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1 LIA-CERI/University of Avignon, France
2 INRIA Sophia Antipolis, France

Abstract. We study competition between users over access to content
in a telecom market that includes several access providers and several
content providers. We focus situations where exclusive agreements ex-
ist between content and access providers, which allows access providers
to offer content services for free for their subscribers. We call access
providers having such agreements ”super” providers or ”enhanced” ser-
vice providers. We show that the competition between the users results in
a paradoxical phenomenon in which subscribers of enhanced providers
prefer to defer part of their demand to other content providers whose
content is costly. We show how this phenomena can be exploited by the
content providers so as to maximize their benefits.

1 Introduction

The last years have seen much public debate and legislation initiatives con-
cerning access to the global Internet. Some of the central issues concerned the
possibility of discrimination of packets by service providers according to their
source or destination, the protocol used. A discrimination of a packet can occur
when preferential treatment is offered to it either in terms of the quality of ser-
vice it receives or in terms of the cost to transfer it. Much of this debate took
part in anticipation of legislation over the “Net Neutrality”, and several public
consultations were lounged in 2010 (e.g. in the USA, in France and in the E.U.).
Network neutrality asserts that packets should not be discriminated. Two of the
important issues concerning discrimination of traffic are whether (i) an ISP may
or may not request payment from a content provider in order to allow it to offer
services to the subscribers of that service provider, and (ii) whether or not a
service provider can have an exclusive agreement with a given content provider
resulting in a vertical monopoly. Indeed, for Hahn and Wallsten [2], net neu-
trality “usually means that broadband service providers charge consumers only
once for Internet access, do not favor one content provider over another, and
do not charge content providers for sending information over broadband lines to
end users”.

The Network Neutrality legislation will determine much of the socio-economic
role of the Internet in the future. The Internet has already had a huge impact
on economy and communication, but also on the exercise of socio-cultural and
fundamental rights. Directive 2002/22/EC of the European Union, as amended



by the Directive 2009/136/EC, established Internet access as a universal service3.
The Ministry of Transport and Communication of Finland has passed a Decree
in October 2009 that goes beyond the recognition of the right for Internet access:
it guarantees the right for broadband Internet connection as a universal service.

The first objective of this paper is to model exclusive agreements between
service and content providers and study their economic impact. We propose an
unusual way of modeling this consisting in a transformation of the problem into
a routing game.

Our second objective is to get insight on the behavior of the equilibrium as
a function of the parameters. To that end, we choose to study simple models
that allow one to obtain explicit expressions for the equilibrium behavior. In
particular, we choose to restrict to symmetric conditions. We then make use
of a recent result that shows that under some convexity conditions, when we
have symmetry in routing games, any equilibrium has to inherit the symmetry
properties of the network [10]. This allows us to reduce the number of unknown
variables considerably. Note that for similar games, it has been shown that the
the worst possible values ofthe price of anarchy (i.e. the ratio between the global
costs at eqilibrium and that at the social optimum) are obtained obtained for
symmeetric games [1, 13].

Related Works Although there have been many papers discussing network neu-
trality issues, there have been very few proposing economic analysis of neutral
or non-neutral features.

Several papers study the impact of the ISP charging the content providers
on the welfare. Economides and Tag [3] show that there is a decrease in welfare
when in addition to the consumers, the content provider is also charged. In [4]
it is shown that allowing ISPs to determine the amount they charge the content
providers can result in a dramatic decrease in the demand and in losses not only
to the content providers but also to the ISPs. These losses can be avoided using
some regulation to determine the side payments as is shown in [5].

Another important question is whether network neutrality gives incentives
for ISPs to invest or not. Economic analysis of the question is provided in [6–8].

Exclusive agreement between an ISP and a content provider are called a
vertical monopoly in the economic literature. References [7, 5] study the impact
of such behavior, considered as non neutral, on the welfare.

2 Model

We consider the network depicted in Figure 1 that contains Internet Service
Providers (ISPs) and Content Providers (CPs). Some ISPs and some CPs have
exclusive agreements between them. More precisely, we assume that there are n
pairs of ISP - CP, where each such pair is are tied together by some exclusive

3 A universal service has been defined by the EU, as a service guaranteed by the
government to all end users, regardless of their geographical location, at reasonable
quality and reliability, and at affordable prices that does not depend on the location.



agreement. In addition there may be m CPs and k ISPs that do not have any
such agreement. We call these independent CPs and ISPs. Those are denoted
respectively iCP and iISP. The other are called super CPs and super ISPs,
respectively.

Fig. 1. Routing Game Representation of the Networking Game between n ISPs each
having an exclusive agreement with some CP, m Independent Content Providers (ICP)
and k Independent Internet Service Providers (iISP).

Each ISP (iISP and super ISP) i creates a demand for content at a rate of
φi. All the subscribers for each ISP and iISP are identical. The total demand
comes from their subscribers. We assume that the same content is available at
all CPs (iCP and super CP). Users connected to service provider i split their
demand between the content providers, they download an amount xij from CP
j for j ∈ {1, . . . , n + m} (n CP with agreement and m independent CP). Let
xj be the total demand presented to CP j, i.e. xj =

∑
i x

i
j . The total demand

coming from ISP i has the flow constraint:

∑
j

xij = φi, xij ≥ 0, ∀j ∈ {1, . . . , n+m}.

We assume that there is a congestion cost at content provider j that is
paid by each packet that is downloaded from it. This cost is assumed to be a
convex increasing function of the total demand offered to the content provider. In
particular, this function may represent the expected download delay per packet
for traffic from the content provider. We denote the function that corresponds
to the per-packet cost of content provider j by Dj

cp(xj).

We assume further that there is a fixed per packet cost of dij that user
connected to service provider i is charged per content unit it requests from CP
j. This can represent a monetary cost or an additional constant delay due to
propagation. The disutility or cost function of subscriber connected to service



provider i is given by

Ci(x) =

n+m∑
j=1

xij(D
j
cp(xj) + dij).

We assume that an ISP that has an exclusive agreement with a given CP is
not charged for receiving contents from that CP, but pays an amount of d per
unit of traffic that it fetches from a CP that has an exclusive agreement with a
competing ISP. It pays an amount of δ per unit of traffic that it fetches from
independent CPs.

The aim of the paper is to study interactions between service providers
(meanwhile the end-users) through their demand sharing between the several
type of content providers. We compute in the next section the equilibrium of
this networking game.

3 Computing the equilibrium

In order to compute the equilibrium of this networking game, we associate a
Lagrange multiplier λi with each subscriber connected to ISP i. We use it so as
to relax the constraint corresponding to the total flow conservation of player i.
Write the Lagrangian as

Li(x) = Ci(x)− λi(
∑
j

xij − φi),

where x is the vector of demand for all the end users of the system. Now, ac-
cording to Karush-Kuhn-Tucker theorem, (under our convexity conditions) for
each i, xi = {xij} is a best response for player i if and only if there exist λi such

that λi(
∑
j x

i
j −φi) = 0 and such that xi minimize Li. The best response xij for

player’s i demand to content provider j should thus satisfy:

0 ≤ ∂Li(x)

∂xij
= Dj

cp(xj) + dij + xij
∂Dcp

∂xij
(xj)− λi.

Moreover, the above equals zero if xij > 0.
We make the following assumption concerning symmetry. The costs d := dij

are the same for each subscriber i and iCP j not under contract with i. Moreover
the demand for each subscriber connected to ISP i, which we denote by Φ = φi,
is the same all i’s. We assume that due to exclusive agreement, dij = 0 if j is
the CP under contract with subscriber connected to ISP i.

There exists two kinds of subscribers: the set Sc for those whose ISP has an
agreement with an CP, and the set Snc for those that do not have any agreement.

Each subscriber i ∈ Sc can split his demand between: his super-CP, all the
independent iCPs and all the concurrent CPs. Whereas, each subscriber i ∈ Snc
has to split his demand only among iCPs and CPs.



In the rest of the paper we consider the linear cost function Dj
cp(xj) = axj =

axij + a
∑
i′ 6=i x

i′

j with a > 0 for all CP j. Then we have
∂Dj

cp

∂xi
j

(xj) = a, ∀i, j.
and the best response xij for subscriber’s i to CP j satisfies at equilibrium:

axj+dij+axij−λi = 0, which is equivalent to xij =
λi − dij − a

∑
i′ 6=i x

i′

j

2a
. (1)

3.1 Equilibrium

The game is seen to be equivalent to a standard splitable routing game as studied
in [9], in which each user is a source, in which there is one common destination
node, and in which each ISP and CP are represented as links. The access costs
d and δ are also associated to links.

The system possesses several symmetries: (I) all players among Sc are in-
terchangeable, (II) all players among Snc are interchangeable, (III) if the flows
sent to each iCP by all users other than i are the same, then for player i, the
iCPs are interchangeable. Similarly, if the flows sent to each CP by all users
other than i are the same, then for player i, the CPs are interchangeable. These
symmetric properties implies that any equilibrium in this routing game inherits
also these symmetric properties, as was recently shown in [10]. We thus restrict
below, without loss of generality, to a symmetric equilibria.

Let w be the equilibrium rate of traffic requested by a subscriber of a super
ISP from the CP associated to that ISP. Let y be the amount it requests from
each super CP that is not associated with that ISP, and let z be the amount it
requests from each independent ISP.

Let ξ be the equilibrium rate of traffic requested by a subscriber of each
independent ISP from each super CP and let ζ be the amount it requests from
each independent ISP.

We have w + (n − 1)y + mz = nξ + mζ = Φ. Let ρ = w + (n − 1)y + kε be
the amount of traffic at a super CP and let η = nz+ kζ be the amount of traffic
at the iCPs.

Assume first that the equilibrium w, y, z, ζ, ε is an interior equilibrium. We
rewrite below eq. (1) while substituting for xji the five different values they can
take (w, y, z, ε and ζ). We thus obtain the following 5 equations. We write below
in parenthesis the variable with respect to which (1) is given, i.e. with respect
to which the Lagrangian was differentiated.

0 = aρ+ aw − λi (with respect to w), (2)

0 = aρ+ d+ ay − λi (with respect to y), (3)

0 = aη + δ + az − λi (with respect to z). (4)



For a subscriber i′ of an independent ISP we have:

0 = aρ+ d+ aε− λi
′

(with respect to ε), (5)

0 = aη + δ + aζ − λi
′

(with respect to ζ). (6)

These 5 linear equaations with 5 unknowns allow us to compute the equilibrium.

3.2 Computing the equilibrium

We obtain the following equilibrium.

Proposition 1. Whenever the equilibrium is in the interior, it is given by

y∗ =
Φ

n+m
− d n+ k + 1 + 2m

a(n+ k + 1)(n+m)
+ δ

m

a(n+ k + 1)(n+m)
,

z∗ =
Φ

n+m
+ d

n− 1− k
a(n+ k + 1)(n+m)

− δ n

a(n+ k + 1)(n+m)
,

w∗ =
Φ

n+m
+ d

m(n− 1 + k) + (n− 1)(n+ k + 1)

a(n+ k + 1)(n+m)
+ δ

m

a(n+ k + 1)(n+m)
,

ε∗ =
Φ

n+m
− d 2m

a(n+ k + 1)(n+m)
+ δ

m

a(n+ k + 1)(n+m)
,

ζ∗ =
Φ

n+m
+ d

2n

a(n+ k + 1)(n+m)
− δ n

a(n+ k + 1)(n+m)
.

Proof : We first substract at equilibrium equations (3) and (2), which gives:

(3)− (2) = ay + d− aw = 0, implying w = y +
d

a
.

From equations (3) and (4), we get:

(4)− (3) = 0⇔ z − y = ρ− η +
d− δ
a

.

Similarly, we have:

(6)− (5) = 0⇔ ζ − ε = η − ρ+
δ − d
a

.

Thus we conclude that:

z − y = ζ − ε. (7)

Recall that we have: ρ = w + (n− 1)y + kε and η = nz + kζ. then,

ρ−η = w+(n−1)y+k(ε−ζ)−nz = w+(n−1)y+k(y−z)−nz = w+y(n+k−1)−z(n+k).



Moreover, we have proved previously that w = y + d
a . So,

z − y = ρ− η +
d− δ
a

= w + y(n+ k − 1)− z(n+ k) +
d− δ
a

,

z = w + y(n+ k)− z(n+ k) +
d− δ
a

,

z(n+ k + 1) = y +
d

a
+ y(n+ k) +

d− δ
a

,

z = y +
2d− δ

a(n+ k + 1)
.

We thus obtain the following linear equation for computing y at equilibrium,
which leads to the expression in the Theorem. Substituting in the

Φ = w + (n− 1)y +mz = y +
d

a
+ (n− 1)y +my +m

2d− δ
a(n+ k + 1)

,

= y(n+m) +
d(n+ k + 1) +m(2d− δ)

a(n+ k + 1)
,

Substituting in the previous equations yields the expressions for w and z.
For the other type of subscribers, we have the following relation: Φ = nε +

mζ ⇔ ζ = Φ−nε
m . Moreover, we have that: ε − ζ = y − z = − 2d−δ

a(n+k+1) , This

yields the expressions for ε and ζ of the Proposition.

We observe that at equilibrium that y∗ and ε∗, the rates of the demands
sent to CPs with agreement are decreasing linearly with the cost d associated
to that kind of demand and linearly increasing with δ, the cost for a demand to
an independent CP. There is the same kind of equilibrium behavior with ζ∗ the
rate of an iISP to an iCP. Indeed, this demand is linearly increasing with d and
linearly decreasing with δ. Finally, the demand w∗ of an ISP with agreement to
his own CP is linearly increasing with d and δ. We have also several properties
on the different demand rates at the equilibrium.

Proposition 2. At equilibrium the demand of a subscriber to his own super CP
is never zero, i.e. w∗ > 0.

Proof We prove this result by studying the expression of w∗ obtained in propo-
sition 1. We get

w∗ =
Φ

n+m
+
d(n+ k + 1)(n+m− 1)−m(2d− δ)

a(n+ k + 1)(n+m)
,

=
aΦ(n+ k + 1) + d(n+ k + 1)(n+m− 1)−m(2d− δ)

a(n+ k + 1)(n+m)
,

=
aΦ(n+ k + 1) + d((n+ k + 1)(n+m− 1)− 2m) +mδ)

a(n+ k + 1)(n+m)
,

=
aΦ(n+ k + 1) + d(n2 − 1 +m(n− 1) + k(n− 1 +m)) +mδ)

a(n+ k + 1)(n+m)
.

But as we have n > 1, we have w∗ > 0.



Then, we have proved in this proposition that for all costs, an ISP with
agreement always sends part of his demand to the CP with which he has an
agreement. This induces that the cost for a user connected to an ISP with agree-
ment is always strictly lower than the cost for a user with an independent ISP.

Proposition 3. At equilibrium, we have the following equivalence: δ
d > 2 ⇔

y∗ > z∗.

Proof : We consider the difference:

y∗ − z∗ =
−d(n+ k + 1)−m(2d− δ) + d(n+ k + 1)− n(2d− δ)

a(n+ k + 1)(n+m)
,

= −m(2d− δ) + n(2d− δ)
a(n+ k + 1)(n+m)

=
δ − 2d

a(n+ k + 1)
.

This result shows an interesting ratio of 2 between the costs for sending
demand to concurrent or independent CP. This ratio determines for a subscriber
if it is better to send more demand to a concurrent CP or to an iCP. Given the
expressions of the equilibrium, we determine the condition on the costs d and δ
such that all the rates are strictly positive.

Proposition 4. If the costs d and δ satisfy:

δ > d
2m+ n+ k + 1

m
− aΦn+ k + 1

m

and

δ < d
n− k − 1

n
+ aΦ

n+ k + 1

n
,

then y∗, z∗, w∗, ε∗ and ζ∗ are strictly positive.

Proof : First of all, we have already proved that w∗ > 0. Moreover, considering
the expressions of the rates at the equilibrium we have

y∗ > 0⇔ δ > d
2m+ n+ k + 1

m
− aΦn+ k + 1

m
,

and z∗ > 0⇔ δ < d
n− k − 1

n
+ aΦ

n+ k + 1

n
.

Now we prove the two following results: if y∗ > 0 (resp. z∗ > 0) then ε∗ > 0
(resp. ζ∗ > 0). First assume y∗ > 0. We have that ε∗ > 0 if and only if:

δ > 2d− aΦn+ k + 1

m
.

But 2m+n+k+ 1 > 2m which implies that d( 2m+n+k+1
m ) > 2d. Thus, we have:

δ > d
2m+ n+ k + 1

m
− aΦn+ k + 1

m
> 2d− aΦn+ k + 1

m
,



which leads to δ > 2d− aΦn+k+1
m . Then, y∗ > 0 implies ε∗ > 0. Now we assume

that z∗ > 0. We have that ζ∗ > 0 if and only if:

δ < 2d+ aΦ
n+ k + 1

n
.

But z∗ > 0 is equivalent to δ < dn−k−1n +aΦn+k+1
n and moreover n−k−1 < 2n.

Then we have δ < 2d + aΦn+k+1
n which leads to ζ∗ > 0. Thus we have proved

also that z∗ > 0 implies that ζ∗ > 0 and that prove the proposition.

4 Paradox and Price of Anarchy

We are interested in showing that there exist some conditions under which the
behavior of the system is not as desired. For example, if the ISPs increase their
cost it can result in a lower total cost for the users at equilibrium. This is a Braess
type Paradox, named after Dieter Braess who first observed and computed such
paradoxes in a traffic network ([11]).

We focus on the special network game with only contractual subscribers and
super-CP. Numerical results for the general case are differed to the following
section. With m = k = 0 we have ρ = w + (n − 1)y = Φ and w − y = Φ − ny.
The expected delay at each content provider does not depend on the price d.

We thus get

y =
1

n

(
Φ− d

D′cp(Φ)

)
, w =

1

n

(
Φ+ (n− 1)

d

D′cp(Φ)

)
This is compatible with the assumption of the theorem if

d ≤ ΦD′cp(IΦ)

If this is not satisfied then at the equilibrium, y = 0 and x = Φ which coincides
with the globally optimal solution. The cost at equilibrium for d ≤ ΦD′cp(IΦ) is

Ci(x) = wD(ρ) + (n− 1)y(d+D(ρ)) = ΦD(ρ) + (n− 1)yd,

= ΦD(ρ) + d
n− 1

n

(
Φ− d

D′cp(Φ)

)
.

and is otherwise ΦD(ρ).
We observe two types of paradoxes. The first is similar to the original Braess

paradox in which eliminating a link improves the cost to all users. In our case,
forcing users to download only from the CP that has a contract with their ISP
can be viewed as eliminating a link. This is equivalent to taking d = ∞ which
results in a globally optimal behavior at equilibrium.

Thus if d < ΦD′cp(IΦ) then the equilibrium cost strictly decreases by elimi-
nating each ISP i the links to all CPs that except the one with which it has an
exclusive agreement.



Another variant of Braess paradox studied in the literature consists of the
impact of adding capacity to links. A paradoxical behavior is one in which the
equilibrium cost increases when the capacity is increased. Translated to our
model, we shall say that we have a paradox if by increasing the cost d the equi-
librium cost would decrease. From the above calculations, an increase of the cost
d from any value such that d < ΦD′cp(IΦ) to a value satisfying d ≥ ΦD′cp(IΦ) cre-
ates a paradox of this kind. However, we can identify yet another such paradox.

Indeed, the subscriber cost is decreasing for d ∈ [
ΦD′

cp(Φ)

2 , ΦD′cp(Φ)].

To see that, note that the cost Ci at equilibrium is expressed by:

Ci(d) = ΦD(ρ) + d
n− 1

n

(
Φ− d

D′cp(Φ)

)
.

Then the cost of a subscriber is an hyperbolic function with a maximum when

d = d∗ :=
ΦD′

cp(IΦ)

2 . Then the subscriber cost is first increasing and decreasing
depending on d, which proves the existence of a Braess type paradox.

We now look at the performance of the distributed system compared to the
centralized solution. The centralized solution is obtained when a central entity
determine the actions to take for all users. In order to do that, we use the concept
of Price of Anarchy (PoA) [12].

This metric is defined as the ratio between the maximum user cost at equilib-
rium and the cost for the optimal centralized problem. Our important result is
that the PoA is unbounded which is not generally the case in economic problems.

Proposition 5. In the particular case where m = k = 0, the PoA is unbounded.

Proof : The optimal subscriber cost at equilibrium, depending on d, is:

Ci(d∗) = ΦD(ρ) +
n− 1

n

1

4
Φ2D′cp(ρ)

The globally optimal solution is obtained at y = 0 for which the subscriber
cost is ΦD(ρ). Thus, the price of anarchy is given by

PoA =
Ci(d∗)

ΦD(ρ)
= 1 +

(n− 1)ΦD′cp(IΦ)

4nDcp(IΦ)

In particular, let Dcp(ρ) = exp(4nsF (ρ)/(n− 1)) for some F . Then

D′cp(ρ) = 4snDcp(ρ)F ′(ρ)/(n− 1) so that PoA = 1 + ΦsF ′(ρ)

Thus the PoA is unbounded.

We see that in spite of the fact that exclusive agreements offer subscribers
with incentives to download from one specific CP (the one that has an exclusive
agreement with the subscriber’s ISP), the competition between subscribers re-
sults in an equilibrium behavior in which subscribers also download from other
CPs provided that they are not much more expensive than the one suggested by
their ISP.



Fig. 2. Braess type paradox.
Fig. 3. User costs for each type of sub-
scribers.

5 Numerical Illustrations

First we present numerically the Braess type paradox in the general case when
n = 4, m = 2, k = 3, Φ = 1, a = 2 and δ = 1. For these values, we can observe
that the individual user cost increases when increasing d from 0 to 0.7, but then
it decrases. In particular, when d = 2 the individual user cost at equilibrium is
lower than for d = δ = 1. Next, we evaluate (Fig. 3) the individual cost at the
equilibrium depending on the number of ISPs with agreement n and the number
of independent CPs m. We observe that the user cost is decreasing in m for
both type of users (independent and with agreement). It is also decreasing in
n for small values of n and then slowly increasing. The figure shows the same
behavior for both types of users, but the individual cost for the independent
users is always greater.

6 Conclusions

In this paper we model exclusive agreements between service (ISP) and content
providers (CP) and study their economic impact. We propose an unusual way
of modeling transforming the problem into a routing game.

We compute the Nash equilibrium for this routing game and show the con-
ditions that describe the domain where the equilibrium rates are positive.

We focus on the situation where exclusive agreements exist between content
and access providers, which allows access providers to offer content services for
free for their subscribers.

We show that the competition between the users results in a paradoxical
phenomenon in which subscribers of super-providers prefer to defer part of their
demand to other content providers whose content is costly. We show how this
phenomena can be exploited by the content providers so as to maximize their
benefits. This shows that in spite of the fact that exclusive agreements offer sub-
scribers with incentives to download from one specific CP (the one that has an



exclusive agreement with the subscriber’s ISP), the competition between sub-
scribers results in an equilibrium in which subscribers also download from other
CPs provided that they are not much more expensive than the one suggested by
their ISP.
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