
HAL Id: hal-01330980
https://hal.inria.fr/hal-01330980

Submitted on 13 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Encoding Proofs in Dedukti: the case of Coq proofs
Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, Jiaxiang Liu

To cite this version:
Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, Jiaxiang Liu. Encoding Proofs in Dedukti: the case
of Coq proofs. Proceedings Hammers for Type Theories, Jul 2016, Coimbra, Portugal. �hal-01330980�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49370561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01330980
https://hal.archives-ouvertes.fr

Encoding Proofs in Dedukti: the case of Coq proofs
Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud and Jiaxiang Liu

1. Introduction
A main ambition of the Inria project Dedukti described at http://
dedukti.gforge.inria.fr/ is to serve as a common language
for representing and type checking proof objects originating from
other proof systems. Encoding these proof objects makes heavy
use of the rewriting capabilities of λΠMod, the formal system on
which Dedukti is based [4, 9]. So far, the proofs generated by two
automatic proof systems, Zenon and iProver, have been encoded,
and can therefore be read and checked by Dedukti. But Dedukti
goes far beyong this so-called hammering technique of sending
goals to automated provers. Proofs from HOL and Matita can be
encoded as well [1, 4]. Some Coq’s proofs can be encoded already,
when they do not use universe polymorphism [3]. Our ambition
here is therefore to close this remaining gap.

To this end , we describe in Section 3, a rewrite-based encoding
in λΠMod of the Calculus of Constructions with Universes CCU∞⊆ ,
a generalization of the calculus of constructions with an infinite hi-
erarchy of predicative universes above the impredicative universe
Prop. Together with inductive types, it forms the core of the Cal-
culus of Inductive Constructions as is implemented in the proof
system Coq. Encoding inductive types in the style of Blanqui [6] is
relatively simple [7]. The major difficulty when encoding CCU∞⊆
is indeed the treatment of universe cumulativity, which needs to be
rendered explicit. Existing encodings of universe cumulativity in
λΠMod have limitations:

• The encoding of [1] is purely equational, resulting in complex
proofs. Further, the universe hierarchy is encoded by a set of
function symbols indexed externally, which is therefore infinite,
yet another source of complexity in proofs.

• Although rewrite based, the more elaborated attemp in [3] is
confluent on ground terms only, hence restricting its use in
λΠMod to encode type systems wich do not include universe
polymorphism, like Matita.

Our encoding is based on a finite set of rewrite rules which is
confluent on terms with variables, the key to universe polymor-
phism. This encoding uses, in addition to β-rewrites, non-left-linear
first-order and higher-order rewrite rules. Further, some first-order
rewrite rules use pattern matching modulo associativity and com-
mutativity, and even identity, making confluence a main theoretical
difficulty. A second major contribution of this work is therefore the
development of a new technique for showing confluence of such
complex rewrite systems on untyped terms.

2. λΠMod
Terms. Let X , Σfo and Σho be pairwise disjont sets of variables,
first-order and higher-order symbols respectively, the latter two
equipped with a fixed arity. Let also Y and Σcd be subsets of X and
Σfo respectively, of elements we call confined. The set of (untyped)
terms is defined by the grammar rules:

M,N
def
= x∈X | λx : M.N |M N | Πx : M.N | f(M) | U

with f ∈ (Σfo \ Σcd) ∪ Σho

U
def
= y∈Y | g(U), with g ∈ Σcd

The set Σ = Σfo∪Σho is called the user’s signature. Confined
expressions are first-order. Type constructors * and 2 are symbols
from Σ, regardless of their specific role. We write f instead of f().
The head of a term is its outermost symbol. An abstraction λy :
U.M and a product Πy : M.V are headed by the binary symbols
λy :_._ and Πy :_._ respectively. Both these and application are the
functional symbols. We use = for the syntactic equality of terms.
Given a set or term A, we denote by |A| its size.

Terms built solely from the signature and variables are called
algebraic, whose subset of confined algebraic terms is generated
from the non-terminal U . Confinement of untyped terms should of
course follow from confinement of typed terms, hence be enforced,
for a given specification in λΠMod, by the typing rules.

Typing rules There are two forms of judgements, Γ ` M : A
meaning that the term M has type A in the context Γ, and Γ `
meaning that the context Γ is well-formed. nil is the empty context.

nil `

Γ ` A : ∗ x 6∈ Γ

Γ, x : A `
Γ ` (x : A) ∈ Γ

Γ ` x : A

f : Πx1 : A1. · · ·Πxn : An.B ∈ Σ

Γ `
Γ `M1 : A1

...

Γ `Mn : An{x1 7→ A1, . . . , xn−1 7→ An−1}
Γ ` f(M1, . . . ,Mn) : B{x1 7→ A1, . . . , xn 7→ An}

Γ, x : A `M : B B is not confined
Γ ` λx : A.M : Πx : A.B

Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B{x 7→ N}

Γ `M : A Γ ` B : ∗ A ≡ B
Γ `M : B

Note the specific form of the abstraction rule which does not allow
to abstract over confined expressions.

Rewrite rules available in λΠMod are described in detail later.

3. Encoding Coq’s universes in λΠMod
The signature. The encoding uses function symbols to represent
sorts, types and terms of CIC. The arity of a function symbols is
indicated in superscript position in the declaration of the type of
that symbol. Arity 0 is omitted. Knowledge of CCU∞⊆ is assumed
to understand the rules. Appropriate expositions are [1, 3, 16].

The specification has 3 type constructors, Sort,U and T. Other
declared symbols allow us to build objects and the dependent type
they inhabit.

Sort is the type for universes in our encoding, starting with the
impredicative universe Prop and continuing with the predicative

ones. For convenience, we simply call them 0, 1, . . ., so as to
be represented by a copy of the natural numbers generated by
three constructors, 0, 1 and +. This perhaps unusual encoding is
instrumental in obtaining a finite Church-Rosser system.

The symbols U and T represent, respectively, the type of codes
and the decoding function of universes [9], with u, ↑, ⇑ and π being
codes for the type U(0), for the types lifted respectively one and n
levels using cumulativity, and for Π-types.

Variables i, j are of type Sort, variable a has typeU(i) for some
i, while variable b has a more complex Π-type (see π’s type).

Sort : ∗
0, 1 : Sort
+2 : Πi : Sort .Πj : Sort . Sort
max2 : Πi : Sort .Πj : Sort . Sort
rule2 : Πi : Sort .Πj : Sort . Sort

U1 : Πi : Sort . ∗
T2 : Πi : Sort .Πa : U(i). ∗
u1 : Πi : Sort .U(0)
↑1 : Πi : Sort .U(+(i, 1))
⇑2 : Πi : Sort .Πj : Sort .Πa : U(i).U(max(i, j))
π4 : Πi : Sort .Πj : Sort .Πa : U(i).

Πb : (Πx : T(i, a).U(j)).U(rule(i, j))

The rewrite system. The constructor + is associative and com-
mutative, and has 0 as identity element. We will take the liberty
to use an infix notation for +, the abbreviation 2 for 1 + 1, and a
varyadic number of arguments to ease the readability of sums.

1 : max(i, i+ j) →
m1

i+ j

2 : max(i+ j, j) →
m2

i+ j

3 : rule(i, 0) →
m3

0

4 : rule(i, j + 1) →
r1

max(i, j + 1)

5 : ⇑(0, a) →
l1

a

6 : ⇑(i+ 1, a) →
l2

↑(i,⇑(i, a))

The rules for max, rule and ⇑ are self explanatory. The rule
function symbol is used to account for the impredicativity of Prop
encoded here as the universe 0: rule behaves as max when its
second argument is a predicative universe.

7 : π(i+ 1, i+ j+ 1, ↑(i, a), b) →
p1

π(i, i+ j+ 1, a, b)

8 : π(i+ j+ 2, j+ 1, ↑(i+ j+ 1, a), b) →
p2

↑(i+ j+ 1, π(i+ j+ 1, j+ 1, a, b))
9 : π(i+ j+ 2, j+ 2, a, ↑(j+ 1, b)) →

p3
π(i+ j+ 2, j+ 1, a, b)

10 : π(i, i+ j+ 1, a, ↑(i+ j, b)) →
p4

↑(i+ j, π(i, i+ j, a, b))

11 : π(i+ 1, 1, a, ↑(0, b)) →
p5

⇑(i+ 1, π(i+ 1, 0, a, b))

12 : π(0, 1, a, ↑(0, b)) →
p5

↑(0, π(0, 0, a, b))

13 : π(i+ 1, 0, ↑(i, a), b) →
p6

π(i, 0, a, b)

14 : T(i+ 1,u(i)) →
t1

U(i)

15 : T(i+ 1, ↑(i, a)) →
t2

T(i, a)

16 : T(i,⇑(i, a)) →
t3

T(0, a)

17 : T(0, π(i, 0, a, b)) →
t4

Πx : T (i, a).T (0, b)

18 : T(i+ j, π(i, i+ j, a, b)) →
t5

Πx : T (i, a).T (i+ j, b)

19 : T(i+ j+ 1, π(i+ j+ 1, j+ 1, a, b))→
t6

Πx : T (i+ j+ 1, a).T (j+ 1, b)

The rules for T are standard decoding rules [9]. The rules for π
are most delicate and are chosen to ensure that types have a unique
encoding, a property that is crucial for the preservation of typing
[1, 3]. Their design obtained by comparing (via +) the first two
arguments of π ensures that they have very few critical pairs (elim-
inating them all would require a richer language involving a com-
parison operator, which would raise other confluence problems).

A faithfull encoding. We denote the obtained signature and
rewrite system by ΣCIC and RCIC respectively.

There are functions [M]A and JAK that faithfully translate the
terms of CCU∞⊆ into the terms of λΠMod with signature ΣCIC :

THEOREM 3.1 (Preservation of typing). For any Γ, M , and A in
CCU∞⊆ , if Γ ` M : A then JΓK ` [M]A : JAK in λΠMod with
signature ΣCIC .

The reader might ask, rightfully, about the converse of the the-
orem above. Indeed, if we can prove J⊥K in λΠMod then the en-
coding would be useless. Preservation of inhabitation (also called
conservativity) will ensure that this is not the case.

CLAIM 3.1 (Preservation of inhabitation). For any Γ, M , and A
in CCU∞⊆ , if JΓK ` [M]A : JAK then Γ `M : A.

A Church-Rosser encoding. This set of rules and equations
RCIC has been obtained with the MAUDE system [8] –using
MAUDE has been instrumental in this quest–, by hiding the higher-
order aspects of some of the rules. Further, we also used MAUDE
to compute all critical overlaps (modulo associativity, commuta-
tivity and identity) of the set of rules. Because the β-rule is non-
terminating on untyped terms, we had to show that each critical
pair has a decreasing diagram in the sense of van Oostrom [17].
MAUDE does not support confluence proofs based on decreasing
diagrams, which forced us to do these computations by hand.

On the other hand, van Oostrom’s theorem is abstract, its ap-
plication to particular rewrite systems is non-trivial, and, indeed,
no result prior to ours could show the Church-Rosser property of
RCIC . This is so because some first-order rules use pattern match-
ing modulo commutativity, associativity, and identity, and higher-
order rules are non-left-linear. We had therefore to design our own
application of van Oostrom’s theorem in order to show the Church-
Rosser property of RCIC (augmented with the β-rule).

Let us explain how the confluence proof goes. First, we split
the signature into first-order and higher-order. The rules for Π
and T contain functional symbols, they are higher-order. Since
the other rules contain no functional symbols, nor Π,T, they can
be taken as being first-order. This defines the first-order signature
Σfo = {0, 1,+,max, rule, ↑,⇑}, and the higher-order one Σho =
{T, π,U}. The signature Σfo needs then to be confined : universe
calculations operate on first-order expressions and subexpressions.
These signatures split the set RCIC into two subsets, Rfo and Rho

of respectively first-order and higher-order rewrite rules.
For Rfo, following [11], we must first show termination of nor-

mal rewriting in ACI equivalence classes. Termination can indeed
be achieved easily by Rubio’s fully syntactic AC path ordering [15].
This order works much like Dershowitz’s recursive path ordering,
but has a specific status for AC operators that performs additional
monotonicity checks. All symbols can have a multiset status but
rule, whose status must be lexicographic while the precedence can
be rule > max > + > 1 > 0. Routine calculations show termina-
tion. There is actually a little difficulty here: termination is shown
by an AC-compatible ordering, and not an ACI-compatible order-
ing. This is however sufficient, since terms to be rewritten must be
in normal form wrt identity as a rule.

We must then check that the ACI-critical pairs between Rfo-
rules are joinable by rewriting. This is routine too, there is only a
trivial one between the two max rules.

We are left with our last task, showing that critical pairs in-
volving at least one higher-order rule have decreasing diagrams.
All these critical pairs have been be computed with MAUDE,
while their decreasing diagrams have been computed by hand,
since MAUDE cannot do that. These computations are summer-
ized in Figure 1. The first column lists the critical pairs as given
by MAUDE, the second column lists the real overlaps, the third the
joinability diagram for the corresponding critical pair, and the last
the constraints generated in order to obtain a decreasing diagram.
These constraint operate on the rules’ labels, which is indicated as
a subscript of the rewriting arrow.

THEOREM 3.2. The dependent type theory λΠMod equipped with
the encoding of the cumulative hierarchy of predicative universes
is Church-Rosser.

4. Computation rules in λΠMod and their
confluence

In all type theories, computation is based on rewrite rules.

DEFINITION 4.1. A rule is a triple i : l → r, whose possibly
omitted name i is a natural number and lefthand and righthand
side terms l, r satisfy Var(r)⊆Var(l). A variable is left linear in
i : l → r if it occurs exactly once in l, and regular if it occurs
in r whenever it occurs in l. A rewrite system is a set of rules. An
equational system E is a symmetric set of rules: i : r→ l ∈ E iff
i : l→r∈E. Its rules, called equations, are also written i : l = r.

Different rules may share the same index (so do the two rules of
an equation). All variables of an equation are regular by definition.
Rules and equations are algebraic when both sides are algebraic.
So are associativity and commutativity (AC).

Functional computations in λΠMod. λΠMod comes with two
rewriting schemas, α-conversion and β-reduction:

λy : U .M = λz : U .M{y 7→ z} if z 6∈ BVar(U,M) (α)
Πy : U . V = Πz : U . V {y 7→ z} if z 6∈ BVar(U, V) (α)
(λy : U .M)N →M{y 7→ N} (β)

Since substitution is not part of our language, (α) and (β) are
equation/rule schemas. Further, substituting N to each occurrence
of y in M involves renaming the bound variables of M away
from those of N in order to avoid captures: (β) rewrites modulo
α, which is therefore the set of equations attached to functional
computations.

Two major properties are that −→βα is Church-Rosser modulo
α and commutes over =α, as well as over any equational theory
generated by a set of algebraic equations whose non-linear vari-
ables are confined.

First-order computations in λΠMod. We assume for simplicity
that all first-order terms are confined, which is the case of our
example. We are therefore given two sets of algebraic rules Rfo

and equations Efo built from the signature Σfo. Rewriting with Rfo

is therefore modulo Efo.

Major assumption 1: Rfo is terminating in Efo-equivalence
classes and Church-Rosser modulo Efo.

Testing for the Church-Rosser property will classically require
another assumption:

Major assumption 2: Efo-unification is finite and complete.

Higher-order computations in λΠMod. We assume now given a
set of higher-order rulesRho. Rules that contain functional symbols
on either side must be in Rho, as well as all algebraic rules having
non-confined variables that occur in the lefthand side only.

Higher-order computations result from two kinds of rules, de-
pending on the structure of their lefthand sides, either higher-order
patterns in Miller’s sense [13], or algebraic expressions as in recur-
sor rules [5] or in non-regular algebraic rules. Patterns require using
(some form of) higher-order pattern matching while first-order pat-
tern matching suffices for algebraic lefthand sides.

DEFINITION 4.2 (Patterns [13]). A (higher-order) pattern is a
term L in β-normal form, headed by a symbol in Σho, such that
every free variable X occurs in a subterm (. . . (X x1) . . . xn),
n ≥ 0, written (X y) when y is a vector of n 6= 0 distinct vari-
ables bound above in L, and X otherwise, in which case X is
first-order.

For example, the term diff(λx. sin(F x)) is a pattern. The term
rec(S(x), X,X ′), lefthand side of one of the two classical recursor
rules over natural numbers, is a pattern as well. More generally,
algebraic terms are patterns whose variables are not applied, hence
are first-order (despite possibly having a higher-order type like
X,X ′ above –our vocabulary here is non-standard).

The main property of a pattern is that it generates by instanti-
ation very specific β-redexes and reducts, at predictable positions,
which can be beta-reduced. Consider the subterm (X y) at posi-
tion q in a pattern L, and a substitution σ = {X 7→ λz.u}. Then,
(Lσ)|q −→−→β u{z 7→ y}. So, the instance of a pattern by such a
substitution beta-reduces to a term obtained by replacing the sub-
terms of the form (X y) by terms of the form u{z 7→ y} where
u is a term which does not contain any free occurrence of vari-
ables in y. This particular case of beta-rewriting restricted to the
case where the argument N is a variable is called beta0-rewriting
by Miller who introduced it [13]. Beta0-rewrites have a property
which is crucial in our setting: since they decrease the size of terms,
whether typed or not, beta0-rewrites terminate on all terms. We de-
note by u↓β0 the beta0-normal form of a term u.

We need names for the positions of variables in a pattern [10]:

DEFINITION 4.3. The fringe FL of a higher-order pattern L is
the union of three pairwise disjoint sets of positions: (i) its func-
tional fringe F funL = {p ∈ FPos(L) : L|p = (X y), X ∈
Var(L), |y| > 0}; (ii) its confined fringe F cdL = {p ∈ Pos(L) :
L|p is confined}; and (iii) its variable fringe F varL , set of positions
of its non-confined first-order variables.

Note that algebraic patterns have an empty functional fringe,
and that the fringe of a linear algebraic pattern is the set of positions
of its variables, in which case (≥P FL) = (≥P VPos(L)).

Major assumption 3: Lefthand sides of rules in Rho are
patterns whose non-linear variables are confined.

Miller showed that higher-order pattern matching and unifica-
tion of patterns is decidable [13] (in linear time).

An important remark here is that higher-orderEfo-unification of
two patterns is modular, that is, it reduces to higher-order unifica-
tion of patterns on the one hand, and Efo-unification of confined
terms on the other hand. The reason is that confined variables can
only be equated to confined terms, otherwise unification fails. This
is yet another, very practical, implication of our notion of confined
variable.

Nipkow’s definition of higher-order rewriting based on higher-
order pattern matching was elaborated for terminating computa-
tions [14]. It requires in particular that terms to be rewritten are in
beta-normal form, and beta-normalizes the result to preserve that
property. Our definition for non-terminating computations operates
instead on terms in beta0-normal form. It also allows to control how
higher-order pattern matching operates on higher-order patterns by
using beta0-rewriting instead of beta0-conversion, and allows con-
fined equalities to operate below the confined variables:

DEFINITION 4.4. A term u rewrites with a higher-order rule i :

L→R ∈ Rho at position p ∈ Pos(u), written u−p−→
i
v, if

(i) u|p is in beta0-normal form,

(ii) Lγ
≥PF

fun
L

−−−−→−→
β0

w
≥PF

cd
L

←−←−−−−→−→
Efo

u|p, and

(iii) v = u[Rγ↓β0]p.

Note that our definition coincides with plain rewriting when L
is a linear, algebraic pattern. It will therefore allow us to treat all
rules in Rho uniformly, including the recursor rules if any.

The confluence proof is based on a carefull analysis of the
rewriting peaks, in order to show that they all have decreasing dia-
grams. There are two kinds of peaks, homogeneous and heteroge-
neous. Heterogeneous peaks require using parallel functional com-
putations at disjoint positions, and parallel higher-order computa-
tions at non-overlapping positions. Homogeneous first-order peaks
can be solved easily thanks to our assumption that Rfo is Church-
Rosser modulo Efo. Homogeneous parallel functional peaks can be
solved because (parallel) beta-rewriting is Church-Rosser. Homo-
geneous higher-order peaks need assuming that the corresponding
critical pairs have deceasing diagrams. Because these critical pairs
are based on rewriting in parallel at disjoint positions, a further as-
sumption (DO) is needed in order to ensure that they are finitely
many, by restricting the possibility to iterate overlaps:

(DO) def
= (∀Li → Ri ∈ Rho) (∀p <P FLi)

(∀Lj → Rj ∈ Rho s.t. Var(Li) ∩ Var(Lj) = ∅)
(∀σ s.t. Li|pσ =β0∪Efo

Ljσ) SOFj(Li|p) ∧ SOFi(Lj)

SOFi(u) def
= (∀q ∈ FPos(u)\{Λ}) OFi(u|q)

OFi(v) def
= (∀Li → Ri∈Rho s.t. Var(v) ∩ Var(Li) = ∅)

(∀o ∈ FPos(v))(∀σ) v|oσ 6=β0∪Efo
Liσ

SOF stands for strict subterm overlap-free, and OF for overlap-
free.

Major assumption 4: Rho satisfies (DO).

Assumption (DO) is quite liberal, and indeed much weaker than
the layering assumption from which it is inspired [12].

THEOREM 4.1. λΠMod equipped with a set of rules and equations
(Rfo, Efo, Rho) satisfying our assumptions is Church-Rosser mod-
ulo Efo on untyped terms if its critical pairs involving higher-order
rules are joinable via decreasing diagrams.

References
[1] Ali Assaf. A calculus of constructions with explicit subtyping. In

Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau, editors, 20th
International Conference on Types for Proofs and Programs, TYPES
2014, May 12-15, 2014, Paris, France, volume 39 of LIPIcs, pages
27–46. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[2] Ali Assaf. Conservativity of embeddings in the lambda pi calculus
modulo rewriting. In Thorsten Altenkirch, editor, 13th International
Conference on Typed Lambda Calculi and Applications, TLCA 2015,
July 1-3, 2015, Warsaw, Poland, volume 38 of LIPIcs, pages 31–44.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[3] Ali Assaf. A framework for defining computational higher-order
logics. PhD thesis, École polytechnique, Paris, 2015.

[4] Ali Assaf and Guillaume Burel. Translating HOL to dedukti. In
Cezary Kaliszyk and Andrei Paskevich, editors, Proceedings Fourth
Workshop on Proof eXchange for Theorem Proving, PxTP 2015,
Berlin, Germany, August 2-3, 2015., volume 186 of EPTCS, pages 74–
88, 2015.

[5] F. Blanqui, J.-P. Jouannaud, and M. Okada. The calculus of alge-
braic constructions. In P. Narendran and M. Rusinowitch, editors, Pro-

ceedings of the 9th International Conference on Rewriting Techniques
and Applications (RTA ’99), number 1631 in LNCS, pages 301–316,
Trento, Italy, July 1999. Springer Verlag.

[6] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-data-type sys-
tems. Theoretical Computer Science, 272:41–68, 2002.

[7] Mathieu Boespflug and Guillaume Burel. CoqInE: Translating the cal-
culus of inductive constructions into the lambda-Pi-calculus modulo.
In Proof Exchange for Theorem Proving—Second International Work-
shop, PxTP, page 44, 2012.

[8] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn L. Talcott, editors. All
About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, volume 4350
of Lecture Notes in Computer Science. Springer, 2007.

[9] Denis Cousineau and Gilles Dowek. Embedding pure type systems in
the lambda-pi-calculus modulo. In Simona Ronchi Della Rocca, ed-
itor, Typed Lambda Calculi and Applications, 8th International Con-
ference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings,
volume 4583 of Lecture Notes in Computer Science, pages 102–117.
Springer, 2007.

[10] J.-P. Jouannaud and C. Kop. Church-rosser properties of terminating
rewriting computations. Draft.

[11] Jean-Pierre Jouannaud and Jianqi Li. Church-Rosser properties of nor-
mal rewriting. In Patrick Cégielski and Arnaud Durand, editors, Com-
puter Science Logic (CSL’12) - 21st Annual Conference of the EACSL,
CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of
LIPIcs, pages 350–365. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2012.

[12] Jiaxiang Liu, Jean-Pierre Jouannaud, and Mizuhito Ogawa. Conflu-
ence of layered rewrite systems. In Stephan Kreutzer, editor, 24th
EACSL Annual Conference on Computer Science Logic, CSL 2015,
September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages
423–440. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[13] D. Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and
Computation, 1(4):497–536, 1991.

[14] T. Nipkow. Higher-order critical pairs. In Proceedings of the 6th
annual IEEE Symposium on Logic in Computer Science (LICS ’91),
pages 342–349, Amsterdam, The Netherlands, July 1991.

[15] Albert Rubio. A fully syntactic AC-RPO. Inf. Comput., 178(2):515–
533, 2002.

[16] Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in
coq. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theo-
rem Proving - 5th International Conference, ITP 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-
17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer
Science, pages 499–514. Springer, 2014.

[17] Vincent van Oostrom. Confluence by decreasing diagrams. Theor.
Comput. Sci., 126(2):259–280, 1994.

Equation Overlap Joinability DD Constraint

p1 = p3 π(i+ 2, i+ 2, ↑(i+ 1, a), ↑(i+ 1, b)) −→
t2
−→
t6

=←−
t2

p1 > t2, t6

p2 = p3 π(i+ j+ 3, i+ 2, ↑(i+ j+ 1, a), ↑(j+ 1, b)) −→
t6

=←−
t2

p2 > t2, t6

p4 = p1 π(i+ 1, i+ j+ 2, ↑(i, a), ↑(i+ j+ 1, b)) −→
p1

=←−
p4

p5 = p1 π(1, 1, ↑(0, a), ↑(0, b)) −→
p4

= ∅ p5 > p4

p5 = p2 π(i+ j+ 1, 1, ↑(i+ 1, a), ↑(0, b)) −→
p6
−→
l2

=←−
p5

p5 > p6, l2

t4 = t5 T(0, π(0, 0, a, b)) ∅ = ∅
t5 = t6 T(j+ 1, π(j+ 1, j+ 1, a, b)) ∅ = ∅

T(0, l1) = t3 T(0,⇑(0, a)) ∅ = ∅
T(1 + i, l2) = t3 T(i+ 1,⇑(i+ 1, a)) −→

t2
−→
t3

= ∅ p4 > t2

T(0, p6) = t4 T(0, π(i+ 1, 0, ↑(i, a), b) −→
t4

=←−
t2

p6 > t2

T(i+ j+ 1, p1) = t5 T(i+ j+ 1, π(i+ 1, i+ j+ 1, ↑(i, a), b)) −→
t5

=←−
t2

p1 > t2

T(i+ 2, p3) = t5 T(i+ 2, π(i+ 2, i+ 2, a, ↑(i+ 1, b))) −→
t6

=←−
t2

p3 > t2, t6

T(i+ j+ 1, p4) = t5 T(i+ j+ 1, π(i, i+ j+ 1, a, ↑(i+ j, b))) −→
t2
−→
t5

=←−
t2

p4 > t2, t5

T(1, p5) = t5 T(1, π(1, 1, a, ↑(0, b))) −→
t3

=←−
t2

p5 > t2, t3

T(i+ 1, p1) = t6 T(i+ 1, π(i+ 1, i+ 1, ↑(i, a), b)) −→
p4

=←−
p2

p1 > p2, p4

T(i+ j+ 2, p2) = t6 T(i+ j+ 2, π(i+ j+ 2, j+ 1, ↑(j+ 1, a), b)) −→
p3

=←−
p2

p2 > p3

T(i+ j+ 2, p3) = t6 T(i+ j+ 2, π(i+ j+ 2, j+ 2, a, ↑(j+ 1, b))) −→
t6

=←−
t2

p3 > t2

T(i+ 1, p5) = t6 T(i+ 1, π(i+ 1, 1, a, ↑(0, b))) −→
l2
−→
t6

=←−
t2

p5 > l2, t2

Figure 1. Decreasing diagrams computations

Church-Rosser calculations A solution to the ordering constraints is p5 > p1 > p2 > p3 > p4 > p6 > other rules, which terminates the
Church-Rosser proof.

