’accélération	de	25	par	rapport	au	logiciel	BWA,	Bowtie2	ou	GenNextMap	
sur	 un	 serveur	 équipé	 de	 16	 cœurs	 Intel.	 Les	 expérimentations	mettent	 aussi	 en	 avant	 que	 les	 entrées/sorties	
avec	 les	organes	de	stockage	 limitent	cette	 implémentation.	L’usage	de	disques	SSD	permet	de	porter	 le	 facteur	
d’accélération	à	80.	

	

Mots	clés	:	Mapping,	banques	génomique,	Processing-in-Memory	

MAPPING on UPMEM 5

RR	N°	8923

1. Mapping ... 6
2. UPMEM Architecture Overview ... 6
3. Mapping implementation on UPMEM .. 7
4. Performance evaluation .. 10
5. Comparison with other mappers ... 13
Bibliography .. 14
Annex 1: MAPPER execution time .. 15
Annex 2: Tasklet code ... 16

6	 	
	 	D.	Lavenier,	C.	Deltel,	D.	Furodet,	JF	Roy		

Inria

1. Mapping

The mapping process consists in aligning short fragments of DNA, coming from high throughput
sequencing, to a reference genome. Contrary to BLAST-like alignments that locate any portion of similar
subsequences, the mapping action performs a complete alignment of the DNA fragments on the genome,
by adding constraints such as the maximum numbers of substitutions or insertion/deletion errors.

Mapping software are intensively used in many bioinformatics pipelines as they represent basic treatments
of sequencing data. The mapping aims to primarily detect small variations between a NGS dataset and a
reference genome. This has multiple applications such as finding gene mutations in cancer disease, locating
SNPs along the chromosomes of different varieties of plants, assembly genomes of very closed species, etc.

From a computer science point of view, the challenge is to be able to rapidly map hundreds of millions of
short DNA fragments (from 100 to 250 bp) to full genomes, such as the Human genome (3.2 x 109 bp). The
output of a mapping is a list of coordinates, for each DNA fragments, where matches have been found. As
genome structures are highly repetitive, a DNA fragments can match at many locations. A mapping quality
is thus associated. The quality value depends of the mapping confidence on a specific region. The output is
generally encoded using SAM/BAM format [1]. It is a TAB-delimited text format consisting of a header
section, which is optional, and an alignment section. Each alignment line has 11 mandatory fields for
essential alignment information such as mapping position, and variable number of optional fields for
flexible or aligner specific information.

Many mappers are available [3] [4]. They have their own advantages and drawbacks depending of several
criteria such as speed, memory footprint, multithreading implementation, sensitivity or precision. The
BWA mapper [2], based on Burrows-Wheeler Transform, can be considered as a good reference since it is
often used in many bioinformatics pipelines. Examples of other mappers are Bowtie [5], NextGenMap
[10], SOAP2 [6], BFAST [7] or GASSST [8].

2. UPMEM Architecture Overview

UPMEM technology is based on the concept of Processing-in-Memory (PIM). The basic idea is to add
processing elements next to the data, i.e. in the DRAM, to maximize the bandwidth and minimize the
latency. Host processor is acting as an orchestrator: It performs read/write operations to the memories and
controls the co-processors embedded in the DRAM. This data-centric model of distributed processing is
optimal for data-consuming algorithms.

A 16 GBytes UPMEM DIMM module comes with 256 processors: One processor every 64 MBytes of
DRAM. Each processor can run its own independent program. In addition, to hide memory latency, these
processors are highly multithreaded (up to 24 threads can be run simultaneously) in such a way that the
context is switched at every clock cycle between threads.

The UPMEM DPU is a triadic RISC processor with 24 32-bits registers per thread. In addition to memory
instructions, it comes with built-in atomic instructions and conditional branching bundled with arithmetic
and logic operations.

From a programing point of view, two different programs must be specified: (1) the host program that will
dispatch the data to co-processors memory, sends commands, input data, and retrieve the results; (2) the
program that will specify the treatment on the data stored in the DPU memory. This is often a short
program performing basic operations on the data. It is called a tasklet. Note however, that the architecture

MAPPING on UPMEM 7

RR	N°	8923

of the UPMEM DPU allows different tasklets to be specified and run concurrently on different blocks of
data.

Depending on the server configuration (i. e. the number of 16 GBytes UPMEM modules), a large number
of DPU can process data in parallel. Each DPU only accesses 64 MBytes and cannot directly communicate
with its neighbors. Data exchanges, if needed, must go through the host processor. A DPU has a fast
working memory (64 Kbytes) acting as cache/scratchpad memory and shared by all tasklets (threads)
running on the same DPU. This memory working space can be used to transfer blocks of data from the
DRAM, and can be explicitly managed by the programmer.

To sum up, programing an application consists in writing a main program (run on the host processor) and
one or several tasklets that will be executed on the DPUs. The main program has to synchronize the data
transfer to/from the DPUs, as well as the tasklet execution. Note that the tasklet execution can be run
asynchronously with the host program, allowing host tasks to be overlapped with DPU tasks.

3. Mapping implementation on UPMEM

3.1	Overview	
	
This	section	presents	the	mapping	strategy	elaborated	to	fully	exploit	the	UPMEM	architecture.	The	
main	 idea	 is	 to	 distribute	 an	 indexing	 structure	 (computed	 from	 the	 genome)	 across	 the	 DPU	
memories.	 The	 host	 processor	 receives	 the	 DNA	 sequences	 and,	 according	 to	 specific	 features,	
dispatch	 them	 them	 to	 the	DPUs.	To	globally	optimize	 the	 treatment,	 group	of	DNA	sequences	 are	
sent	 to	 the	DPUs	before	starting	 the	mapping	process.	Results	are	sent	back	 to	 the	host	processor.	
DNA	sequences	that	have	not	been	mapped	are	reallocated	to	other	DPUs	for	further	investigation.	A	
three	 pass	 processing	 allows	 more	 than	 99%	 of	 DNA	 sequences	 to	 be	 mapped.	 This	 strategy	
supposes	first	to	have	downloaded	the	complete	index	into	the	DPU	memory.		
	
The	following	algorithm	illustrates	how	the	overall	mapping	process:	
	

 1: Distribute the genome index across the DPUs

 2: Loop N

 3: List LIN ß P DNA sequences

 4: Loop 3

 5: Dispatch sequences of list LIN into DPUs

 6: Run mapping process

 7: Get results à 2 lists: LGOOD & LBAD

 8: Output LGOOD

 9: LIN ß LBAD

	
	
The	first	loop	(line	2)	performs	N	iterations.	N	is	the	ratio	of	the	number	of	DNA	sequences	to	map	
divided	by	the	number	of	DNA	sequences	that	is	processed	in	a	single	iteration.	Typically,	an	iteration	
processes	106	sequences.	 	The	second	 loop	(line	4)	dispatches	the	sequences	of	 the	 list	LIN	 into	the	
DPUs.	In	the	first	iteration,	the	list	LIN	contains	all	the	DNA	sequences.	The	mapping	(line	6)	is	run	in	
parallel	and	provides	a	mapping	score	(and	coordinates)	for	all	DNA	sequences.	The	results	are	split	
into	two	lists	(line	7):	a	list	of	sequences	with	good	scores	(list	LGOOD)	and	a	list	with	bad	scores	(list	
LBAD).	 Based	 on	 new	 criteria,	 the	 list	 LBAD	 is	 dispatched	 to	 the	 DPUs	 in	 the	 2nd	 and	 3rd	 iterations.	
Another	way	to	express	the	mapping	is	given	by	the	figure	below:	
	
	
	
	

8	 	
	 	D.	Lavenier,	C.	Deltel,	D.	Furodet,	JF	Roy		

Inria

	
	
The	UPMEM	memory	contains	the	genome	index.	The	index	is	split	across	all	DPUs.	The	host	dispatches	
blocks	of	DNA	 fragments	 into	 the	DPUs.	Each	DPU	receives	an	average	of	N/P	 fragments	 (N	=	 size	of	
block,	P	=	number	of	DPUs).	DPUs	send	back	 to	 the	host	 the	mapping	scores	of	 the	DNA	 fragments.	 If	
score	 are	 lower	 than	a	 threshold	 value,	 a	 second	mapping	 run	 is	 performed	by	 reallocating	 the	DNA	
fragments	into	other	DPUs.	Generally,	after	3	iterations,	DNA	fragments	are	correctly	mapped.	
	
3.2	Genome	Indexing	
	
To	speed	up	the	mapping	and	to	avoid	to	systematically	comparing	the	DNA	sequences	with	the	full	
text	of	 the	genome,	 the	genome	 is	 indexed	using	words	of	k	 characters,	 called	k-mers.	 For	each	k-
mers	a	 list	of	coordinates	specifying	its	 location	is	attached,	typically	the	chromosome	number	and	
the	position	of	the	k-mer	on	that	chromosome.	Then,	the	mapping	process	consists	in	extracting	one	
or	several	k-mers	from	the	DNA	sequences	in	order	to	rapidly	locate	its	position	on	the	genome.	The	
k-mer	acts	more	or	less	as	an	anchor	from	which	a	complete	match	can	be	computed.	
	
The	index	is	composed	of	a	first	table	of	4K	entries	(Index1)	that	provides	for	all	possible	k-mer	a	list	
of	 coordinates	 where	 it	 occurs	 in	 the	 genome.	 The	 list	 of	 coordinates	 is	 stored	 in	 a	 second	 table	
(Index2).	More	specifically,	for	a	specific	k-mer,	Index1	gives	its	address	in	Index2	and	its	number	of	
occurrences.	A	line	in	Index2	indicates	the	chromosome	number	and	a	position	on	that	chromosome.	

	
	

	

MAPPING on UPMEM 9

RR	N°	8923

	
The	UPMEM	 implementation	 split	 Index2	 into	N	parts,	N	 being	 the	 number	 of	 available	DPUs.	 	 As	
each	DPU	as	a	limited	memory	(64	MBytes),	 it	cannot	store	the	complete	genome.	Consequently,	k-
mer	positions	along	the	genome	are	useless	inside	a	DPU.	Thus,	in	addition	to	coordinates,	portions	
of	genome	text	corresponding	to	the	neighborhood	of	the	k-mers	are	memorized.	The	global	indexing	
scheme	is	shown	below.	
	

	
	
Thus,	for	one	k-mer,	a	line	of	Index2	memorizes	the	chromosome	number	(1	Bytes),	the	position	of	
the	k-mer	on	the	chromosome	(4	Bytes)	and	a	neighborhood	of	180	bp	where	each	nucleotide	is	2-bit	
encoded	 (45	 Bytes).	 	 The	 storage	 one	 1	 k-mer	 requires	 48	 Bytes.	 Inside	 a	 DPU,	 48	 MBytes	 are	
allocated	for	the	storage	of	the	index	or,	in	other	words,	the	capability	to	store	an	equivalent	genome	
of	1	Mbp.	The	rest	of	the	memory	is	used	for	DNA	sequences	and	result	transfers.	
	
	
3.3	Mapping	algorithm	
	
The	host	processor	receives	a	flow	of	DNA	sequences.	For	each	sequence,	a	k-mer	corresponding	to	
the	 k	 first	 characters	 is	 extracted.	 Based	 on	 this	 k-mer,	 the	 DNA	 sequence	 is	 dispatched	 to	 the	
corresponding	DPU.	Every	P	sequences	(P	=	106),	 the	host	activates	 the	DPUs	to	start	 the	mapping	
process	of	the	DNA	sequences	stored	in	each	DPU.	
	
More	precisely,	a	specific	DPU	received	an	average	of	Q	=	P/N	DNA	sequences.	The	mapping	consists	
in	 comparing	 these	 Q	 sequences	 with	 the	 portions	 of	 the	 genome	 text	 stored	 inside	 each	 DPU	
memory,	knowing	that	the	k	first	characters	are	identical.	The	comparison	algorithm	can	be	more	or	
less	 complex	 depending	 of	 the	 required	 mapping	 quality.	 	 For	 stringent	 mapping	 allowing	 only	
substitution	 errors,	 a	 simple	Hamming	 distance	 can	 be	 computed.	 For	mapping	with	 indel	 errors,	
banded	smith	and	Waterman	algorithm	can	be	performed.	
	
However,	 this	 strategy	doesn’t	 guaranty	 to	 find	 all	mapping	 locations.	 If	 an	 assembly	 error	 occurs	
along	the	k	first	characters,	the	DNA	sequence	will	be	dispatched	to	the	wrong	DPU	and	no	correct	
mapping	will	be	detected.	Thus,	for	DNA	sequences	with	a	low	score,	the	next	k	characters	are	taken	
into	 consideration	 to	 form	 a	 new	 k-mer	 allowing	 a	 new	 dispatching.	 If	 again,	 no	 good	 score	 are	
computed	 the	next	k	characters	are	considered.	Practically,	after	3	 iterations,	 the	best	matches	are	
systematically	found.	
	
3.4	post	processing	
	
As	 the	 mapping	 is	 fully	 performed	 inside	 the	 DPUs,	 no	 more	 computation	 is	 required.	 The	 post	
processing	 consists	 simply	 in	 getting	 the	 results	 from	 the	 DPUs	 and	 formatting	 the	 data	 before	
writing	them	to	disk.	

10	 	
	 	D.	Lavenier,	C.	Deltel,	D.	Furodet,	JF	Roy		

Inria

4. Performance evaluation

Performances have been evaluated on the Human genome with a DELL server (Xeon Processor E5-2670,
40 cores 2.5 GHz, 64 GBytes RAM) configuration running Linux Fedora 20. As I/O transfer has a great
impact on the performances, we measure the hard disk read speed of the server using the dd Linux
command.

ll refseq_prot.fasta
-rwxrwxrwx 1 root 24101720035 Mar 3 21:07 refseq_prot.fasta*
dd if=refseq_prot.fasta of=/dev/null
47073671+1 records in
47073671+1 records out
24101720035 bytes (24 GB) copied, 184.908 s, 130 MB/s

On this server, the bandwidth for reading data from the local disk is equal to 130 MB/sec

The transfer times between the UPMEM memory and the host CPU are taken from a rigorous performance
evaluation performed on a Intel core i7 6700 (SKYLAKE) at 3.4 GHz with a 2xDDR4 channel [11]:

Data:

• Human genome: 3.2 G bp
• DNA sequences: a set of 111 x 106 100 bp sequences (13 GBytes)

To store the index corresponding to the Human genome, the minimum number of DPUs is equal to
3.2x109/106 = 3200 DPUs (cf section 3.2: a DPU store the equivalent of 1Mbp). The UPMEM
configuration is thus set to 3328 DPUs (13 DIMM modules).

We evaluate the execution time according to the algorithm of section 3:

1. Distribution of the genome index across the DPUs
2. Loop:

2.1 Dispatching of the sequence to the DPUs
2.2 Mapping
2.3 Result analysis

Distribution of the genome index across the DPUs: 30 sec

This step can be divided into the two following actions

• Download the index from the storage device
• Dispatch the index inside the DPUs

As most of the mappers, the index is pre-computed. In out case, Index1 is fully pre-computed, and the
genome is formatted to facilitate its encoding into the DPU memories. The size of Index1 is determined by
the k-mer length. Here, the k-mer length is set to 13. The numbers of entries of Index1 is thus equal to 413 =
64 M entries. One entry stores the number of k-mers (1 integer) and an address in index2 (1 integer). Thus
the total size of Index1 is 256 MBytes. The size of the file containing the formatted genome is equal to the
size of the genome (3.2 GBytes). The full information to download represents approximately 3.5 GBytes.
The download time is constrained by the I/O bandwidth of the local disk. With a bandwidth of 130 MB/sec
the download time is equal to 27 sec.

MAPPING on UPMEM 11

RR	N°	8923

Dispatching Index2 across the DPUs consists in writing for each k-mers of the genome 48 bytes in a DPU
memory, that is globally 3.2 x 109 x 48 = 153.6 GBytes.

The bandwidth for transferring data form the Host memory to the DPU memories is estimated to 11.53
GB/s (see [11]). The time for transferring the index is thus equal to 153.6/11.53 = 13.3 sec. With the
associated overhead to format the data, we globally estimate this step to 15 sec.

Actually, these two actions (download and dispatch) can be easily overlapped, leading to a global
initializing phase estimated to 30 sec.

Loop: 1 sec.

The loop performs the following actions:

1. Get block of fragments from disk.
2. Dispatch the fragments to the DPUs
3. Initialize and start the DPUs
4. Perform the mapping
5. Get Results from DPU
6. Analyze and write results

1. Get block of 106 fragments from disk: 1sec

In our implementation, a loop iteration processes 106 DNA sequences. These sequences are read from
the storage device. One million sequences of length 100 in Fasta format represent approximately 130
MBytes of data (text sequence + annotation). The time to read this information depends again of the
I/O bandwidth of the storage device. With a bandwidth of 130 MB/sec, the time is equal to 1 sec.

2. Dispatch the fragments to the DPUs: 50 ms

Dispatching the DNA sequences to the DPUs is fast: it consists in coding the 13 first characters of the
sequence and in copying the sequence to the target DPU. Experiments indicates an execution time < 40
ms. Transferring 100 MBytes of data to the DPU memory is also very fast. It requires 0.1/11.5 = 8.7
ms. Overall, this step takes a maximum of 50 ms.

3. Initialize and start the DPUs: 23 µs.

A DPU run 10 tasklets. Each tasklet receives two parameters: the number of DNA fragments to
process, and the address where these fragments are stored. This represents 2 integers (8 bytes) by
tasklet, or 80 bytes per DPU, or an overall transfer of 80x3328 = 266240 bytes. The equivalent time is:
266240/11.53x109 = 23 µs. As broadcasting commands to 128 DPU simultaneously is possible, booting
the DPU consist in sending 3328/128 = 26 commands. This time is negligible.

4. Mapping: 40 ms

In average, a DPU receive 106/3328 = 300 DNA sequences to process. The number of occurrences of a
k-mer of size 13 is approximately the size of the genome divided by 413, that is 3.2 x 109/413 = 50. The
number of mappings that must be executed by one DPU is thus equal to 15000. The simulations
executed on the UPMEM Cycle Accurate Simulator range from 10x106 to 25x106 cycles to perform
such a treatment, depending of the DPU load. As a matter of fact, the repartition inside the DPUs is
generally not uniform. It depends of the nature of the DNA sequences. We have to take into account
the worst execution time since all DPUs must finish before analyzing all results.

In the second and third round, only a fraction of the DNA sequences that have not matched are sent to
other DPUs. It represents less than 10% of the initial number of sequences. The impact on the overall
execution time is weak. An upper bound estimation for the 3 loop iteration is 30 x 106 cycles, leading
to an execution time of 40 ms with a 750 MHz frequency.

12	 	
	 	D.	Lavenier,	C.	Deltel,	D.	Furodet,	JF	Roy		

Inria

5. Get results: 0.7ms

For each DNA fragments, the DPU output the following information: genome coordinates and mapping
scores (2 integers). There are thus 2 x 4 x 106 = 8 M bytes to transfer. The transferring time = 0.7ms

6. Analysis & write results: 100 ms

This step evaluates the score of the mapping and selects DNA sequences that have to be analyzed again. It also
writes results to the output file. Our experimentation estimates the execution time to 0.1 sec in the worst case.

Actions 2 to 6 are iterated 3 times. The first time involves all DNA fragments, the second time less than 10% and the
third time less than 3%. The cumulated execution time of actions 2 to 6 is thus approximately equal to:

1.13 x (50 + 40 + 100) = 190 ms.

Actually, getting the data from the disk (action 1) can be overlapped with the other tasks (actions 2 to 6), leading to an
iteration execution time of 1 second.

Overall Execution Time

Put together, with I/O overlapping, the overall scheduling of the different tasks can be represented as
shown below:

We can approximate the execution time by the time for uploading the genome index to the UPMEM memory (30 sec)
plus the time to perform N loop iterations (N x 1 sec). For the data set we used (111 x 106 fragments), the overall
execution time is:

Overall execution time: 30 + 111 = 141 sec.

As the I/O bandwidth has a great impact on the overall performances, we test the implementation with a
512 GB SSD drive present on the server. We measure an average bandwidth of 700 MB/sec.

MAPPING on UPMEM 13

RR	N°	8923

In such a case, the genome distribution execution time is now dominated by the dispatch index execution
time (15 sec). For the loop execution time a good balance is achieved between the time for getting the
fragments (185 ms) and the time for executing actions 2 to 6 (190 ms). Taking a safe execution time of 0.2
second per iteration, the new overall execution time is

Overall execution time with SSD: 15 + 111 x 0.2 = 37.2 sec.

5. Comparison with other mappers

Comparison have been made with the following mappers:

• BWA [2]
• Bowtie2 [5]
• NextGenMap [10]

The three software have been run with different number of threads: 8, 16 and 32 (commands are given in
annex 1).

Time is given in second

Speed-up

The speedup is calculated as the ratio between the reference software execution time and the estimated
UPMEM execution time. It considers both a hard disk and a SSD disk.

 Cost Optimized Performance Optimized

For cost optimized (Hard disk, 8 threads) configuration, the speed up brought by Processing-In-Memory is
41 times for BWA, 36 for Bowtie2 and 24 for NextGenMap. For performance optimized (SSD, 32 threads)
configuration, the speed up brought by Processing-In-Memory is 58 for BWA, 60 for Bowtie2 and 41 for
NextGenMap.

Using BWA, Bowtie2 or NextGenMap software with a SSD drive has a negligible impact on the overall
performances (no significant improvement).

Quality Evaluation

The DNA sequence dataset is a synthetic dataset generated from the reference human genome. Only
substitution errors have been considered. This is the most frequent error of the Illumina technology. In that
case, the mapping consists in computing a Hamming distance between the DNA sequence and a region of
the genome of identical size. BWA, Bowtie2, NextGenMap or UPMEM results are nearly identical. For

 8 threads 16 threads 32 threads
BWA 5901 3475 2191
Bowtie2 5215 2916 2241
NextGenMap 3485 2104 1552

 8 threads 16 threads 32 threads
Hard SSD Hard SSD Hard SSD

BWA 41 157 24 93 15 58
Bowtie2 36 140 20 78 16 60
NextGenMap 24 93 15 56 11 41

14	 	
	 	D.	Lavenier,	C.	Deltel,	D.	Furodet,	JF	Roy		

Inria

some specific cases where errors are concentrated at the beginning of the sequence, we miss a few
mapping. On the other hand, other software do not report a few mapping when the number of errors is too
large.

To address indel errors, the solution would be to implement a banded smith and waterman algorithm, which
is much more time consuming. But running this algorithm, knowing that more than 95% of the errors don’t
fit in this category, is a costly solution. In our case, this algorithm could be only fired on rounds 2 & 3. The
impact on the mapping execution time will be then very limited.

Bibliography

1. The SAM/BAM Format Specification Working Group, Sequence Alignment/Map Format Specification,

April 2015, https://samtools.github.io/hts-specs/SAMv1.pdf
2. Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform.

Bioinformatics, 25:1754-60.
3. Jing Shang, Fei Zhu, Wanwipa Vongsangnak, Yifei Tang, Wenyu Zhang, and Bairong Shen, Evaluation

and Comparison of Multiple Aligners for Next-Generation Sequencing Data Analysis, BioMed
Research International, vol. 2014, Article ID 309650, 16 pages, 2014.

4. Schbath S, Martin V, Zytnicki M, Fayolle J, Loux V, Gibrat J-F. Mapping Reads on a Genomic
Sequence: An Algorithmic Overview and a Practical Comparative Analysis. Journal of Computational
Biology. 2012;19(6):796-813. doi:10.1089/cmb.2012.0022.

5. Langmead B. Trapnell C. Pop M., et al. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol. 2009;10:R25.

6. Li R. Yu C. Li Y., et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics.
2009;25:1966–1967

7. Homer N. Merriman B. Nelson SF. BFAST: an alignment tool for large scale genome resequencing.
PLoS ONE. 2009;4:e7767

8. Rizk G. Lavenier D. GASSST: global alignment short sequence search tool. Bioinformatics.
2010;26:2534–2540

9. Ayat Hatem, Doruk Bozdağ, Amanda E Toland, Ümit V Çatalyürek, Benchmarking short sequence mapping tools,
BMC Bioinformatics 2013, 14:184

10. Fritz J. Sedlazeck, Philipp Rescheneder, and Arndt von Haeseler NextGenMap: fast and accurate read mapping in
highly polymorphic genomes. Bioinformatics (2013) 29 (21): 2790-2791 first published online August 23, 2013
doi:10.1093/bioinformatics/btt468

11. UPMEM DPU-Data exchange with main CPU. UPMEM Technical note, version 1.3

MAPPING on UPMEM 15

RR	N°	8923

Annex 1: MAPPER execution time

Data:

• Human genome: 3.2 G bp
• DNA sequences: a set of 111 x 106 100 bp sequences (13 GBytes)

BWA: version 0.7.12-r1039

32 threads

time bwa mem -t 32 HG38 HG38read.fa > outfile
67467.819u 662.619s 36:31.84 3108.3% 0+0k 10803480+8io 41pf+0w

16 threads

time bwa mem -t 16 HG38 HG38read.fa > outfile
54002.790u 888.145s 57:55.43 1579.3% 0+0k 10563392+0io 12pf+0w

8 threads

time bwa mem -t 8 HG38 HG38read.fa > outfile
46519.108u 447.863s 1:38:21.97 795.7% 0+0k 10802040+0io 4pf+0w

NextGenMap; version 0.5.0

32 threads

time ngm -q HG38read.fa -r HG38.fasta -o outfile -t 32
40051.515u 626.981s 25:52.84 2619.6% 0+0k 18112152+48io 30pf+0w

16 threads

time ngm -q HG38read.fa -r HG38.fasta -o outfile -t 16
29655.900u 412.679s 35:04.03 1429.0% 0+0k 19110920+72io 1pf+0w

8 threads

time ngm -q HG38read.fa -r HG38.fasta -o outfile -t 8
25983.340u 286.026s 58:05.82 753.6% 0+0k 19773048+8io 26pf+0w

Bowtie2: version 2.2.9

32 threads

time $BT2_HOME/bowtie2 -x HG38 -f HG38read.fa -S toto -p 32
66058.337u 4786.631s 37:21.32 3160.8% 0+0k 19632568+0io 13pf+0w

16 threads

time $BT2_HOME/bowtie2 -x HG38 -f HG38read.fa -S toto -p 16
43463.622u 2564.357s 48:36.19 1578.3% 0+0k 19815728+0io 22pf+0w

8 threads

time $BT2_HOME/bowtie2 -x HG38 -f HG38read.fa -S toto -p 8
40011.927u 1231.559s 1:26:55.78 790.7% 0+0k 20104872+0io 16pf+0w

16	 	
	 	D.	Lavenier,	C.	Deltel,	D.	Furodet,	JF	Roy		

Inria

Annex 2: Tasklet code

void initTX(int8_t *TX) {
 int i,k;
 for (i=0; i<256; i++) {
 k=0;
 if ((i&3) != 0)k++;
 if (((i>>2)&3)!=0) k++;
 if (((i>>4)&3)!=0) k++;
 if (((i>>6)&3)!=0) k++;
 TX[i] = k;
 }
}

int getCKEY(char *seq, int sz) {
 int i,c;
 int key = 0;
 for (i=0; i<sz; i++) {
 c = codeNT(seq[i]);
 key = (key<<2)+(c&3);
 }
 return key;
}

int TN()
{
 int x, k, i, n, nr, xr, adr, lread, nb_pos, shift, adr_pos, score, min_score, min_seq;
 int *RES = dma_alloc(32);
 int *INFO = dma_alloc(32);
 char *READ = dma_alloc(128);
 int8_t *GENOME = dma_alloc(32);
 int8_t *TX = dma_alloc(256);
 int8_t *RC = dma_alloc(32);
 int NB_READ = ((int*) mbox_recv())[0]; // get values from the private mailbox
 int ST_READ = ((int*) mbox_recv())[1];
 initTX(TX);
 for (nr=ST_READ; nr<NB_READ; nr=nr+NB_TASKLET) {
 adr = ADDR_INFO + (nr<<5); // get information on the read to process
 mram_ll_read32(adr,INFO);
 adr_pos = INFO[0]; nb_pos = INFO[1];
 lread = INFO[2]; shift = INFO[3];
 adr = ADDR_READ + (nr<<7); // get the read
 mram_ll_read128(adr,READ);
 for (i=0; i<32; i++) RC[i] = getCKEY(&READ[i<<2],4);
 min_score = 1000;
 for (n=0; n<nb_pos; n++) {
 adr = (adr_pos+n)<<5; // get part of the genome
 mram_ll_read32(adr,GENOME);
 score = 0;
 for (i=0; i<lread>>2; i++) {
 k = (int) (RC[i]^GENOME[i+shift]);
 k = k&0xFF;
 score = score + TX[k];
 if (score > min_score) break;
 }
 if (score < min_score) { min_score = score; min_seq = n; }
 }
 RES[0] = min_score + (min_seq<<16);
 adr = ADDR_RESULT + (nr<<5);
 mram_ll_write32(RES,adr);
 }

 return 0;
}

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr
ISSN 0249-6399

