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Abstract

We study completeness properties of the Sobolev diffeomsmpgroupsD* (M)
endowed with strong right-invariant Riemannian metriceewh/ is R? or a com-
pact manifold without boundary. We prove that for> dim M /2 + 1, the group
Ds(M) is geodesically and metrically complete and any two diffegohisms in the
same component can be joined by a minimal geodesic. We tesemrthe connec-
tion between the Sobolev diffeomorphism group anddinge deformation matching
framework in order to apply our results to diffeomorphic geanatching.

Keywords. Diffeomorphism groups, Sobolev metrics, strong Riemammizgetric,
completeness, minimizing geodesics

1 Introduction

The interest in Riemannian geometry of diffeomorphism geoatarted with/[ArnG6],
where it was shown that Euler's equations, describing théanaf an ideal, incom-
pressible fluid, can be regarded as geodesic equations gndhp of volume-preserving
diffeomorphisms. The corresponding Riemannian metridés right-invariantZ?-type
metric. This was used in [EM70] to show the local well-posesiof Euler’'s equations
in three and more dimensions. Also following [Arn66], thexature of the Riemannian
metric was connected in_[Mis93; Pre(04; Shk98] to stabilitygerties of the fluid flow.
The Fredholmness of the Riemannian exponential map wasinggdP10] to show that
large parts of the diffeomorphism group is reachable fromittentity via minimising
geodesics.
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Other equations that have been recognised as geodesicoagua the diffeomor-
phism groups include the Camassa—Holm equation [CHI93Kdinteweg—de Vries equa-
tion [OK87; Seg91], the quasigeostrophic equation [EbBER15], the equations of a
barotropic fluid [Prel13] and others; see [BBM14; Viz08] for@aerview. In [EK11], the
Degasperis-Procesi equation is identified as being a gmodgaation for a particular
right-invariant connection on the diffeomorphism group.

Right-invariant Sobolev metrics

Let M be eitheiR? or a compact manifold without boundary of dimensibrmThe group
Ds(M), with s > d/2+1, consists of alC!-diffeomorphisms of Sobolev regularify®. It
is well-known thatD®( M) is a smooth Hilbert manifold and a topological group [IKT13]
Right-invariant Sobolevi”-metrics on diffeomorphism groups can thus be described us-
ing two parameters: the ordeiof the metric and the regularityof the group. Obviously
one requires < s for the metric to be well-defined.

As far as the behaviour of Sobolev metrics is concerned,atelarity s of the group
is less important that the orderof the metric. Many properties like smoothness of the
geodesic spray, (non-)vanishing of the geodesic distdfreglholmness of the exponen-
tial map are not present féf"-metrics withr small and then “emerge” at a certain critical
value ofr. For some, like the Fredholmness properties of the exp@iemap, the critical
value is independent of the dimension/df, in other cases the independence is conjec-
tured and in yet others, like the completeness results snpaper, the critical value does
depend on the dimension. The range of admissible valuesian each case usually an
interval bounded from below with the lower bound depending.o

The study of Sobolev metrics is complicated by the fact tfloata given order, there
is no canonicald"-metric, just like there is no canonicél”-inner product on the space
H"(M,R). The topology is canonical, but the inner product is not.FerN, a class of
“natural” inner products can be defined using the intrinsifecential operations or/.
They are of the form

<u,v)Hr:/M<u,Lv) du, (1.1)

whereL is a positive, invertible, elliptic differential operatof order2r. For (possibly)
non-integer orders, the most general family of inner presliecgiven by pseudodifferen-
tial operators, € OPS?" of order2r within a certain symbol class. The corresponding
Riemannian metric is

Go(Xy, Y,) = / <X<P o, L(Yyo0 90_1)> dp,
M

and it can be represented by the operdipr= R 1oLoRy, with R, X = X o ¢ de-
noting right-translation by. Note however, thap is not smooth, but only i®*(A/) and
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thus L, is not a pseudodifferential operator with a smooth symbglranre. Pseudodif-
ferential operators with symbols in Sobolev spaces wediestifor example in [ARS86a;
ARS86b; BR84; Lan06], but technical difficulties still rema

Strong Sobolev metrics

Historically most papers dealt with right-invariant Sodoimetrics on diffeomorphism
groups in the weak setting, that is one considei#emetrics onD*(M) with s > r; a
typical assumption is > 2r + d/2 + 1, in order to ensure thdtu is still C*-regular. The
disconnect between the order of the metric and the regylafrthe group arose, because
one was mostly interested iE? or H'-metrics, butD*(M) is a Hilbert manifold only
whens > d/2+ 1. It was however noted already in [EM70] and again.in [MP 1@&tthe
H*-metric is well-defined and, more importantly, smoothZeH{ /), for integers when
the inner product is defined in terms of a differential oparas in[(1.1). The smoothness
of the metric is not obvious, since it is defined via

Go(Xy,Y,) = (X, 0 90_17 Y, o S0_1>HS

and the definition uses the inversion, which is only a cormtirs) but not a smooth opera-
tion onD*(M).

Higher order Sobolev metrics have been studied recentlyffaochorphism groups of
the circle [CKO03], of the torus [KLT(08] and of general compatanifolds [MP10]. The
sectional curvature of such metrics was analysed in [KLM-&1@l in BHM11; BHM12]
the authors considered Sobolev metrics on the space of isione; which contains the
diffeomorphism group as a special case.

Diffeomorphic image matching

Another application of strong Sobolev metrics on the diffieophism group is the field of
computational anatomy and diffeomorphic image matchingl9&]. Given two images,
represented by scalar functions/ : RY — R, diffeomorphic image registration is the
problem of solving the minimization problem

J(¢) = dist(Id, ) + S(IT o™t J),

over a suitable group of diffeomorphisms; héres a similarity measure between images,
for example the ?-norm, andlist is a distance between diffeomorphisms [BMT+05]. In
the large deformation matching framework this distancaken to be the geodesic dis-
tance of an underlying right-invariant Riemannian metmctioe diffeomorphism group.
Thus Sobolev metrics comprise a natural family of metrickdaised for diffeomorphic
image registration.
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Completeness

The contributions of this paper are twofold. First we wanskow that strong, smooth
Sobolev metrics o®*( M) are geodesically and metrically complete and that therst exi
minimizing geodesics between any two diffeomorphisms. @éalt here that the Hopf—
Rinow theorem is not valid in infinite dimensions, namely iAtkjives in [Atk75] an
example of a geodesically complete Riemannian manifoldrevktiee exponential map is
not surjective. For the Sobolev diffeomorphism group with d/2 + 1, the best known
result can be found in [MP10, Thm. 9.1] which is an improvetredrthe positive result
of Ekeland [Eke78].

Geodesic completeness was shown for the diffeomorphismpgod the circle in
[EK14] and in weaker form oR? in [TY05] and [MM13]. Metric completeness and
existence of minimizing geodesics in the context of groupSabolev diffeomorphisms
and its subgroups is—as far as we know—new. We prove thenwifptheorem:

Theorem. Let M beR? or a closed manifold and > d/2 + 1. If G* is a smooth, right-
invariant Sobolev-metric of orderonD* (M), then

1. (D°(M),G?) is geodesically complete;
2. (D*(M),, dist®) is a complete metric space;
3. Any two elements @*(M ), can be joined by a minimizing geodesic.

We expect that the same methods of proof can also be applied subgroup®;, (M)
andD? (M) of diffeomorphisms preserving a volume fognor a symplectic structure.
The crucial ingredient in the proof is showing that for eathe flow map

Fl, : LI, %°(M)) — D*(M), (1.2)

assigning a vector field its flow at timeexists and is continuous; see 3.1 for defi-
nitions. The existence was known for vector fieldit/, X*(1/)) and the continuity as

a map intoD* for s’ < s was shown in[[Inc12]. We extend the existence result to vecto
fields that arel.! in time and show continuity with respect to the manifold timgy. The
flow map allows us to identify the space Bf-paths with the space of right-trivialized
velocities,

D5(M) x L*(I, X5(M)) = HY(I,D¥(M)), (po,u) = (t = Fly(u) o pp) .

The inverse map of the identification is given By (1,D?%) 5 ¢ — (¢(0),dip o0 o7 1).
SinceL?(I,X*(M)) is a Hilbert space, we can use variational methods to showxise
tence of minimizing geodesics.
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In order to show metric completeness, we derive, in the ddse R¢, the following
estimate on the geodesic distance,

le — ¢

which is valid on a bounded metritist®-ball. In other words, the identity map between
the two metric spaces

Id: (D*(RY), ] -|

Hs S CdlSts((pv @D) )

we) = (D*(R?), dist®)

is locally Lipschitz continuous. For compact manifolds viw a similar inequality in
coordinate charts. The Lipschitz continuity implies th&auchy sequence folist® is a
Cauchy sequence fdr- ||z, thus giving us a candidate for a limit point. One then pro-
ceeds to show that the limit point lies in the diffeomorphigraup and that the sequence
converges to it with respect to the geodesic distance.

Applications to image matching

The second contribution concerns the groups of diffeomerps introduced by Trouvé
[Tro98§;|TY05] for diffeomorphic image matching in the largeformation framework
[BMT+05]. In this framework one chooses a Hilbert spatef vector fields orR?¢ with
a norm that is stronger than the unifofﬁé-norn@, i.e.,% — C} and considers the group
Gy of all diffeomorphisms, that can be generated as flows ofordigtlds in (1, H), I
being a compact interval.

Whens > d/2+ 1 the Sobolev embedding theorem shows #at— C}, allowing us
to consider the grou@y- as a special case of the construcion by Trouve. It is notdiffi
to show, fort fixed, the existence of the flow as a map

Fl, : L*(I,H) — Diff'(R?)

into the space of'!-diffeomorphisms. Thus we can view the existence of the flapimn
the sensd (112) as a regularity result wi¢n= H*. With the help of this regularity result
we are able to show the following:

Theorem. Lets > d/2 + 1. ThenGys = D*(RY),.

Here D*(R?), is the connected component of the identity. This means thate
choosel{ to be a Sobolev space, then the framework of Trouvé cortsttbe classical
groups of Sobolev diffeomorphisms. As a consequence wemnoihiat G ;- is a topologi-
cal group and that the paths solving the image registratioblem are smooth. We also
obtain using the proximal calculus on Riemannian maniffdd205] that Karcher means
of k diffeomorphisms — and more generally shapes — are uniquedense subset of the
k-fold productD? x ... x D?.

3The C}-norm is the supremum norm on the vector field and the firsvatve, ulley = llullc +
1Dt -
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2 The group D*(RY)
The Sobolev spaced*(R?) with s € R can be defined in terms of the Fourier transform

FFE) = (2m) 2 / i) () da,

n

and consist ofL.2-integrable functionsf with the property that1 + |¢|?)¥/2F f is L?-
integrable as well. An inner product d@ih*(R?) is given by

() =% [ (14 |6PPFHOFI@ k.
R
Denote byDiff! (R¢) the space of'-diffeomorphisms oR?, i.e.,
Diff' (RY) = {¢ € CY(R, R?) : ¢ bijective,po~! € C*(RY, R} .

Fors > d/2+ 1 ands € R there are three equivalent ways to define the gBeR?) of
Sobolev diffeomorphisms:

D (RY) = {p € Id+H*(R?,R?Y) : ¢ bijective,p' € Id +H*(R¢, R%)}
= {p e Id+H*R% R : p € Diff (R%)}
= {p € Id+H*(R* R?) : det Dp(x) > 0, Vo € R%}.

If we denote the three sets on the right By, A, and A3, then it is not difficult to see
the inclusionsd; C A, C As. The equivalencel; = A, has first been shown in [EDbi70,
Sect. 3] for the diffeomorphism group of a compact manifalgiyoof forD*(R¢) can be
found in [IKT13]. Regarding the inclusioA; C A,, itis shown in|[Pal59, Cor. 4.3] that if
¢ € C" with det Dp(z) > 0 andlimy,|_,« |¢(z)| = oo, theny is aC'-diffeomorphism.

It follows from the Sobolev embedding theorem, t#t{R?) — Id is an open subset
of H*(R? R%) and thus a Hilbert manifold. Since eaghe D*(RY) has to decay to
the identity for|x| — oo, it follows thaty is orientation preserving. More importantly,
D*(R™) is a topological group, but not a Lie group, since left-nplitation and inversion
are continuous, but not smooth.

The space of vector fields dk’ is eitherX*(R¢) or H*(R?, R¢) and we shall denote
by D*(R%), the connected component of the identityri(R<).

2.1 Boundedness of Composition

We will use the following lemma in the later parts of the pafeestimate composition
in Sobolev spaces. The first two parts are Cor. 2.1 and Lemof2[KT13], the third
statement is a slight refinement of [IKT13, Lem. 2.11] and barproven in the same
way. Denote byB. (0) thees-ball around the origin irff *(R?, R?).
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Lemma 2.2. Lets > d/2+ 1 and0 < &' < s.

1. Giveny € D*(R?) there existg > 0 and M > 0, such that) + B.(0) C D*(R%)
and

inf det Dy(x) > M forall ¢ € ¢+ B.(0).
z€eR

2. GivenM, C > 0 there exist€’, = C (M, C), such that for allp € D*(R?) with

inf det Dp(z) > M and |p—1d|

zcRd

Hs <:(77

andall f € H*(R?),

1f ol

e < Collf]

H -

3. Assume additionally’ > d/2. LetU C D*(R?) be a convex set andi/,C' > 0
constants, such that

inf det Dp(z) > M and |[|¢ — Id |

zeR4

s <C forallpeU.

Then there exist§, = Cy (M, C), such that for allf € H*+'(R?) andy, v € U,

[fop— fod] e |l — ]

s < Cllf]

Hs" -

Proof. For the sake of completeness we give a proof of the third retze We may
assume thaf € C>®(R%), sinceC>(R?Y) is dense inH*+!(R9). Introducedyp(r) =

¢(z) — ¥(z) and note thap + tép € U for any0 < t < 1. Sincey, ¥ € Diff} (R?), we

have for allz € R?,

Fople) = foula) = [ 4 (Fo e i)
_ / D (i + 159)(x)) Sip(x) dt .

Hence

1
1f og— f ot sc;,/ IDf o (o + t60)| o g — e
0

< CollDfll g lle = ¢l g < Collf]

HS Hs'+1 o — | Hs

with some constantS, C?,, C?,. ]



8 Martins Bruveris, Frangois-Xavier Vialard

3 Convergence of Flows irD*(R%)

In this section we want to clarify, what is meant by the flow oktator field — in particular

for vector fields that are only;! — and then prove some results about the convergence of
flows given convergence of the underlying vector fields. Treenmesult of the section

is Thm.[3.7, which shows that for > d/2 + 1 the flow map — assuming it exists — is
continuous as a map

Fl: L'(I, H*(R%, RY)) — C(I, D¥ (RY)),

whered/2 + 1 < s’ < s. The result will be strengthened by Thim.14.4, which will show
the existence of the flow as well as the convergence’fer s.

3.1 Pointwise andD’-valued flows

Lets > d/2 + 1 andI be a compact interval containing 0. Assumés a vector field,
u € LY(I, H*(R% R%)). It is shown in [YoulD, Sect. 8.2] that there exists a map
I x R4 — R4, such that

e (-, x) is absolutely continuous for eaahand
e (t,-)is continuous for each

and this map satisfies the equation

o(t,r) =z + /0 u(r, p(r,x))dr. (3.2)

We will call such a map the pointwise flow of. or simply theflow ofw. It then follows
that for eachr € R? the differential equation

at@(tv {L') = u(tv Sp(ta 1’))

is satisfiedt almost everywhere. It is also shown in_[YoulO, Thm. 8.7] thét) is a
C'*-diffeomorphism for alk < I.

We will denote byFl1(u) : I — Diff'(R%) the flow map of the vector field. Given
t € I, theflow at timet is Fl,(u) € Diff'(R%). If ¢ is the map solving[(311), then
¢ = Fl(u) and(t) = Fl;(u). Note that[(3.11) implie§'ly(u) = Id; we shall use this
convention throughout the paper.

If we additionaly assume that € C(I,D*(R%)), i.e., p is a continuous curve in
D*(R%), then Lem[3.R shows that the functiom- u(t) o (t) is Bochner integrable in
H? and the identity

o(t) = Id+/0 u(r) o p(r)dr (3.2)
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holds inD#(R?); furthermore, [[312) implies that the curve— (t) is absolutely con-
tinuous. We will call a curver € C(I,D*(R%)) aflow ofu with values inD*(R?) or a
Ds-valued flow ofu. The pointwise flow of a vector field is unique and therefor¢hé
Ds-valued flow exists, it is also unique. It will be shown in THé4 that every vector
fieldu € L'(I, H*) has aD*-valued flow.

Lemma 3.2. Lets > d/2 + 1,u € L*(I, H*(R? RY)) andp € C(I,D*(R%)). Then it
follows that:

1. The functiort — u(t) o p(t) is Bochner integrable.

2. If p satisfieg3.1), then the identity3.2) holds as an identity iD* (R?).

Proof. First we show that — u(t) o p(t) is Bochner integrable. The map- u(t) o p(t)

is weakly measurable and siné€’ is separable, also measurable [SYO05, Prop. 1.1.10].
Since! is compact, the set(7) satisfies the conditions of Lein. 2[2 (2), i.e., there exists
a constant” such that

s < C||v]

v o p(t)]
holds for allv € H* and allt € I. Thus

/I lu(t) o o(8)

via [SY05, Thm. 1.4.3], which implies that— u(t) o ¢(t) is Bochner integrable.
Now we prove the second statement. Denoteshy: H*(R¢, RY) — R? the evaluation
map. Sinces > d/2, this map is continuous and thilis (3.1) can be interpreted as

Hs

e dt < Clul|pr < o0,

ev, (p(t) —1d) = /o evy (u(1) o (7)) dr.

The Bochner integral commutes with bounded linear maps [QUHAm. 6], and the set
{ev, : z € R%} is point-separating. Thus we obtain

t
o(t) —1d = / u(t) o p(r)dr in H¥(R%, RY),
0
which concludes the proof. O

The meaning of Leni._3l2 is that the notionsmf-valued flow and pointwise flow
coincide, if we know a priori, thap is a continuous curve i®*(R¢). The next lemma
shows the basic property, that being a flow is preserved wrdarm convergence of the
flows andL!-convergence of the vector fields.

Lemma 3.3. Lets > d/2 + 1 and letu" € L*(I, H*(R? R%)) be a sequence of vector
fields withDs-valued flowsp™. Assume that™ — v and ™ — p — 0in L*(I, H*) and
C(1, H?) respectively. Thep is theD*-valued flow ofu.
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Proof. We need to show two things: thatt) € D*(R?) and thaty is theD*-valued flow
of u. First note thaty"(t) — ¢(t) € H® impliesp(t) — Id € H®.
As " is the flow ofu™, it satisfies the identity

OM(t,r) =2+ /t u™ (1, " (1, x)) dT, (3.3)

0

forall (¢,z) € I x R%. From the estimates

téUWﬂ@%ﬂ@)—MﬂwUﬂﬂdf

S/O (7, 0" (7, 2)) — (T, @"(7,2))| + [u(7, " (7, 7)) — u(T, (7, 2))[ d7
< /0 [w(7) = u(T)|l o + [1Du(m) ]l [[€"(7) = (7)[| o d7

scﬁuwvwwvn

< Cllu" = ullpra me) + Cllullpy,me)

Hs dT

e+ u() [l 0" (7) — o(7)]

80" - <P||C(1,Ds) )

with the constant’ arising from Sobolev embeddings, we see by passing to theitim
(3.3) thaty is the pointwise flow ofu. As remarked at the beginning of the section, it
is shown in[Youl0, Thm 8.7] that the pointwise flaw(t) is a C*-diffeomorphism and
together withp(t) — Id € H?® this showsp(t) € D*(R%). Finally it follows from Lem.
[3.2 thaty is theDs-valued flow. O

We will use the following decomposition method repeatedly.

Remark 3.4. A recurring theme is to show the existence of the flow
Fl, : LY(I,X*) — D*, u— o(t),

and its continuity — either pointwise or uniformly in- whereXx?® is the space of vector
fields of a certain Sobolev regularityon R? or on a manifold)/. This is often done by
proving the statement in question first for small vector Selce. those with|u||;: < ¢
for some giverz. The statement then follows for all vector fields via thedaling general
principle.

Let e > 0 be fixed. Given a vector field € L!(I,X®), there exists anV and a
decomposition of the intervdlinto N subintervalst;, ¢;.], such that on each subinterval

we have
tj+1
/ Ju()]
ti:

J

Note that, while the points; will depend onu, their total numberV can be bounded
by a bound depending only dfu||;:; indeed we haveV < ||ul/;1/e + 1. To see this,

Hsdt<€.
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assume w.l.0.g. thdt = [0, 1] and define the functiofi(t) = fot ||w(7)|| s d7. The func-
tion is non-decreasing and majds1| to [0, ||u||.:]. Subdivide the latter interval intd/
subintervalss;, s;41] of length less tham and sett, = 0 and¢; = sup f~'(s;) for
j=1,...,N.

Letu; = uly, ., be the restriction of to the subintervak;, t;,1]. We have|u; |1 <
¢ and we can apply the proven statement to obtain the existéaddow, which we denote
©;; here we letp;(t;) = Id. Then we define fot € [t;, ;4]

o(t) = @;(t) opj-1(t;) o ... o pi(ta) o po(t1) -

It can easily be checked, thatis the flow ofu — onR¢ this can be done directly and on a
manifold M using coordinate charts. As the flow is put together using bnitely many
compositions and* is a topological group any statement about continuity offtoe
map can be transferred from) to .

Another reformulation of the decomposition principle isttlany diffeomorphisny,
that is the flow of a vector field with ||u||;: < r, can be decomposed into

P=P10¥20...00N,
where eacly; is the flow of a vector field:; with ||u;||.: < ¢ andN depends only on.

A first example, that uses this method is the proof of the Yailhg lemma, showing
that Lem[ 2.2 can be applied on arbitrary geodesic balls.

Lemma 3.5. Lets > d/2 + 1 and0 < §' < s. Givenr > 0 andn € N, there exists a
constant”, such that the inequality

s < Cflvl

lv el I

holds for allv € H* (R4 R") and all ¢ € D*(R%), that can be written ag = (1),
wherey is theD*(R%)-valued flow of a vector field with ||u|| 117 s+ < -

Proof. For the purposes of this proof we set= [0, 1]. Choose arx > 0 such that
Id +B.(0) € D*(M) with B.(0) being thes-ball in H*(R¢,RY). Using Rem[ 3} it is
enough to prove the lemma for vector fieldsvith C'||u||: < . Let be theD*-valued
flow of such a vector field; the existence ©fis guaranteed by the assumptions of the
lemma. We claim thap satisfies)(t) € Id +B.(0). Assume the contrary and [étbe the
smallest time, such that eithgy(7') — Id || z= = e orT" = 1. Then fort < T' we have the
bound

[9(t) —1d |

s < /0 |u(T) o (7)||gs dT < C’/I||u(7')| g dr <e.
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The curvet — 1)(t) is continuous irD*(R¢) and since the last inequality doesn’t depend
ont, it remains strict even in the limit — 7', thus showing|(T") — Id ||g= < €. This
implies thatl’ = 1 andy = (1) € Id +B.(0).

This shows that givep, we can decomposginto

gO = gOl 0...0 gON

andy® € Id+B.(0) for all k = 1,..., N. For eachy* we can apply Lem[21212) to
obtain

e < Ol

luo ¢ He

for some constant;. As N depends orp only viar, this completes the proof. O

Remark 3.6. With a bit more work one can show that for eacl 0, there exist constants
M and(C, such that the bounds

inf det Dp(t,z) > M and ||p(t) — Id |

zeRd

Hs<C

hold for diffeomorphisms, that are flows of vector fields withnorm less that; then it
is possible to apply Len. 2.2](2) directly.

The next theorem shows that-convergence off *-vector fields implies uniform con-
vergence of the flows, not i*(R%), but in D* (RY) with s’ < s. The proof is a general-
ization of the proof ini[Inc12, Prop. B.1].

Theorem 3.7.Lets > d/2 + 1 and letu" € L'(I, H*(R? R%)) be a sequence of vector
fields withD#-valued flowsp™. Assume that™ — w in L*(I, H®).
Then there exists a map: I x R? — RY, satisfyingp € C(I, D% (R%)) for all s’ with
d/2+1<s <s,
¢" — @in C(I,D*(RY)),

andy is theD* -valued flow ofu.

Proof. Let B#(0) be thes-ball in H*(R¢, RY). As s > d/2 + 1 we obtain via Lem._2]2 an
e > 0 and a constant’ = C(¢), such thaid +B:(0) C D*(R?) and the estimates

[uwow —wuoth||gs—r < Cllullgs|le — Y|l gs (3.4)
|uo ol g < Cllul| ga- (3.5)
luwoo|lgs < C|lullgs (3.6)

are valid for allu € H*® and allp, ¢ € 1d +BZ(0).
Step 1.Reduce problem téd +B2(0).
Using the decomposition method of Rém. 3.4 it is enough teetbe theorem for vector
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fieldsu with C|ju||;: < . Sinceu™ — u in L', we can also assume that|u”||,: < e
foralln € N.

As part of the proof of Len{_3l5 it was shown thatf satisfiesC||u"||,: < ¢, then
its flow ™ remains inld +B2(0). Thus we can restrict our attention to diffeomorphisms
lying in ane-ball aroundid.

Step 2.Convergence i *~1(R¢, RY).
We show thaty™(t) — Id),.cn are Cauchy sequenceshiff—*, uniformly int. Using [3.4)
and [3.5) we can estimate

le™(t) — ™ ()]

t
S/ |u™ o "™ —u™ o "
0

¢
SC/ |lu™ — u™|
0

Via Gronwall's inequality we get for som&,; > 0, independent of,

le™(#) =™ Ol o1 < 01/0 [u"(7) = w™(7)]

Thus there exists a continuous limit cury&) — Id € H*~1.
Step 3.Convergence i* (R, R?) with s — 1 < &' < s.
We apply the following interpolation inequality, see, e[tncl2, Lem. B.4]:

£l ezsosa-s < Coll fllzr= 11|

The inequality is valid fob < o < s, f € H*(R¢,R?) and a constant’,, independent of
f. Choose in the above inequality= s — 1 and0 < A < 1. Then

le" () — ™ (2)]
< Colle™(t) — @™ (1)l
< Colle™(t) — @™ (1)l
< Colle™(t) — @™ (1)l
Sincep™(t) — Id — o(t) — Id in H*~1, uniformly int, it follows that (" (t) — Id) ey iS
a Cauchy sequence f*' for s — 1 < s’ < s, uniformly int. As ©"(t) — Id converges to

©(t) — Id in H*~, it must also converge to the same limitiift'. By applying Lem[3.8
we see thap € D*'(R?) and that it is theD* -valued flow ofu. O

-1 <

g1+ Ju™ o " —u" o || gs-r AT

-1+ |Ju™|

Hs gOn — (pm’ Hs—1 dr.

Hs—1 dT . (3.7)

1-A
Hs

Hsf)\ S

1-X
Hs

we + [l™ () —1d |

Sl (t) — " )]
e (le" () — 1d |
e (26)1 7.

)1—)\

HS

4 Existence of the flow map

The main result of this section is the existence and corttiradithe flow map

Fl: LY(I,%*(R%) — C(I, D*(RY))
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for s > d/2 + 1, with I being a compact interval containing 0. This result will be th
crucial ingredient in proving that the grow@jy. g« ra), introduced in Sect.l8, coincides
with the connected component of the identity?f(R¢). We would like to make some
comments about this result.

Since the flowy of a vector fieldu is defined as the solution of the ODE

Orp(t) = u(t) o p(t) @.1)
v(0) =1d ’ .

the first attempt at showing the existencesofvould be to considef (4.1) as an ODE in
Ds(R?) — the latter being, up to translation Iy, an open subset of the Hilbert space
H*(R4, RY) — with the right hand side given by the vector field

U:IxD°— H*, Ult,p)=u(t)op. (4.2)

This runs into two sets of difficulties.

Firstly, the Picard—Lindelof theory of ODEs requires tight hand sidef (¢, «) of an
ODE to be (locally) Lipschitz continuous inand continuous in. Under these conditions
the theorem of Picard-Lindelof guarantees the local erist of integral curves. In our
case the right hand side is not continuous,irbut only L. The usual way to prove
existence of solutions in the framework of Picard—Lindertivolves the Banach fixed
point theorem, and the proof can be generalized without nalifficulty to ODESs, that
are not continuous in. It is enough to require thaf(¢, z) is Lipschitz inz and only
measurable in and that the Lipschitz constants are locally integrabde, there exists a
function(¢) with [ ¢(¢) d¢ < oo, such that

LF (1) = ft z2)]| <€) |21 — 2]

is valid for all x1, 2, and fort almost everywhere. This class of differential equations is
called ordinary differential equations Garathreodory typeWe have summarized the key
facts about ODEs of Carathéodory type in App. A.

Secondly, the vector fiel@ from (4.2) is also not Lipschitz ip. The composition
map H* x D* — H*® is continuous, but not Lipschitz continuous. In finite dirsiems
the theorem of Peano shows that vector figlffs x) that are continuous ihandz, have
flows, but the flows might fail to be unique. In infinite dimemrss this is not the case
anymore; an example of a continuous vector field without a lawbe found in [Dei77,
Example 2.1].

For a continuous vector field, i.e.,u € C(I, H*), the existence of ®°-valued flow
has been shown in [FM72] and using different methods als8Bv¥] and [Inc1?]. We
will briefly review the proofs to choose the one, that mosilgageneralizes to vector
fieldsu € L'(1, H®).
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If we only requires > d/2 + 2, then the proof is much shorter than the more general
cases > d/2 + 1 and can be found already in [EM70]. First one considers thagon
(4.1) as an ODE o®*~!(R%). Due to the properties of the composition map, the vector
fieldU : I x D*~' — H*"1is aC'-vector field and hence hasx—!-valued flowyp. This
is worked out in detail in Lenm._412. To show thate D?*, one considers the differential
equation forDp(t),

O (Dp(t) = Idaxa) = (Du(t) o (1)) . (Dp(t) = Idaxa) + Du(t) o ¢(t).

This is a linear differential equation oH*~!, thus showingDy — Id;q € H* ! and
¢ € D#. The details of this argument can be found in Lem| 4.1.

Improving the hypothesis onto s > d/2 + 1 requires a bit of work. For vector fields
u € C(I, H?®) that are continuous in time and not just this result has been proven by
three different methods.

1. The approach used in [FM72] was to derive an equatiopfd(t) instead ofp(t).
Write o= 1(¢) = Id +f(¢) with f(t) € H®. Thend,p~*(t) = —Dy(t).u(t) and sof (t)
satisfies the equation

Oif(t) = =Df(t)u(t) — u(t). (4.3)

This is a linear, symmetric, hyperbolic system and the thdeveloped in[FM72] can be
applied to show that, givem € C(I, H*®), the system[(4]3) has a solutigi¢) € H*® and
hencep~1(t) € D*(R%). To extend this method to vector fields that are ahlyin ¢, one
would need a theory of linear, hyperbolic systems with norath (int) coefficients.

2. The method of [BB74] considers not only the grodp¥R?) which are based on
the spaceg/*, but the more general family/’*? and the corresponding diffeomorphism
groups, which we shall denote By*(R?). One proves that vector fieldsc C (I, W*?)
with s > d/p+ 1 haveD*?-valued flows. The proof considers oy N and proceeds by
induction ons. The induction step uses the fact that givesatisfyings > d/p+ 1 we can
find p" > p such thats — 1 > d/p’ + 1 and hence we can apply the induction hypothesis
to the pair(s — 1,p’). Extending this method te € R and vector fields € L' (1, W*?)
would require us to study properties of the composition nafhe space®*»?(R<) — this
has not yet been done ferc R \ N.

3. The idea of|[Inc12, App. B] is to approximate a vector field= C(I, H®) by a
sequence of vector fields i **! and then to show that the corresponding flows converge
as well. This method is ideally suited to be generalised foomtinuous vector fields to
L' vector fields and it will be the path we choose to follow here.

To prepare the proof of the main theorem, Thm] 4.4, we wildsame lemmas. The
first lemma — which can be traced backto [EM70, Lem. 3.3] — shthat the flow of a
vector field is as regular as the vector field itself.
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Lemma 4.1. Letd/2 +1 < s’ < sandu € L'(I, H*(R?,RY)). Assume: has a flow in
D*(R?). Then in factp € C(I, D*(R%)).

Proof. We will first prove the case’ < s < s’ + 1. Thisis equivalentte — 1 < s’ < s.
Our aim is to show thab(t) —Id,y4 is a continuous curve il 1 (R¢, R?*4), implying
thaty(t) —Id is a continuous curve i ¢ (R?¢, RY). Note that the derivativ®(t) satisfies
the following ODE inH*' !, t-a.e.,

Oy (Dp(t) — Idaxa) = (Du(t) 0 o(t)). (Dep(t) — Idaxa) + Du(t) o o(t) . (4.4)
Consider the following linear, inhomogeneous, matrixJeal differential equation
O, A(t) = (Du(t) o p(1)).A(t) + Du(t) 0 (1), (4.5)

on H* (R4 R¥*%), Since H*~! is a Banach algebra, we can interpfet(t) o ¢(t) as
an element of (H*71), i.e., a linear map front/*~! to itself, and there exists a constant
C' > 0, such that

[Du(t) o p(t)|| i1y < Cl|[Duft) o p(t)]

Hs—1.

Lemma 3.2 shows thddu(t) o o(t) is Bochner integrable ifi/* and thus inf/*~!. This
allows us to apply the existence theorem for linear Camathgy equations, Thn._Al.3,
giving us a solutiom € C(I, H*~') of (@.38). SinceDy — Id 4,4 satisfies[(4J4) ind*'~*
and A(t) satisfies[(415) ini/*~!, it follows that they are equal)(t) — Idgxg = A(t),
thus showing thaDo(t) — Idg.g € H* L.

In the general case we have+ k£ < s < s + k + 1 with £ € N. The argument
above proved the lemma fér= 0. If £ > 1, we apply the above argument with the pair
(s',s' + 1) in the place of(s, s). This shows thap(t) € D*+'. Then we can apply the
argument with(s’ + 1, s’ + 2) to obtainy(t) € D*+2 and so one shows inductively

o(t) €D¥ = p(t) €D = - = p(t) € DITF = p(t) € D0

In the last step we use the argument with the p&ir+ &, s) to conclude thatp(t) €
De. 0

As stated in the introduction to this section, we will firsbshthe existence of flows
for H* vector fields, whes > d/2 + 2. This involves applying the existence theorem for
Carathéodory differential equations to the equation)(4.1

Lemma 4.2. Lets > d/2 +2 andu € L'([0,1], H*(R? R?)). Thenu has a flow in
D3 (RY).
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Proof. Define fore > 0 the open ball

B:7H(0) = {f € H*' (R RY) : ||f]

Hs—1 < 5} .

Sinces — 1 > d/2 + 1, we obtain by Lem. 2]2 an > 0 and a constant’ = C'(¢), such
thatld +B:~1(0) C D*~*(R?) and the estimates

o1 < Cllul
gee1 < Cllul

[0 @1 — w0 sl P1— 2

luo ¢

Hs Hs—1

Hs—1

are valid for allu € H* and allp, @1, o € Id +B:71(0).
Using the decomposition method in Rém. 3.4 it is enough tavghe existence of the
flow whenC'||u|| ;1 < . Under this assumption, define the vector field

U:1xB0) — HHRYRY), Ult, f) = u(t) o (Id+f),

whereu(t) is given. The mappind@/ has the Carathéodory property, Def.JA.1, because
composition is continuous i®*~1(RY) and H*~! is separable. The functions(¢) and
¢(t) required in Thm[_A.R are given by.(t) = C'||u(t)||zs— andl(t) = C ||u(t)]
Then by Thm[ZA.2 we have a solutigne C([0, 1], D*~*(R?)) of the equation

HS.

o(t) =1d+ /Ot u(T) o (1) dr.

Thusy is the D*~1(R¢)-valued flow ofu and Lem[Z41l shows that in fagtis D*(R)-
valued. O

The next lemma shows how to approximate vector field& iiR¢) by a sequence of
vector fields inf/**+!(R?), whilst preserving integrability in time.

Lemma4.3.Lets > 0andf € L'(I, H*(R?)). For k > 0, definex(¢) = 1<k (£) and
let xx(D) be the corresponding Fourier multiplier. Then

xx(D)f € L'(I,H*""(RY)) ,
andy,(D)f — ffork — ooin L*(I, H*(RY)).

Proof. We have for alk € I,

k(D) ()]

21y = /K LR TR 6 < (04 RSO

and thusy,(D)f € L' (I, H*™(R?)); in fact we havex, (D) f(t) € H*, but this will not
be needed here.
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To show convergence we note that

k(D) f () = f(1)]

(R :/m k(1+\£\2)s|f(t)(£>|2d£§ 1f ()17 ey -
>

By the theorem of dominated convergence we obtain first

[ asigeriimeras o,

1€1>k

forallt € I and thusy,(D)f(t) — f(t) in H*(R%), and by applying it again

1
i [\e(D)f = o = [ i (DA = £l de =0
—00 o k—oo
showing thaty,(D)f — fin L. O

We are now ready to prove the main theorem.

Theorem 4.4.Lets > d/2+ 1 andu € L'(I, H*(R? R?)). Thenu has aD*(R?)-valued
flow and the map

Fl: L'(I, H*(RY, RY)) — C(I,D*(RY)), um ¢
is continuous.

Proof. Givenu € L'(I, H®), it follows from Lem.[4.B that there exists a sequentec
LY(I, H**1) converging tau,

u™ — win LI, H*(RY, RY)) .

According to Lem[42, each” has aD?(R%)-valued flow; in fact they hav@®**!(R%)-
valued flows. Asi™ — win L', it was shown in Thni_3]7 thatitself has &> (R¢)-valued
flow ¢ for eachs’ with d/2 + 1 < s’ < s and thatp™ — ¢ in C(I, D*(R?)). Finally we
use the regularity result from Lein.#.1 to conclude that thwe b of u is D*(R¢)-valued.

To prove the continuity of the flow map, consider a sequericeonverging tou in
L'(I, H*) and denote by," and ¢ the D*-valued flows ofu™ andu respectively. The
H#-norm ||u|| g+ is equivalent to the normiul|zz + ||Dul|gs—1 and sincep™(t) — ¢(t)
uniformly in D*~1(R%), we only need to show thdby™(t) — De(t) — 0 uniformly in
Hs='. We will do this by applying Gronwall’s lemma to

t

Dy (t) — Dop(t) = /0 (Du”(7) 0 ¢"(7)) D" (1) — (Du(7) 0 (7)) .Dep(7) d7 .
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Taking norms we obtain

IDe"(t) — Dolt)
< [ 1w @ 00 (D7) = Dot

H(Du"(r) 0. (7) — Dus(r) o p(r)) D)

< [ 1D o " Py 106 (7) — D)

+ |Du”(7) 0 ¢™(7) — Du(t) 0 o(7)|| fe-1 -
(14 C[De(1) — Idixdl

t Hs—1 S
|

Hs—1 +

Hs—1 dT

Hs—1 +

ge-1) dT

and the constart' arises from the boundedness of pointwise multiplication.

Chooses’ with s — 1 < ' < sands’ > d/2 + 1. As ¢(I) C D¥(R?) is compact
ande™(t) — o(t) uniformly in D% (R%), it follows that the se{"(t) : t € I,n € N}
satisfies the assumptions of Ldm.]2.P (2)., idet,Dy" (¢, x) is bounded from below and
|l¢™(t) —1d || 5+ is bounded from above. Thus

[Du"(7) 0 " (7)]

-1 < C1||Du(71)|

et < Col[u (7))

HS.

Also note that| Do (7) — Idgxq || -1 is bounded, since(7) is compact irD*(R?). Next
we estimate — omitting the argumentrom now on —

|Du" 0 " — Duo gl| s < [[(Du” = Du) 0 || yuos + | Duc " — Duo |

Hsfl
< Gofu” = ullps + ||[Duo ™ — Duo gl o
Hence
t
1D () = D(t)| s < 03/ [l . 1D — Dipll s dr +
0
1
+ Cyllu™ — ul| 1 (r ey + 05/ |Duo @™ — Duo @l ge dr.
0

In the last integral we note that since composition is a comtils map*~! x D* —
H*~!, the integrand converges pointwise to Qhas: co. Because

Hs—1 S 201 ||Du|

gromt < 201 |ul

[Duo " = Duo gl He

we can apply the theorem of dominated convergence to coathad

1
/ |Duo @™ — Duo |y dr — 0asn — oo.
0
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Thus we obtain via Gronwall’s inequality

D" () — Deo(t)]

1
S <C4Hun — uHLl(I,HS) —+ C5/ HDU e} gp” — Duo §0|
0

Hs—1 <

Hs—1 dT) :

(1 + Csllu” sy exp (W] e r,m)))

the required uniform convergence bfo" (t) — D(t) — 0in H5 L. O

5 Diffeomorphisms of a compact manifold

5.1 Sobolev spaces on domains

Let U c R? be a Lipschitz domain, i.e., a bounded open set with a Lipatiiundary.
For s € R we can define the Sobolev spaceldmas the set of restrictions of functions on
the whole space,

HY(U,R") = {g|vy : g€ HR"R")} ,

and a norm is given by

1/1

For each Lipschitz domaifi and eachs € R, there exists an extension operator — see
[Ryc99] —i.e., a bounded linear map

wewy = inf {||gllgs@ey : 9l = [} -

Ey : H(U,R") — H*(R%,R").

5.2 Sobolev spaces on compact manifolds
Throughout this section, we make the following assumption:

M is ad-dimensional compact manifold ard ann-dimensional manifold,
both without boundary.

Fors > 0 a functionf : M — R belongs toH* (M), if around each point there exists
acharty : Y — U C R?, such thatf o x~! € H*(U,R). Similarly the spaceé*(M) of
vector fields consists of sections: M — T'M, such that around each point there exists
achart withT'y ou o x~' € H*(U,R?).

To define the spaced° (M, N) we requires > d/2. A continuous mag : M — N
belongs tofi*(M, N), if for each pointz € M, there exists a chaft : &/ — U C R? of
M aroundr and a charyy : V — V C R” of N aroundf(z), such thatjo fo x™! €
H*(U,R™). If N =R, thenH*(M) = H*(M,R) andX*(M) C H*(M,TM) consists of
thoseu € H(M,T M) with 7wy o u = Idyy.
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In order to define norms oA *(A/) andX*(M) and to introduce a differentiable struc-
ture onH*(M, N), we define, following/[IKT13], a special class of atlases.

Definition 5.3. A coverld; = (U;);c; of M by coordinate chartg; : U; — U; C R%is
called afine coverif

(C1) I is finite andU; are bounded Lipschitz domainsit.
(CZ) If U4; ﬁL{j 7é 0, thean o Xz_l S Cgo (Xz(uz N Uj),Rd).
(C3) IfU; nU; # 0, then the boundary of;(U; N ;) is a bounded Lipschitz domain.

The spaces#/*(M ) andX?®(M) are Hilbert spaces and a norm can be defined by choos-
ing a fine covet/; of M. On H*(M) the norm is

%{s,ul = Z HuoXi_l}

iel

2
o 2

Similarly for vector fieldsu € X°(M) we define

oy = D || Txiowo x|

el

2
[l Ho(Us R -
In the above formula we identify the coordinate expresgigiouoy; ! : U; — TU; with
a mapU; — R?, obtained by projecting’U; = U; x R? to the second component. The
norms depend on the chosen cover, but choosing another freewdl lead to equivalent
norms. We will write||u|| ;- for the norms on{*(M) andX*(M).

5.4 Diffeomorphism groups on compact manifolds

To define a differentiable structure éf* (M, N) we introduce the notion of adapted fine
covers. For details on these constructions and full pro&fsefer the reader to [IKT13,
Sect. 3].

Definition 5.5. A triple (U, Vy, f) consisting off € H*(M, N), a fine covett; of M
and a fine cover op; of | J,.,; Vi C N is called dfine cover with respect tf or adapted

to f,if f(U;) C Vi foralli € I.

Givenf € H*(M, N) one can show that there always exists a fine cover adapted to it
Let (U, Vy, f) be such a fine cover and define the suli¥et O°(U;, V;),

0° = {he m (N W) v},
as well as the map

=Yy v; :OS%@H%UZ'?RC[)? h— (mohoxi—l)

el

i€l ’
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wherey; : U; — U; andn; : V; — V; are the charts associatedi# andV; respec-
tively. Then:(O®) is a C*-submanifold ofd,_; H*(U;, R%). We define a topology on
H*(M, N) by letting the set®)*(U/;, V) form a basis of open sets and we use the maps
w, v, to define a differentiable structure makifdf (1/, V) into aC*°-Hilbert manifold.
This differentiable structure is compatible with the ongaduced in|[Eel66; Pal68] and
used in [EM70].

Fors > d/2 + 1 the diffeomorphism grouf®(M) can be defined by

D (M) = {p € H(M, M) : ¢ bijective,o™! € H*(M, M)}
= {p € H(M,M) : p € Diff' (M)},

with Diff* (M) denotingC*-diffeomorphisms of\/. The diffeomorphism group is an open
subset of/*(M, M) and a topological group.

It will later be convenient to work with fine cove(s(;, V,,1d) of M adapted to the
identity map with the additional constraint, that the cooate charts of/; and)’; are the
same, i.e.x; = n;|y,. Such covers can always be constructed by starting with adiner
V; of M and shrinking each s& slightly tol/;, so that the smaller sets still covief and
U; C V,. Then(U;, V;,1d) is an adapted cover.

5.6 Flows on compact manifolds

Given a vector field: € L'(1,X*(M)) with I a compact interval containing we call
amapy : I x M — M the pointwise flowof u, if ¢(0,z) = = and for each pair
(t,x) € I x M there exists a coordinate chart &/ — U aroundz, acharty : V — V
aroundp(t, ), such that withy = T o uon~t andy = n o ¢ o x ! the flow equation

w@wzwm@+[lmw@wmf

holds for(s, y) close to(¢, x(x)). For smooth vector fields this coincides with the usual
definition of a flow.

If additionally ¢ € C'(I,D*(M)), i.e.,p is a continuous curve with values (M),
then we callp the D*(M)-valued flowof u. In this case leti;, V;, ¢(t)) be a fine cover
adapted tap(t) with ¢ € I and setu;(t) = Tn; o u(t) o n; * andyp;(t) = n; o p(t) o x; .
Then .

eils) = i) + [ wlr)o () ar

holds fors close tot as an identity ind*(U;, R?).

5.7 Existence of flows

To deal with vector fields and flows ok, we need to pass to coordinate charts. The
following is a general technique, that will be useful thrbogt the section. Fix a fine
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cover(U;, V,,1d) of M with respect tdd with x; = 7;|,, and letu € L'(1,X*(M)) be
a vector field. We define its coordinate expression

v; =Tn;ouon; " andv; € L'(1,X°(V;)),
and extend these vector fields to all®f using the extension operatafy,,
w; = Ey,v; andw; € L'(1, X*(RY)).
Note that the norms

Jwll 2 (r s ary) ~ Z lojllr s vy ~ Z [Jw;ll 17,25 (may) (5.1)
JjeJ jedJ
are all equivalent. From Thri._4.4 we know, that the vectod$iel; have flows
¥; = Fl(w;) andy; € O(I, D*(RY)).

To glue them together to a flow of, the flows; must not be too far away from the
identity. To ensure this, we fix given in Lem[5.8 and assume from now onwards, that

|| r,x(an)) < €. Then Lem[5.B implies that; (U;) C V; and we define

o), = x; " o hi(t) o x; - (5.2)

It is shown in Lem[5.70, that(¢) is well-defined and thap(¢) € D*(M). It also follows
from (5.2) thatp(t)(U;) C V; and thusp(t) € O*(U;,V;) and

() = (D) ., € D H (U, RY).

jed

Obviouslyy is theD*-valued flow ofu. This leads us to the following result on existence
and continuity of the flow map.

Theorem 5.8.Lets > d/2 + 1 andu € L'(I,X*(M)). Thenu has aD?*-valued flowy
and for eacht € I the map

Fl, : Ll(I,%S(M)) — D*(M), u > o(t)
is continuous.

Proof. The above discussion shows the existence Df avalued flow for vector fields
u with ||lul|1 < e, with ¢ given by Lem[5.B. To show thatl; is continuous, let” —
win L'(I,%%(M)). Since the norms if(5.1) are equivalent, it follows thgt — w;
in L'(I,%*(R%)) and by Thm[[4} als@? — ; in C(I, D*(R?)). Thus we see that
1" (1) = 1(p(t) In €D, H*(U7,R?), which impliesp™(t) — ¢(t) in D3(M).

Using Rem[ 3.4 we can extend these results from vector fieWish ||u||;: < ¢ to all
vector fields. O
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Now we prove the two lemmas, that were used in the discussBii

Lemma5.9.Lets > d/2+1and(U;, V,,1d) be afine cover of/ with respect tdd with
X; = n;. Then there exists an> 0, such that ifi|u|| .17 xs(ar)) < €, theny;(t)(U;) € V;
forall j € J.

Proof. As (U,,V;,1d) is a fine cover, it follows that fot/; = x;(U;) andV; = x;(V;)
we havel; C V; and all sets are bounded. Thus there exists0, such that

U; + Bs(0) €V,

and B;(0) is thed-ball in R%. By Thm.[4.2 there exists, such that if|w;||;: < ¢, then
|; — Id |l < 6, i.e., forall(t,z) € I x R? we have|y(t, z) — z| < 4; in particular
this impliesy; (t)(U;) € U; + Bs(0) and thus); (t)(U;) C V;. Using [5.1) we can bound
|w;| £ via @ bound onju||.:. O

Lemma 5.10.Lets > d/2 + 1 and (U, V,,1d) be a fine cover o with respect tdd
with x; = 7]y, Withe as in Lem[5.9, take a vector fieldwith ||u||1(; xs(a)) < € and
definep(t) via (5.2). Theny(t) is well-defined angp(t) € D*(M) forall ¢t € I.

Proof. To show thaty(¢) is well-defined we need to show that wheneMen U/; # 0, we
have on the intersection the identity

n; o) omy =15 o nly(t) oy

Omitting the argument, we note that the identityn;, o u = v; o n; means that: is
n;i-related tov;, i.e.,u ~,, v;; hence o), (U; NU;) we have the relatiom; ~
implying for the flows the identity

771’&],

njon; toti(t) =1;(t)onjon ",

and thus showing the well-definednessof). From [5.2) we see that(t) € H* (M, M),
thaty(t) is invertible and thap—'(t) € H*(M, M) as well. Thusp(t) € D*(M). O

The following lemma is a generalization of Leim.]2.2 to maluio Its main use will
be when reformulated as a local equivalence of inner predocect[b.

Lemma 5.11.Lets > d/2 + 1 and0 < §' < s. Givenr > 0 there exists a constaut,
such that the inequality

e < Cllo

e s (5.3)

holds for all¢ € D*(M) that can be writted agp = FI;(u) with ||ul|,: < r and all
ve HY(M)orve X% (M).

[v ol
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Proof. Choose a fine covét/;, V;, 1d) of M with respect tdd with y; = ;. Lete > 0
be such that ifo = Fl(u) with ||u||1 < e theny € O%(U;, V;). Such are exists, because
O¢ is open inD*(M) andF1; is continuous. We will show the inequality (5.3) first for
r<e.

Giveny = F1;(u) with ||ul| ;1 < ¢, definep; = ;0 p on;t andu; = Ty, ouwon;
the extensions; = Ey,u,; and their flowsp; = Fl,(@;). Given f € H* (M), the norm
1 © @l g+ () is €Quivalent to

H (M) ™ Z [(fo @)Z|

el

If o ¢l

H' (U)

with (f o ¢); = fopomn; ' Settingf; = f o, sincep € O, we have the equality
(fo)i=fiopi=Eyf;o@ onU; and thus

ICF o @il ey < NEBvfi © il oy < CLllEV: fill e may < Coll fill s vy -

The constant’; arises from Lem[_315, since all; are generated by vector fields with
bounded norms. Far € X* (M) the proof proceeds in the same way.
Whenr > ¢, we use the decomposition in Rém.]3.4 to write

p=plop?o...op"

with ¢* € D*(M), wherep* = FIl;(u*) with ||u*||,1 < e. Since N, the number of
elements in the decomposition, depends onlyrpthe inequality [(5.8) can be shown
inductively forr of any size. O

To formulate the next lemma we need to introduce the geodksiance of a right-
invariant Riemannian metric aR* (/). Fixing an inner product of*(M ), we define

diSts((p, 1p) = inf {HuHLl([O,l},%S(M)) . ¢ = Fll(u) o QO} .

See Sect.]6 where it is shown, thhtt® is indeed the geodesic distance associated to a
Riemmnian metric and Se€l. 7, where it is shown, that the unfirts attained.

Lemma 5.12.Lets > d/2 + 1. Given a fine cove(lU;, W;,1d) of M with respect to
Id,, with y; = n;, there exists am > 0 and a constant’, such that forp € D*(M),
dist®(Id, ¢) < e impliesp € O%(U;, W;) and such that the inequality

ZH%—@M

el

Hs(U;) S Cdlsts(@, 'l/))

holds for all , ¢ € D*(M) inside the metric:-ball aroundId in D*(M); here p; =
n; o p om; ! denotes the coordinate expression.of
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Proof. Choose first an intermediate covér = (V;).cs, such that bott/;, V;, 1d) and
(Vr, Wy, 1d) are fine covers o/ w.r.t. Id and they all use the same coordinate chasts
This implies in particular the inclusiodg C V; andV; C W;. Lete > 0 be such that

dist’(Id, ) <3 = € O*U;, V) andp € OV, Wy).

Note that sincelist®(Id, ¢) = dist®*(Id, ¢ 1), the same holds fop~!.
Let o', ©? be inside the metrie-ball aroundld in D*(M). Then

dist® (!, p?) < dist®(p', Id) + dist®(Id, ¢?) < 2¢.

Let v be a vector field witil, (v) = ¢? o (o)~ and|jv]|;1 < 2¢. Denote its flow by
¥(t) = Fly(v). Then

dist®(Id, 1 (t)) < dist®(Id, ¢') + dist®(p", ¥ (t)) < 3¢,

and thus)(t) € O*(V;, Wy). Definev;(t) = Tn; ov(t) on; b andw;(t) = n; o (t) on; .
Thenv;(t) € X*(W;) and the following equality holds

1
(&0 (o)), (a) — = / it it 2)) At forz € V. (5.4)
0
Becausen!, (o)1, %o (p')~! € O(Vr, W) we have

(0?0 (¥)7), (2) = ¢io(pi)(x) forzeV, (5.5)

and sincep! € O%(Uy, Vr), equality [5.4) together with (5.5) implies

02 (x) — i () = /1 vi(t) o y(t) o o} (x)dt  forxz € U;. (5.6)
0

Note that the domain, where the equality holds, has shrumk #r; to U;. This is the
reason for introducing the intermediate coVer

Sincedist®(Id, ¢') < &, we can writep' = Fl, (u') for a vector fieldu! with [Ju'||,: <
e. Setyp(t) = Fl;(u'). Introduce the coordinate expressiaris= T7; o u' o n; !, extend
them toa; = Ey,u! and denote their flows by;(t) = F1,(1;). Sincedist®(Id, ¢(t)) < &,
it follows thatp(t) € O°(U;, Vr) and thusp;(t,x) = ¢;(t,x) for x € U;; in particular
pi = @i(1) onU;.

Similarly we define the extensian = Ey,v; and its fIOWzZi(t) = F1,(9;) and by the
same argument we obtaif) (¢, z) = v;(t, z) for all t andz € V;. The advantage is, that
¢;(1) andq;(t) are defined on all oR? and are elements d*(R%). Thus [5.6) can be
written as

P a) — M) = / 54() 0 Gilt) 0 (1) () At fora € Uy,
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and we can estimate

1
Hs(Uy) < /o

o7 — i

dt <
H#(R9)

B(t) 0 §i(t) 0 3:(1)|

1
< Cl/ |03 (t)] pra(rey A < Collvl|zro,1),25any) - (B.7)
0
The constant’; appears from invoking Leni. 3.5, since bath and+); are generated
by vector fields with bounded'-norms. Sincey was taken to be any vector field with
Fly(v) = ¢? o (p')~1, we can take the infimum overin (5.7) to obtain

o} — ©F| sy < Cadist®(¢', %),

from which the statement of the lemma easily follows. O

6 Riemannian metrics onD*(M)

6.1 Strong metrics

Let (M, g) beR? with the Euclidean metric or a closéddimensional Riemannian man-
ifold and s > d/2 + 1. On the diffeomorphism group®(M) we put a right-invariant
Sobolev metri¢=® of orders, defined at the identity by

<u,U>Hs:/Mg(u,Lv)du, (6.1)

for u,v € X*(M), whereL € OPS%;B is a positive, self-adjoint, elliptic operator of order
2s. By right-invariance the metric is given by

Go( Xy, Yy) = (Xpop Vo0 ) ps, (6.2)

for X, Y, € T,,D*(M). SinceD*(M) is a topological group, the metr&® is a continu-
ous Riemannian metric.
Whens = n is an integer and the operator is

L= (Id+A") orL = (Id+A)",

whereAu = (§du’ + déu’)* is the positive definite Hodge Laplacian or some other com-
bination of intrinsically defined differential operatorstivsmooth coefficient functions,
then one can show that the metéi¢ is in fact smooth orD" (M ). Since the inner prod-
ucts G™ generate the topology of the tangent spaces, this mgReg\/), G") into a
strong Riemannian manifold; see [EM70] and [MP10] for dstand [Lan99] for infinite-
dimensional Riemannian geometry for strong metrics.
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The existence of strong metrics is somewhat surprisingedimere is a result by Omori
[Omao78] stating that there exist no infinite-dimensionah&eh Lie groups acting effec-
tively, transitively and smoothly on a compacts manifdtt(M) acts effectively, tran-
sitively and smoothly on\/. While D*(M) is not a Lie group, but only a topological
group with a smooth right-multiplication, the definitian2 of the metric uses the inver-
sion, which is only a continuous operation. As it turns out can have a smooth, strong,
right-invariant Riemannian metric on a topological grotyat is not a Lie group.

Remark 6.2. Most results in this paper — in particular the existence amdinouity of flow
maps and estimates on the composition — depend only on tisotppof the Sobolev
spaces and are robust with respect to changes to equivalartproducts. The smooth-
ness of the metric does not fall into this category. Assyme, and(:, -), are two equiv-
alent inner products o#*(M) and denote byz' andG? the induced right-invariant Rie-
mannian metrics o®*(M). Then the smoothness 6f does not imply anything about
the smoothness @f?. To see this, factorize the map, X,Y) — G,(X,Y) into

TD? xXps TD® — X x X° — R
(0. X,)Y) = (Xop LYop ) (Xop L,Yop )"

Changing the inner product corresponds to changing the¢ pigit of the diagram. How-
ever the left part of the diagram is not smooth by itself, tlee map(p, X) — X o ¢!
is only continuous. The smoothness of the Riemannian mistticus a property of the
composition.

Open Question. What class of inner products d&( M) induces smooth right-invariant
Riemannian metrics of*()M)? Does this hold for alk > d/2 + 1, non-integer, and all
metrics of the form[(6]1)?

6.3 Geodesic distance

Given a right-invariant Sobolev metré®, the induced geodesic distance is

dist*(p, ) = inf {L(n) : n(0) = ¢, n(1) = ¢},

with the length functional

1
£ = [ /G (00, (o) .
0
and the infimum is taken over all piecewise smooth paths. Dugltt-invariance we have

L(n) = 18m o n~ | ro,1,2: 01 +
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whereX*(M) is equipped with the inner produ¢t -) 5s. Since piecewise smooth paths
are dense ir! one can also compute the distance via

dist*(, ¢) = inf {{Jull L1012y ¥ =Fli(u) 0w} .

It was shown in Thmd_4l4 arfld 5.8 that the flow-map is well-géefinTo define the
geodesic distance a continuous Riemannian metric is ®rifi@nd thus the following
results hold fors > d/2 + 1.

6.4 Uniform equivalence of inner products
Since the open geodesic ball arodddf radiusr coincides with the set
{Fll(u) sl prog,xs () < T} ={¢ : dist’(Id, p) < 1},

we can reformulate Lerh. 3.5 and Leém. 5.11 as follows.

Corollary 6.5. Lets > d/2 + 1 and0 < s’ < s. Givenr > 0 there exists a constaxit,
such that the inequality

[v ol e < Clloll g,
holds for allp € D*(M) with dist®*(Id, ) < r and allv € H* (M) or v € X% (M).
Sincedist®(Id, ) = dist*(Id, ¢ '), we have for some constafiton every geodesic

ball the inequalities
C7Jl

s < Cllv|

e < flvo ™|

Hs
stating that the inner products induced®y(-, -) is equivalent to the inner produgt -)
on every geodesic ball with a constant that depends only@reitlius of the ball.

This result enables us to prove thatBf the X*(R%)-norm is Lipschitz with respect
to the geodesic distance on any bounded metric ball. We galthis lemma to show that
the geodesic distance is a complete metric.

Lemma 6.6. Lets > d/2 + 1. Givenr > 0, there exists a constarf, such that the
inequality

1 — @allgs < Cdist® (1, 2),
holds for allpy, s € D*(R?) with dist®(Id, ;) < .

Proof. We have
dist® (1, o) < dist®(py, Id) + dist®(Id, ) < 2.

Let v be a vector field withp, = Fl;(u) o ¢ and ||ul]|;1 < 2r. Denote its flow by
¥(t) = Fly(u). Then

dist®(Id, v (t)) < dist®(Id, ¢1) + dist®(¢1, 9 (t)) < 3r,
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and thus using Car. 8.5 there exists a constgrdllowing us to estimate

1 — 2| e dt .

1 1
wo < [ e vwenlud<c [ )
0 0
By taking the infimum over all vector fields we obtain the résul O

On an arbitrary compact manifolt! we can show only a local version of Lem. 6.6,
which we did in Lem[5.12. This local version will however beoegh to show metric
completeness.

7 Completeness of diffeomorphism groups

In this section we will combine the results on flows bf-vector fields and estimates
on the geodesic distance, to show tft /) with a Sobolev-metricz® of orders is a
complete Riemannian manifold in all the senses of the tmeafeHopf-Rinow.

The completeness results are valid for the class of metatisfging the following
hypothesis:

Let M beR? or a closed manifold and let, -) ;- be an inner
product onX*( M), such that the induced right-invariant metric

Gscp(Xspr) = <X¢O¢_17Y¢OS@_1>H5 s (H)

onD* (M) is smooth, thus making>* (M), G®) into a strong Rie-
mannian manifold.

As discussed in Sedtl 6, this hypothesis is satisfied foige lelass of Sobolev metrics
of integer order.

First we show the existence of minimizing geodesics betwagntwo diffeomor-
phisms in the same connected component. This extends Thnm PAP10], where exis-
tence of minimizing geodesics was shown only for an open andel subset.

This existence result is shown using the direct method otHieulus of variations.
Namely, the variational problem we consider consists ofnii@mization of an energy
which is, under a change of variables, a weakly lower semtitaous functional on a
weakly closed constraint set. The change of variables iglgigiven by the vector field
associated with the path and in the next lemma, we also phatghe constraint set is
weakly closed.

Lemma 7.1. Letvy, ¢, € D*(M) be two diffeomorphisms and define
Qo' = {p : (0) =20, } € H'([0,1], D*(M))

as well as
QwoﬂmHl = {30 : 30(0) = wO? 90(1) = wl} - Qonl
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which are submanifolds of the manifold' ([0, 1], D*(M)) of H'-curves with values in
Ds(M). The map

©: QuH" — L*([0,1], X°(M)), ¢+ (t = Op(t) op(t)™)

is @ homeomorphism for the strong topologies and thecsét,, ,, H') is closed with
respect to the weak topology @A([0, 1], X*(M)).

Proof. The definition of© is a direct consequence of Lem.]2.2. The invers® of given
by the flow with initial conditiony(0) = g, © ! (u) = (¢t — Fl;(u) 0 1)). The flow
belongs tof ([0, 1], D*(M)) by Thm.[4.4 forM = R? and by Thm[5.8 for\/ a closed
manifold.

We now prove the second part of the lemma in the ddse R<. Consider a sequence
u™ € L*([0,1], H*(R4, R?)), converging weakly ta.. Denote byy" andy the respective
flows. We will show thaty" (¢, ) — (¢, x) pointwise inz and uniformly int. Because
s > d/2 + 1, we have the continuous embeddiHg(R?, R?) — C}(R?, R?), whereC}
denotes the space 6f'-functions with bounded derivatives, and we &t> 0 be such
that||ul[c; < Cl|u||#- holds for allu € H*.

Take(t,z) € [0,1] x R% Then

|90n(t7 l’) - @(ta l’)| < /0 un(Ta @"(T’ l’)) - U(T’ 90(7_’ 1’)) dr

/ u™ (1, o(r,x)) —u(r, (1, z)dr| .
" (7.1)

< / [u(r, "(r, 2)) — (7, (7, )| dr +

For the first term we have

/0 [u"(r, "(r, 7)) — (7, (7, )| ds < / [ () lles " (r, ) — ol 2)] dr

<[ ()

The second term can be written|&s; ., u" — u)|, where

i) = [ oot dr,

which is a linear mapn,, : L*([0,1], H*) — R?. Fix € R? and consider the functions

we " (7, 2) — (7, 2)| dr .

m™:[0,1] = Rt (my ., u™)

They converge pointwisei"(t) = (my ., u") — (m..,u) = m(t) for eacht € [0, 1].
Because:” — u weakly, the sequence:™),.cn is bounded inZ?([0, 1], H*) and hence
the following estimates show that the sequefieg),.cy is equicontinuous:

t
/ & p(r2)) dr| < CVIE = e e o e -

‘(mt,:r — My g, Un>‘ <
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By Arzela-Ascoli it follows, that(m; ., u") — (mq ., u) uniformly in¢.
Going back to[(7[1), we defin&(t) = |¢"(t, z) — ¢(t, x)| and we have the estimate

A(t) S/O Cllu™ ()| as A(T) A7 + [(my 0, u™ — )] -

Gronwall’s inequality then leads to

0" (t, ) = p(t, )| < (e, u™ —w)| +

e / (s " — )] (7|

# exp (Cllu"|| 1o, )) A7

The uniform convergence @, ., u" —u) — 0 shows that™ (¢, z) — ¢(t, x) pointwise
in z and uniformly int.

Now consider a sequence of pathsihe Q,, ,, H' such that.” = ©(") converges
weakly tou = O(y). We have to show thap(1) = ;. We haveyp™(1) = ¢, for all
n € N and using the pointwise convergence of the flow establishede alsop(1, z) =
limy, o0 " (1, 2) = lim, 00 ¥1 () = 11 (). This concludes the proof fav/ = R<.

When )M is a compact manifold the result follows by reductiorRand the use of a
fine cover. 0

Theorem 7.2.Let(D*(M), G*) satisfy hypothesi@). Then any two elementsDf(M ),
can be joined by a minimizing geodesic.

Proof. Let g, ¢y € D*(M), be two diffeomorphisms. Our aim is to minimize

E(p) = / Gty (Bup (), Duplt)) . (7.2)

onQy, 4, H'. We have,

= [1ew

2
1= dt = 10(@) 210,17, x) -

Consider a minimizing sequengé € Q,, ,, H', thusO (") € L*(]0, 1], X*) is bounded
and after extraction of a subsequence, we can assum@®thé) weakly converges to
O(p*). Lemma 7l ensures that € Qy, ,, H'. Because the norm ob?([0, 1], X*) is
sequentially weakly lower semi-continuous, we h&ye*) < liminf (¢, ). Thusy* is
a minimizer of€.

To show regularity of minimizers, we considgigiven by [7.2) as a functional on the
spaceH* ([0, 1], D*(M)). This functional is differentiable and the derivative isaji by

1
DE(p).h = / G (Dp(1), Viroh (1)) dt.
0
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with V denoting the covariant derivative of the metfidKli95, Thm. 2.3.20]. The mini-
mizer p* constructed above is thus a critical pointfBy standard bootstrap methods it
follows that critical points are smooth in time and thus $siols of the geodesic equation,
e.g., it is shown in[[KIi95, Lem. 2.4.3] that critical point$ £, restricted to paths with
fixed endpoints, are geodesics on the underlying mantfold.

]

Remark 7.3. Let M and (D*(M), G*) satisfy the assumptions of Thin. I7.2. The same
proof can be used to show the existence of minimizing geodder subgroups of the
diffeomorphism group: the group;, (M) of diffeomorphisms preserving a volume foym

or the grouD? (M) of diffeomorphisms preserving a symplectic foxmin fact the proof
can be generalized to any closed, connected subgtainat is also a Hilbert submanifold
of D*(M) sinceTi4C is a closed Hilbert subspace ®f. ThenL?([0, 1], T14C) is a closed
subspace of.?([0, 1], X*) and thus weakly closed. Therefore, the limit found in theopro
will satisfy the boundary conditions and will also belond’to

Next we show that the the group of diffeomorphisms with thetuited geodesic dis-
tance is a complete metric space. There is a related restitduywé — see [YoulO, Thm.
8.15] — which shows metric completeness for the groups édaliforphismsj;,, gener-
ated by an admissible space of vector fieldssee Sect.]8 for details. Since we obtain
D*(R%)o = Gys(ra ey in ThM.[8:3, this provides another proof of metric complet=nof
D3 (R%),.

Theorem 7.4.Let (D*(M), G*) satisfy hypothesiH). Then(D?*(M),, dist*) is a com-
plete metric space.

Proof. Case: M = R<. Consider first the cas@/ = R? Lete > 0 be such that
Id+B.(0) c D*(R?), whereB.(0) is thee-ball in H*(R¢,R%). By Cor.[6.5 there ex-
ists a constant’, such that the inequality

I — bl

holds on the metrie-ball aroundld in D*(R%).

Let (¢"),.en be a Cauchy sequence@r(R?),. We can assume without loss of gen-
erality thatdist®(¢", ¢™) < ¢/C holds for alln, m € N and since the distance is right-
invariant we can also assume thatt = Id. Then [7.B) shows, thafid —¢"), . is a
Cauchy sequence il *(R¢, R?). Denote the limit byld —*. From

e < Cdist® (¢, 1) (7.3)

[ Td =]

ms < Climsupdist® (o', ¢") < %6

n—o0

Hs = |l" — ¢

4In [KIi95] the space of pathsi/ ([0, 1], M), is constructed only for finite-dimensional manifoldi.
However the results, that are necessary for us, remain validthe same proofs, whei/ is a strong
Riemannian manifold modelled on a separable Hilbert spBice.important part is thdb, 1] is finite di-
mensional and compact.
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it follows that o* € D*(R?) and since the manifold topology coincides with the metric
topology, we also haveist®(¢", ¢*) — 0. ThusD*(R%), is complete.

Case: M a closed manifold.The proof for a compact manifold proceeds in essentially
the same way, the added complication is, that one has to warkoordinate chart around
the identity. Choose a fine cove@r,, V;, 1d) of M with respect tdd such that); = x|y,
There exists; > 0, such that ifdist®(Id, ¢) < e, thenp € O° = O*(U;,V;). For
h e O° C H°(M, M) we define

hi =10 ho 7];17 hl € Ds(UiaRd) :
and by Lem[5.12 there exists a constansuch that the inequality

i — i

isvalid for alli € I and allp, v € D*(M) in the geodesie, -ball aroundd. Furthermore,
sinceD*(M) is open inH*(M, M), there exists an, > 0, such that

ey < Cdist™(¢,¢) (7.4)

h € O° and|| Id —h;)|

sy <€z, Viel = heD(M). (7.5)

Given these preparations, let"),cn be a Cauchy sequence (M ),. We can as-
sume w.l.0.g. thatlist®(¢", ¢™) < min(ey, 3e2/C) for all n,m € N and because the
distance is right-invariant also that = Id. It then follows from [Z.4), that for all € I,
the sequence&o?),cn are Cauchy sequences i (U;, R%). Denote their limits byp:.
Wheneveis; N U; # (0, we have the compatibility conditions

n[logp;‘oni:nj_logp?onj onlU; NU; ,

and since convergence if*(U;, R?) implies pointwise convergence, the compatibility
conditions also hold for the limip}. Thus we can define a functiast on M via ¢*|,, =
n o on; andp™ — * in H5(M, M). We also have

2

I Td =]

Hs(U;) S CdlStS(Id, gOn) S %52,

and so usindg (715), we see after passing to the limitgfiat D*(M). As the manifold
topology onD#*(M ), coincides with the metric topology, it follows thdist® (™, *) — 0
and hencé?®(M), is a complete metric space. O

Remark 7.5. Let M and (D*(M), G*) satisfy the assumptions of Thin. I7.4. Consider a
closed, connected subgrodpmand denote bylist; the geodesic distance of the subman-
ifold (C,G*). Then(C, dist{) is a complete metric space as well. This follows from the
closedess af and the inequalitylist®(p, 1) < dist; (e, ¥) , which holds for allp, ¢ € C.
Similar to Rem[7.8 this applies in particular to the grodpg M) and D;, (M) of
diffeomorphisms preserving a given volume form or sympestiructure.
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We can now collect the various completeness propertiesafitbrphism groups en-
dowed with strong smooth Sobolev-type Riemannian metrics.

Corollary 7.6. Let(D*(M), G*) satisfy hypothesi@). Then
1. (D*(M), G?) is geodesically complete.
2. (D*(M),, dist®) is a complete metric space.
3. Any two elements @*(M ), can be joined by a minimizing geodesic.

Proof. Geodesic completeness follows from metric completeness{lsan99]. It is also
shown in [GBR15, Lem. 5.2], that every strong right-invatienetric on a manifold, that
is a topological group with a smooth right-multiplicatios geodesically complete.
Metric completeness is shown in Thim.]7.4 and the existeno@mifizing geodesics
in Thm.[Z.2. For the statements about subgroups see Refend B5. O

Following Rem[ 7.8 and Rem. 7.5 the methods of proof can atsagplied to the
subgroupsD; (M) and D; (M) of diffeomorphisms preserving a volume formor a
symplectic structure.

8 Applications to diffeomorphic image matching

8.1 The group generated by an admissible vector space

Let (H, (-, -)#) be a Hilbert space of vector fields, such that the norntois stronger
than the unifornC'-norm, i.e..H — C}(R¢, R?). We call such afi{ anadmissible vector
space This embedding implies that pointwise evaluations arginanusR?-valued forms
onH:forz € RY ev, : f € H — f(z) € Ris continuous andv(f) = (f(z),v)
is a linear form ori{; herev € R? and(-, -) denotes the Euclidean scalar productish
Such a space is calledeproducing kernel Hilbert spacend is completely defined by its
kernel. This kernel is defined as follows: denotiRig: H* — H the Riesz isomorphism
between#* (the dual of) and H, the reproducing kernel of{ evaluated at points
z,y € R? denoted byk(x, y) € L(R?, RY), is defined byk(z, y)v = ev, (K ev?).

Given a time-dependent vector fielde L' ([0, 1], H), it admits a flow, i.e., there exists
a curvep € C([0, 1], Diff} (R)) solving

Oip(t) = u(t) o p(t),  »(0)=1d, (8.1)

fort € [0, 1] almost everywhere.
We define the grou/y consisting of all flows that can be generated#yalued
vector fields,

Gu = {p(1) : ¢(t) is the solution of[(8]1) withu € L' ([0, 1], %)} .
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Theng,, C Diff! (RY) and one can show thét, is a group. We can define a distance on
QH via

dist™ (¢, ) = inf {/0 u(t)|lg dt : w € L'([0,1],H), ¥ = Fly(u) o w} . (8.2)

Then(Gy, dist™) is a complete metric space and the infimuninl(8.2) is alwalysred;
furthermore there always exist minima wifth(t)||;, constant int.. See[YoulO, Sect. 8]
for details and full proofs.

The spacé{, wherek is the Gaussian kernel

k(z,y) = exp <—‘x;§/‘2) Idgxq ,

or a sum of Gaussian kernels is widely used for diffeomorph&ge matching. For nu-
merical reasons, the kernel associated with Sobolev spgoesd less.

Note that from an analytic point of view the class of admilesitector spaces is rather
large. It contains finite-dimensional vector spaces as ag#ipaces on real-analytic vec-
tor fields; it makes no assumptions about the decay of thewéetds at infinity other
than that they are bounded; any closed subspace of an adimigsctor space is itself
admissible. Therefore there are limits as to how far a gérnleeary can be developed:
Gy does not need to have a differentiable structgsewith the topology induced by the
metricdist’* does not need to be a topological group; there is no knownaiatpology
on Gy, making it a topological group.

8.2 Equivalence of groups

The situation is more promising,H is a Sobolev space. In this case we can use Thih. 4.4
to characterize the group generated#ythe groupGys coincides with the connected
component of the identity of the group of Sobolev diffeontogms.

Theorem 8.3.Lets > d/2 + 1. Then
gHs(Rde) — DS(Rd)O .

Proof. Let U be a convex neighborhood aroufdlin D*(R?). Then every) € U can
be reached froniid via the smooth patty(¢) = (1 — ¢) Id +t¢. Sincey(t) is the flow of
the associated vector fieldt) = 9,p(t) o ¢(t)~* andu € C([0,1], H®), it follows that
¥ € Gys. ThusU C Gy and sinceGys is a group, the same holds also for the whole
connected component containifig This shows the inclusio®*(R%), C Gy,.

For the inclusionGys C D*(RY) we have to show that given a vector field €
LY(]0, 1], H*(R%, R%)) the flow defined by[(8]1) is a curve not only @iff’ (R?), but
also inD*(RY). This is the content of Thri. 4.4. O
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So whenH = H? is a Sobolev space, then the gradip: is a smooth Hilbert mani-
fold as well as a topological group. If additionally the righvariant metric induced by
the inner product ori/* is smooth, then the distance defined[in(8.2) coincides wiih t
geodesic distance. In particular paths of minimal lengéhsanooth in time.

Open Question. WhenH is a Sobolev space and the induced right-invariant metric is
smooth oriD*(RR?), the corresponding geodesic equation is called the EPBufagon. In
order to write the geodesic equation, one only needs theskkfn-) and it would be of
interest to study its solutions for those kernels, whereindeced groups don't carry a
smooth structure.

8.4 Karcher means of images

Diffeomorphic image matching solves the minimization peob [BMT+05]
1
I (p) = 5 dist*(Id, 0)* + S(T 007", ), (8.3)

wherel, J € F(R? R) are respectively the source image and the target image €fime t
S measures the similarity between the deformed imiage—! and.J. Its simplest form is
the L? distance between the two functions. Therefore, optimdigpate geodesics @y,.

At a formal level, the situation can be understood as follélie compositiony o ¢!

is a left action of the group of diffeomorphisngg, on the space of images. The strong
Riemannian structure on the group of diffeomorphigiigéR?) and its completeness en-
able the application of results showed using proximal dakon Riemannian manifolds
[AFO5].

Proposition 8.5. Let I € L'(R¢,R) be an image and); its orbit under the action of
Ds(RY). There exists a dense setc OF such thatif(/y,...,I,) € D, then there exists
a unique minimizer ir; of

> d(J 1), (8.4)
k=1
whered is the induced distance on the orld¥;, defined by

d(I,J)= inf ){distS(Id, Q)| Iop™t=J}.

peDs(RE
In other words, the Karcher mean of a set of image®irs unique.

Proof. Since the action ob*(R¢) on L*(R¢,R) is continuous, the isotropy subgroup of
I denotedD; is a closed subset @¢(R?). Since each imagg, lies in the orbitO;, there
existy, € D*(R?), such thatl, = I o ¢, '. Define

CzaploD[x...xapkoD[
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Clearly, the setC c D*(R%)" is closed and nonempty. Note that the product distance
dist®” on D*(R4)" derives from a smooth Riemannian metric with the properay #my

two points can be joined by a minimizing geodesic. Using [EJFDhm. 3.5], there exists

a dense subsé? C D*(R%)" such thatb € D*(R?) — dist>"(®, O) is differentiable at
the pointsd € D’ and there exists a unique minimizing geodesic betweamdC'. We
have

dist*™(®,C)? = inf )Zdists(gpk,gpl)l)zz inf )Zdists(cp;ﬂ?[,gpl)[)z
k=1 k=1

peD(RY peDs (R4

peDs (R

= inf )Zd([o o, 1o 1)?. (8.5)
k=1

Therefore, the image d’ by action on/ gives the subseb dense in07}. O

This is a weak generalization of Ekeland’s result [Eke78]generic uniqueness of
geodesics.

A Caratheodory Differential Equations

Let/ be anintervalX a Banach space afd C X anopensubsetof.If f: IxU — X
is continuous and satisfies the Lipschitz condition

(8 2) = Fty)llx < Lllz —yllx

forallt € [ andx,y € U, then the ODE

Op(t) = f(t,2(1))

{L'(to) =T,

with ¢, € I andz, € U has a unique solution on some small intefvgl ¢, ¢y + d]. This
result is a straight-forward generalisation from ODE®Rihand can be found in several
books. See, e.g. [Mar76] ar [Dei77].

To apply techniques from variational calculus it is conesnito work with vector
fieldsu € L2([0, 1], H) whereH is a Hilbert space of’}-vector fields oriR?. The flow
equation of these vector fields,

Orp(t) = u(t) o o),

leads to differential equations, whose right hand side iscoatinuous int any more,
but only measurable. Such ODEs are called differential #gpus of Caratheodory type
Since Carathéodory differential equations might be uiifanmto some readers, we will
state here the results, that are used in this article. Foiptihe exposition of [AW96] we
define:
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Definition A.1. Let I be a nonempty intervall a Banach space arld C X an open
subset. A mapping : I x U — X is said to have th€aratheodory propertyf it satisfies
the following two conditions:

1. Foreveryt € I the mappingf(¢,-) : U — X is continuous.

2. For everyz € U the mappingf(-,x) : I — X is strongly measurable (with
respect to the Boret-algebras), i.e.f(-, z) is measurable and the imagé/, x)
is separable.

We have the following basic existence result for Caratl@ptlype differential equa-
tions.

Theorem A.2. Given an intervall = [a,b] and a Banach spacd’, letU C X be an
open subsetand : I x U — X have the Caratbodory property. Given, € U lete be
such thatB.(xy) = {z : |z — x| < ¢} C U. Furthermore letn, ¢ : I — R, be locally
integrable functions such that the two estimates
[f (8 21) = f(E z2)lx < L(@) lzn — 22|x
I£(t,2)llx < m(t)

are valid for almost alk € [ and for allz, x1, 25 € B.(x). Finally leté > 0 be such that

a+d
/ m(t)dt < e. (A1)
Then the differential equation
Op(t) = f(t, 2(1))

has a unique solution : [a, a + 6] — B.(x() satisfying the initial condition\(a) = z,
ie.

t
A(t) = xo +/ f(r, \(r))dr
holds for allt € [a, a + ¢]. The function\ is absolutely continuous.

Proof. This is essentially. [AWS6, Thm. 2.4]. The conditidn_(A.1)taken from [Fil88,
Thm. 1.1.1] to ensure that the mapping

ﬂmw:%+/fmmmw

maps continuous functions: [a,a 4+ §) — B.(x,) to continuous functions with values
in B-(zo). The rest of the proof in [AW96] can be used without change. O

For linear equations it is enough that the right hand sidetegyrable. See [AW96, p.
55f].



40 REFERENCES

Theorem A.3. Given an intervall = [a, b], @ Banach spac& and an element, € X,
letA: 1 — L(X)andb: I — X be Bochner integrable functions, i.e. both functions are
strongly measurable and the real-valued functiAs- )|/ .(x) and||b(-) || x are integrable.
Then the differential equation

O (t) = A(t).x(t) + b(t)
has a unique solution : I — X satisfying the initial condition\(a) = .

The theory of Carathéodory type differential equations ba found in|[CL55] and
[Fil88] for dim X < oo and in [AW96], [Dei77] or [YoulD] for infinite-dimensional
spaces.
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