
HAL Id: hal-01330510
https://hal.inria.fr/hal-01330510

Submitted on 10 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical Multidimensional Branch Prediction
André Seznec, Joshua San Miguel, Jorge Albericio

To cite this version:
André Seznec, Joshua San Miguel, Jorge Albericio. Practical Multidimensional Branch Prediction.
IEEE Micro, Institute of Electrical and Electronics Engineers, 2016, �10.1109/MM.2016.33�. �hal-
01330510�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49370961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01330510
https://hal.archives-ouvertes.fr


1

Practical Multidimensional Branch Prediction
André Seznec∗, Joshua San Miguel†, Jorge Albericio†

∗IRISA/INRIA †University of Toronto

Abstract—The most efficient branch predictors proposed in
academic literature exploit both global branch history and local
history. However, local history predictors introduce major design
challenges, particularly for the management of speculative histo-
ries. The wormhole (WH) branch predictor was recently intro-
duced to exploit branch outcome correlation via multidimensional
histories. For some branches encapsulated in a multidimensional
loop, their outcomes are correlated with those of the same branch
in neighbor iterations, but in the previous outer loop iteration.
Unfortunately, the practical implementation of the WH predictor
is even more challenging than the implementation of local history
predictors. In this paper, we introduce a practical, cost-effective
mechanism for capturing multidimensional branch correlations:
the Inner Most Loop Iteration (IMLI) counter.

I. INTRODUCTION

Improved branch prediction accuracy directly translates in
performance gain through reducing the total overall branch
misprediction penalty. It also translates in direct energy con-
sumption reduction through reducing the number of instruc-
tions on the wrong path. Therefore replacing the branch
predictor by a more accurate one is one of the simplest
and energy effective mean to improve the performance of a
superscalar processor since it can be done without reopening
the design of the overall execution core.

Since the introduction of two-level branch prediction [1],
academic branch predictors have been relying on two forms of
branch history: global branch or path history and local branch
history. However, local history branch predictor components
bring only limited accuracy benefit over global history predic-
tors, yet they introduce very complex hardware management
of speculative histories. Therefore, most effective hardware
designs only use global history components and sometimes a
loop predictor [2], [3].

The wormhole (WH) [4], [5] branch predictor was recently
introduced to exploit branch outcome correlation in multidi-
mensional loops. For some branches encapsulated in a mul-
tidimensional loop, their outcomes are correlated with those
of the same branch in neighbor iterations, but in the previous
outer loop iteration as illustrated in Figure 1. Unfortunately,
the practical implementation of the WH predictor is even
more challenging than the implementation of local history
predictors.

In this paper, we show that branch output correlations
that exist in multidimensional loops can be tracked by cost-
effective predictor components: the IMLI-based predictor com-
ponents (Inner Most Loop Iteration). The IMLI-based compo-
nents can be added to a state-of-the-art global history predictor,

Originally ”The Inner Most Loop Iteration counter: a New Dimension in
Branch History” in the 48th Annual IEEE/ACM International Symposium on
Microarchitecture, December 5-9, 2015.

Fig. 1: Branches whose outcomes are correlated with previous
iterations of the outer loop

and their speculative states can be easily managed. Our exper-
iments show that in association with a main global history
predictor such as TAGE [6] or GEHL [7], the two IMLI-
based components achieve accuracy benefits in the same range
as the ones achieved with local history and loop predictor
components. This benefit is obtained at much lower hardware
cost and complexity: smaller storage budget, smaller number
of tables and much simpler speculative management of the
predictor states. Therefore, the IMLI-based components are
much better candidates for real hardware implementation than
local history predictors and even loop predictors.

II. MULTIDIMENSIONALITY

Albericio et al. [4], [5] recognize that, in many cases,
hard-to-predict branches are encapsulated in multidimensional
loops. They demonstrate that the outcome of a branch in
the inner most loop is correlated with the outcome(s) of the
same branch in the same iteration or neighbor iterations of
the inner loop but in the previous outer loop iteration. Say B
is a branch in the inner loop IL encapsulated in outer loop
OL. If Out[N][M] is the outcome of B in iteration M of IL
and in iteration N of OL, then Out[N][M] is correlated with
Out[N-1][M+D], where D is a small number (e.g -1, 0 or +1).

This is illustrated in Figure 1. We assume that arrays A,
B, C and D are not modified by the (not represented) internal
code. The outcome of branch B1 in iteration (N,M) is equal
to its outcome in iteration (N-1,M+1). The outcome of branch
B2 is weakly correlated with its outcome in iteration (N-1,M).
The outcome of branch B3 is equal to its outcome in iteration
(N-1,M). If executed, the outcome of branch B4 is equal to
its outcome in iteration (N-1,M)

Wormhole Predictor. To track these particular cases, Al-
bericio et al. propose the wormhole (WH) predictor. Similar
to the loop predictor, WH is intended to be used as a side
predictor. WH is a tagged structure with only a few entries
(7 in the proposed design optimized for CBP4). For a branch



0 0 1 0 0 0

0 0 0 ?

Sat. counters100

Inner loop iterations

Outer loop 
iterations

Fig. 2: Example of WH prediction.

B encapsulated in a regular loop IL (i.e., a loop predicted by
the loop predictor with a constant number of iterations Ni), an
entry is allocated in the WH predictor upon a misprediction.
WH then records the local history of branch B. When B is
fetched in iteration M of IL and in iteration N of OL, then
Out[N-1][M+D] is recovered as bit Ni-D from its associated
local history. Figure 2 illustrates the prediction process. WH
embeds a small array of prediction counters in each entry. A
few bits (grey squares in Figure 2 ) retrieved from the local
history (as just described) are used to index this prediction
array.

WH is the first predictor in the literature to track the
outcome correlation of a branch encapsulated in a loop nest
with occurrences of the same branch in neighboring inner loop
iterations, but in the previous outer loop iteration. The number
of dynamic instances of these branches can be very significant.
When such correlation exists and is not captured by the main
predictor, the accuracy benefit can be high.When associated
with a state-of-the-art global history predictor, on average WH
achieves accuracy improvement on the same range as local
history components with a very limited number of entries [4].

Wormhole Limitations. The WH predictor exposes that
there is an opportunity to exploit a new form of correlation in
branch history. However, the original WH predictor has some
limitations that could impair its practical implementation.
First, WH only captures the behavior of branches encapsulated
in loops with a constant number of iterations. It uses the
loop predictor to recognize the loop and extract the number
of iterations of the loop. For instance, WH is not able to
track any branch if Mmax varies in the example illustrated on
Figure 1. Second, the WH predictor captures correlations only
for branches that are executed on each iteration of the loop.
Branches in nested conditional statements (i.e., branch B4) are
not addressed by the WH predictor. Lastly, WH uses very long
local histories. The speculative management of these very long
local histories is a major design challenge as detailed in the
next section. The IMLI-based predictor components proposed
in this paper address these shortcomings.

III. SPECULATIVE LOCAL HISTORY

In order to compute the branch prediction, the predictor
states are read at prediction time; they are updated later at
commit time. On a wide superscalar core, this read-to-update
delay varies from a few tens to several hundreds of cycles.
In the meantime, several branch instructions, sometimes tens
of branches, would have already been predicted using possibly

Local	  	  
History	  	  
Table	  

	  B	  	  	  	  	  h4	  

B	  	  	  	  	  h3	  

B	  	  	  	  	  h2	  

B	  	  	  	  	  h1	  

update	  at	  commit	  :me	  

Specula:ve	  History	  for	  the	  most	  	  
recent	  	  occurrence	  of	  branch	  B	  

to	  predic:on	  tables	  

Window	  of	  inflight	  	  branches	  

Fig. 3: Retrieving the speculative local history for branch B

irrelevant information (i.e., stale branch histories and predictor
tables entries).

On the one hand, it is well known that the delayed update
of prediction tables has limited prediction accuracy impact
for state-of-the-art branch predictors [8], [9]. On the other
hand, using incorrect histories leads to reading wrong entries
in the predictor tables and is very likely to result in many
branch mispredictions [10]. Therefore, accurately managing
speculative branch histories is of prime importance. Below, we
contrast the simple management of speculative global history
with that of speculative local history.

Managing speculative local history is much more complex
than managing speculative global history. On a processor with
a large instruction window, distinct static branches can have
speculative occurrences in-flight at the same time. In practice,
speculative history can be handled as illustrated in Figure 3.
The local history table is only updated at commit time. At
prediction time of branch B, the local history table is read and
the window of all speculatively in-flight branches is checked
looking for occurrences of branch B (or more precisely of
branches with the same index in the local history table). If
any in-flight occurrence of branch B is detected, then the
(speculative) local history associated with the most recent of
these in-flight occurrences is used.

This necessitates an associative search in the window of
in-flight branches. Local history must be stored with each in-
flight branch in this window. On a misprediction of branch B,
the branches fetched after B are flushed from the instruction
window.

IV. IMLI

This section summarizes two IMLI-based components,
which are alternative approaches to predicting the class
of hard-to-predict branches encapsulated in two-dimensional
loops identified by Albericio et al. [4], [5]. These components

2



PC

Global

IMLIcount + 
IMLI hist

TAGE

+

+

+

sign
=

pred.
+

Fig. 4: The Statistical Corrector predictor for TAGE-GSC with
IMLI-based components

can be incorporated into any of the two families of state-
of-the-art branch predictors: the TAGE predictor family [6]
and the neural-inspired predictor family [11], [12], [13], [7].
Figure 4 illustrates adding IMLI components to the statistical
corrector in TAGE-GSC [14]. Both components exploit the In-
ner Most Loop Iteration (IMLI) counter, a simple mechanism
that tracks the number of the current iteration in the inner
most loop. The first component, IMLI-SIC (Same Iteration
Correlation), captures a completely different correlation than
the WH predictor. The second component, IMLI-OH (Outer
History), essentially captures the same correlation as the WH
predictor. Throughout this section, we will use the following
notation when discussing branches in multidimensional loops:

• B is a branch in inner loop IL encapsulated in outer loop
OL.

• Out[N][M] is the outcome of branch B in iteration M of
IL and in iteration N of OL.

A. Inner Most Loop Iteration Counter

In most cases, a loop body ends by a backward conditional
branch. Therefore, for the sake of simplicity, we consider that
any backward conditional branch is a loop exit branch. We
will also consider that a loop is an inner most loop if its body
does not contain any backward branch.

We define the Inner Most Loop Iteration counter, IM-
LIcount, as the number of times that the last encountered
backward conditional branch has been consecutively taken. A
simple heuristic allows us to track IMLIcount at fetch time for
the inner most loop for any backward conditional branch:

if (backward){if (taken) IMLIcount++;
else IMLIcount=0;}

In practice, IMLIcount will be 1 or 0 on the first iteration
depending on the construction of the multidimensional loop.

The IMLI counter can be used to produce the index of the
two IMLI-based predictor components presented below.

B. IMLI-SIC

In some applications, a few hard-to-predict branches encap-
sulated in loops repeat or nearly repeat their behavior for the
same iteration in the inner most loop (i.e., Out[N][M]≡Out[N-
1][M]) in most cases. For instance, this occurs when the same
expression dependent on the inner most iteration number is

Fig. 5: The IMLI-OH component

tested in the inner loop body. In the example in Figure 1,
branches B3 and B4 represent this case.

To capture this behavior, we add a single table to the
statistical corrector of TAGE-GSC. We will refer to this table
as the IMLI-SIC (Same Iteration Correlation) table. IMLI-SIC
is indexed with a hash of the IMLI counter and the PC. With
a 512-entries table, we capture most of the potential benefit
on this class of branches on our benchmark set. However, the
benefit can be further increased by inserting the IMLI counter
in the indices of two tables in the global history component
of the SC.

C. IMLI-OH
From our experiments, we find that the IMLI-SIC compo-

nent does not capture all correlations that are captured by the
WH predictor. Specifically, when predicting Out[N][M] for
a branch B, the outcomes Out[N-1][M-1] and Out[N-1][M]
from the previous outer iteration also have to be memorized.
In the WH predictor, these outcomes are memorized in the
local history associated with branch B in the WH predictor
entry. When predicting Out[N][M], these two outcomes are
then retrieved as bits Mmax+1 and Mmax of the local history
respectively, where Mmax is the number of iterations of the
inner loop as predicted by the loop predictor.

The IMLI-OH (Outer History) predictor component, illus-
trated in Figure 5, is an alternative solution to track Out[N-
1][M-1] and Out[N-1][M] for the inner branches in two-
dimensional loops using the IMLI counter. It consists of the
IMLI-OH predictor table, which is incorporated in the SC part
of the TAGE-GSC predictor. It also consists of two structures
to store and retrieve the history of the previous outer loop
iteration: the IMLI history table and the PIPE vector, described
below.

The outcome of branches are stored in the IMLI history
table. We found that a 1 Kbit table is sufficient. The outcome
of a branch at address B is stored at address (B*64) + IMLI-
count. This allows us to recover Out[N-1][M] when predict-
ing Out[N][M]. However, when predicting the next iteration
(i.e., Out[N][M+1]), Out[N-1][M] would have already been
overwritten with Out[N][M]. Therefore, the PIPE (Previous
Inner iteration in Previous External iteration) vector is used
to intermediately store Out[N-1][M]. This vector only contains
16 bits, corresponding to the 16 distinct branch addresses that
the 1K-entry IMLI outer history table is able to track.

The IMLI-OH predictor table is indexed with the PC
hashed with bits Out[N-1][M] and Out[N-1][M-1] retrieved as
described above. Using a 256-entry IMLI-OH predictor table
was found to be sufficient to cover all the practical cases in
our set of 80 traces.

3



D. Speculative Management of IMLI

After the fetch of a given instruction block, the new spec-
ulative IMLI counter is derived from the previous speculative
IMLI counter as well as the presence/absence of any forward
branches in the instruction fetch block and their predicted
directions. Checkpointing the speculative IMLI counter allows
for resuming branch prediction and instruction fetch with the
correct IMLI counter after a branch misprediction.

For IMLI-OH, the IMLI PIPE vector is a small structure (16
bits in our study). It can be checkpointed for each instruction
fetch block. In practice, precise management of the IMLI outer
history is not required. Analysis of simulations shows that
the IMLI-OH component essentially captures correlation for
branches that are encapsulated in loops with a large number
of iterations. In practice, for these branches, when iteration M
of IL in iteration N of OL is fetched, the occurrences around
iteration M of the inner most loop IL and iteration N-1 of
the outer loop OL have been committed for a long time. For
these branches, the correct Outer History is used. For the other
branches that do not exhibit IMLI counter correlations, using
the incorrect Outer History has very limited impact.

V. METHODOLOGY

Throughout this paper, trace-based simulations of the branch
predictors are used in order to motivate and validate the pro-
posed designs. Misprediction rates measured as Mispredictions
Per Kilo Instructions (MPKI) will be used as a metric of
accuracy.

Trace-based branch prediction simulations are assuming im-
mediate updates of the prediction tables and branch histories.
On real hardware, branch histories are speculatively updated
ensuring that the same prediction tables entries are read at
fetch time and updated at commit time. The prediction tables
are updated at commit time; thus in a few cases, a prediction
table entry is read at prediction time before a previous branch
in the control flow commits and updates it. However, for
the state-of-the-art global history predictors considered in this
paper, the delayed update of predictor tables has very limited
impact on accuracy [9], [8]. Moreover, this impact can be
mitigated [9].

Application Traces. To allow reproducibility of the experi-
ments presented in this paper, all the simulations are performed
using the two sets of traces that were distributed for the two
last branch prediction championships in 2011 (CBP3) and
2014 (CBP4). Each set of traces features 40 traces. Traces
from CBP3 were transformed in order to be compatible with
simulations through the CBP4 framework. These 80 traces
cover various domains of applications including SPEC integer
and floating-point applications, servers, client and multimedia
applications.

Branch Predictors. The IMLI predictor components pre-
sented in this paper improve branch accuracy when com-
bined with any of the two families of state-of-the-art branch
predictors: the TAGE predictor family [6] and the neural-
inspired predictor family [11], [12], [13], [7]. We consider
one global history predictor from each of the two families
as base references. As a representative of TAGE-based global

Fig. 6: IMLI-induced MPKI reduction on the 80 benchmarks;
TAGE-GSC predictor

Fig. 7: IMLI-induced MPKI reduction on the 15 most bene-
fitting benchmarks; TAGE-GSC predictor

Fig. 8: IMLI-induced MPKI reduction on the 80 benchmarks;
GEHL predictor

history predictors, we use the TAGE-GSC predictor (i.e. the
global history components of TAGE-SC-L [14], the winner of
CBP4). As a representative of neural-inspired global history
predictors, we use a GEHL predictor [7].

VI. EVALUATION

Figures 6 and 7 illustrate the accuracy benefit obtained from
augmenting TAGE-GSC with the two IMLI-based components
on the whole set of 80 benchmarks and the 15 most improved
benchmarks respectively. The benefit of IMLI-SIC alone is
illustrated in the lowest bar.

IMLI-SIC. IMLI-SIC reduces the average misprediction
rate from 2.473 to 2.373 MPKI for CBP4 and from 3.902
to 3.733 MPKI on CBP3 traces. This benefit is essentially
obtained on a few benchmarks: two CBP4 benchmarks —
SPEC2K6-04 (-2.37 MPKI) and SPEC2K6-12 (-1.16 MPKI)
— and three CBP3 benchmarks — WS04 (-3.20 MPKI),
MM07 (-2.17 MPKI and CLIENT02 (-0.64 MPKI). The
accuracies of a few other benchmarks (MM4 and WS03)
are marginally improved while the other benchmarks remain
mostly unchanged.

The impact of adding the IMLI-SIC table to GEHL is very
similar, reducing misprediction rate from 2.864 MPKI to 2.752

4



Fig. 9: IMLI-induced MPKI reduction on the 15 most bene-
fitting benchmarks; GEHL predictor

Fig. 10: IMLI-OH vs WH prediction accuracy on top of the
GEHL predictor

MPKI for CBP4 traces and from 4.243 MPKI to 4.053MPKI
for CBP3 traces. The same benchmarks as for TAGE-GSC are
improved by IMLI-SIC. This is illustrated in Figures 8 and 9,

Interestingly, SPEC2K6-04 and WS04 are benchmarks that
were not improved by the WH predictor. In practice, as already
pointed out, the structure of the WH predictor only captures
correlations for branches that are encapsulated in regular loops
with constant iteration numbers and are executed on each
iteration of the inner loop. IMLI-SIC does not suffer from
these restrictions. On the other hand, benchmarks that are
improved by WH — SPEC2K6-12, CLIENT02, MM07 and
MM4 — are not as significantly improved by IMLI-SIC as
with WH.

The IMLI-SIC table allows for predicting the number of
iterations of the inner loop whenever the inner loop has a
constant iteration number. As a result, activating the loop
predictor when IMLI-SIC is enabled has limited impact. For
instance, with TAGE-GSC, the benefit of the loop predictor is
reduced from 0.034 MPKI to 0.013 MPKI on CBP4 and from
0.094 MPKI to 0.010 MPKI on CBP3.

IMLI-OH. First, we compare the benefits of IMLI-OH and
WH when added to the base predictors. This is illustrated in
Figure 10 for the GEHL predictor; results for TAGE-GSC are
similar. As expected, the two predictors enhance the accuracy
of the benchmarks that were enhanced by WH. IMLI-OH
slightly enhances the accuracy of a few other benchmarks (e.g.,
SPECK6-04 and WS03) that are also enhanced by IMLI-SIC.

The benefits from IMLI-OH over the base predictors aug-
mented with IMLI-SIC are proportionally smaller than the

ones from IMLI-SIC alone: 2.0 % MPKI reduction on CBP4
traces (resp. 2.2 %) and 2.3 % (resp. 2.3 %) on CBP3 traces
for TAGE-GSC (resp. GEHL).

IMLI Overall. The total benefit of IMLI-SIC and IMLI-
OH is illustrated as the full bar in Figures 6 and 7 for TAGE-
GSC and in Figures 8 and 9 for GEHL. These benefits are
obtained only on a few benchmarks but are significant for these
benchmarks. Note that the benefits of IMLI-OH and IMLI-SIC
are not always cumulative, as illustrated by SPECK6-04.

For TAGE-GSC, the misprediction rate is improved by
6.8 % from 2.473 MPKI to 2.313 MPKI on CBP4 traces and
by 6.1 % from 3.902 MPKI to 3.649 MPKI on CBP3 traces.
For the GEHL predictor, the misprediction rate is improved by
6.0 % from 2.864 MPKI to 2.694 MPKI on CBP4 traces and
6.5 % from 3.902 MPKI to 3.649 MPKI on CBP3 traces.
This misprediction reduction is most prominent for seven
benchmarks: SPEC2K6-04, SPEC2K6-12 and MM-4 from
CBP4 as well as CLIENT02, MM07, WS04 and WS03 from
CBP3 (Figures 7 and 9). Most of the other benchmarks neither
benefit nor suffer from the IMLI components as illustrated in
Figures 6 and 8.

These two predictor components can be simply added as
extra tables in the statistical corrector predictor of TAGE-
GSC or in the GEHL predictor. The overall storage budget
for implementing the two IMLI-based components is low: a
total of 708 bytes (i.e., 384 bytes for the IMLI-SIC table, 128
bytes for the IMLI outer history table, 192 bytes the IMLI
OH predictor table, 4 bytes for the PIPE vector and the IMLI
counter). Moreover, managing the speculative states of IMLI-
SIC and IMLI-OH is as simple as that of speculative global
history; it can be implemented by checkpointing only two
small structures: the IMLI counter (10 bits) and the IMLI PIPE
vector (16 bits). Despite this low storage budget and hardware
complexity, the IMLI-based components significantly reduce
the misprediction rate for several benchmarks when added to
TAGE-GSC and GEHL.

VII. IMPACT ON LOCAL HISTORY

Up to now, we have considered IMLI-based components for
branch predictors featuring only global history components.
State-of-the-art academic branch predictors feature both lo-
cal and global history components, but most real hardware
processors only use global history predictors. In this section,
we show that the potential accuracy benefit from using local
history is further limited when using IMLI-based components.

The two base predictors, TAGE-GSC and GEHL, can be
augmented with local history components. These local history
components can be inserted in the SC predictor of TAGE-
GSC and can be added as a local history GEHL predictor in
GEHL, which yields FTL [13]. We consider augmenting both
predictors with a local history component. For TAGE-GSC, we
activate the local history components and the loop predictor
in TAGE-SC-L [14]. For GEHL, we add 1) 4 tables of 2K
6-bit counters and a 256-entry table of 24-bit local history
counters, and 2) a 32-entry loop predictor, thus yielding a
FTL predictor [13].

We run simulations selectively activating the different com-
ponents: Base, Base+I (I for IMLI), Base+L (L for local) and

5



Fig. 11: Benefits of local history components on TAGE;
the 25 most benefitting benchmarks

Fig. 12: Benefits of local history components on GEHL;
the 25 most benefitting benchmarks

Base+I+L. The results for the 25 most affected benchmarks
(out of 80) are illustrated in Figures 11 and 12. The average
misprediction rates are reported in Tables I and II.

TAGE-GSC +L + I +I + L
size (Kbits) 228 256 234 261
CBP4 2.473 2.365 2.313 2.226
CBP3 3.902 3.670 3.649 3.555

TABLE I: Average misprediction rate (MPKI) for TAGE-GSC-
based predictors.

GEHL +L + I + I + L
size (Kbits) 204 256 209 261
CBP4 2.864 2.693 2.694 2.562
CBP3 4.243 3.924 3.958 3.827

TABLE II: Average misprediction rate (MPKI) for GEHL-
based predictors.

Overall, adding the local history predictor components and
the loop predictor to the IMLI-augmented base predictors
leads to lower accuracy gains than adding them to the base
predictors. For TAGE-GSC, the benefit shrinks from 0.108
MPKI without IMLI to 0.087 MPKI for CBP4 traces and from
0.232 MPKI to only 0.094 MPKI for CBP3 traces. For GEHL,
we observe a very similar trend with an accuracy benefit of
0.132 MPKI instead of 0.171 MPKI on CBP4 traces and 0.131
MPKI instead of 0.319 MPKI on CBP3 traces.

The IMLI components capture part of the correlations that
are captured by the local history components and the loop
predictor. Figures 11 and 12 show this phenomenon. When
IMLI components are very effective (i.e., MM-4, SPECK2-04,
SPECK6-12, CLIENT02, WS04 and MM07), the local his-
tory components are often somewhat effective, (e.g., MM07,
WS04, WS03 and CLIENT02). However, their impact is only
partially cumulative. On the other hand, Figures 11 and 12
also show that the benefit of local history components is more
evenly distributed on the overall set of benchmarks than that
of the IMLI-based components.

Summary. The accuracy benefits of using local history
components and a loop predictor on top of a predictor
implementing global history and IMLI-based components is
limited. These reduced benefits further argue against the cost-
effectiveness of local history predictor components when the
predictor already features IMLI-based components.

VIII. ACKNOWLEDGEMENTS

This work was partially supported by the European Re-
search Council Advanced Grant DAL No 267175. This work is
also supported by a Queen Elizabeth II/Montrose Werry Schol-
arship in Science and Technology, Bell Graduate Scholarship,
a Discovery grant, and a Strategic grant from the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] T.-Y. Yeh and Y. Patt, “Two-level adaptive branch prediction,” in
Proceedings of the 24th International Symposium on Microarchitecture,
Nov. 1991.

6



[2] T. Sherwood and B. Calder, “Loop termination prediction,” in High
Performance Computing, Third International Symposium, ISHPC 2000,
Tokyo, Japan, October 16-18, 2000. Proceedings, pp. 73–87, 2000.

[3] D. Morris, M. Poplingher, T. Yeh, M. Corwin, and W. Chen, “Method
and apparatus for predicting loop exit branches,” June 27 2002. US
Patent App. 09/169,866.

[4] J. Albericio, J. San Miguel, N. Enright Jerger, and A. Moshovos,
“Wormhole: Wisely predicting multidimensional branches,” in Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, (Washington, DC, USA), pp. 509–520,
IEEE Computer Society, 2014.

[5] J. Albericio, J. San Miguel, N. Enright Jerger, and A. Moshovos,
“Wormhole branch prediction using multidimensional histories,”
in Proceedings of the 4th Championship on Branch Prediction,
http://www.jilp.org/cbp2014/, 2014.

[6] A. Seznec and P. Michaud, “A case for (partially)-tagged geometric
history length predictors,” Journal of Instruction Level Parallelism
(http://www.jilp.org/vol8), April 2006.

[7] A. Seznec, “Analysis of the O-GEHL branch predictor,” in Proceedings
of the 32nd Annual International Symposium on Computer Architecture,
june 2005.

[8] D. Jiménez, “Reconsidering complex branch predictors,” in Proceedings
of the 9th International Symposium on High Performance Computer
Architecture, 2003.

[9] A. Seznec, “A new case for the tage branch predictor,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-44, (New York, NY, USA), pp. 117–127, ACM, 2011.

[10] E. Hao, P.-Y. Chang, and Y. N. Patt, “The effect of speculatively updating
branch history on branch prediction accuracy, revisited,” in Proceedings
of the 27th Annual International Symposium on Microarchitecture, (San
Jose, California), 1994.

[11] D. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings of the Seventh International Symposium on High Perfor-
mance Computer Architecture, 2001.

[12] D. Jimenéz and C. Lin, “Neural methods for dynamic branch prediction,”
ACM Transactions on Computer Systems, vol. 20, Nov. 2002.

[13] Y. Ishii, “Fused two-level branch prediction with ahead calculation,”
Journal of Instruction Level Parallelism (http://wwwjilp.org/vol9), May
2007.

[14] A. Seznec, “Tage-sc-l branch predictors,” in Proceedings of the
4th Championship on Branch Prediction, http://www.jilp.org/cbp2014/,
2014.

Dr André Seznec is a senior research director at In-
ria in Rennes. He has been working on computer ar-
chitecture for more than 30 years. His main research
interests are speculative execution, pipeline design,
and memory hierarchy and system. Dr Seznec is an
IEEE fellow.

Joshua San Miguel is a PhD candidate at the Uni-
versity of Toronto. His research spans a wide range
of computer architecture topics including branch
prediction, approximate computing and networks-
on-chip.

Dr Jorge Albericio is a Postdoctoral Fellow at the
University of Toronto. He completed his PhD at
the University of Zaragoza. His research interests
include branch prediction, architectures for machine
intelligence algorithms, memory hierarchy, and ap-
proximate computing.

7


	Introduction
	Multidimensionality
	Speculative Local History
	IMLI
	Inner Most Loop Iteration Counter
	IMLI-SIC
	IMLI-OH
	Speculative Management of IMLI

	Methodology
	Evaluation
	Impact on Local History
	Acknowledgements
	References
	Biographies
	Dr André Seznec
	Joshua San Miguel
	Dr Jorge Albericio


