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AN OPTIMISATION APPROACH FOR STABILITY ANALYSIS AND

CONTROLLER SYNTHESIS OF LINEAR HYPERBOLIC SYSTEMS ∗

Pierre-Olivier Lamare1, Antoine Girard2 and Christophe Prieur3

Abstract. In this paper, we consider the problems of stability analysis and control synthesis for
first-order hyperbolic linear Partial Differential Equations (PDEs) over a bounded interval with spa-
tially varying coefficients. We propose Linear Matrix Inequalities (LMI) conditions for the stability
and for the design of boundary and distributed control for the system. These conditions involve an
infinite number of LMI to solve. Hence, we show how to overapproximate these constraints using
polytopic embeddings to reduce the problem to a finite number of LMI. We show the effectiveness of
the overapproximation with several examples and with the Saint-Venant equations with friction.

1991 Mathematics Subject Classification. 49J20,37N35,93B52.

.

1. Introduction

We consider the following general system

∂ty(t, x) + Λ(x)∂xy(t, x) = F (x)y(t, x) , (1)

where t ∈ R+ is the time variable, x ∈ [0, 1] is the spatial variable, y : R+ × [0, 1] → Rn, F and Λ are in
C0 ([0, 1] ;Rn×n). The matrix Λ(x) is diagonal and in addition

Λ(x) =

[
λ1(x) 0

0
. . .

λn(x)

]
,

with λk(x) < 0 for k ∈ {1, . . . ,m} and λk(x) > 0 for k ∈ {m+ 1, . . . , n}, for all x ∈ [0, 1]. Let us introduce the
following notation

y =
[
y−(t, x), y+(t, x)

]>
,
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e-mail: christophe.prieur@gipsa-lab.fr

c© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

where y− : R+ × [0, 1]→ Rm and y+ : R+ × [0, 1]→ R(n−m). We consider the following boundary conditions[
y−(t, 1)
y+(t, 0)

]
= G

[
y−(t, 0)
y+(t, 1)

]
, t ∈ R+ , (2)

where G is a matrix in Rn×n. The initial condition is

y(0, x) = y0(x) , x ∈ (0, 1) , (3)

where y0 ∈ L2 ((0, 1);Rn). It can be shown that the following result holds, see [10] and the references therein.

Proposition 1.1. There exists a unique (weak) solution y ∈ C0
(
R+; L2 ((0, 1);Rn)

)
to the Cauchy prob-

lem (1)–(3).

Let us define the concept of Global Exponential Stability (GES) for system (1)–(3).

Definition 1.2. The system (1)–(3) is said to be Globally Exponentially Stable if there exist ν > 0 and C > 0
such that, for every initial condition y0 ∈ L2 ((0, 1);Rn), the solution to the Cauchy problem (1)–(3) satisfies

|y(t, ·)|L2((0,1);Rn) ≤ Ce
−νt ∣∣y0∣∣

L2((0,1);Rn) , ∀t ∈ R+ . (4)

While for finite dimensional and time-delay systems a large number of numerical techniques for stability
analysis exists, for PDEs these tools are mostly lacking. In this paper, we propose some techniques to verify
numerically the existence of quadratic Lyapunov functions for first-order hyperbolic PDEs over a bounded
interval with spatially varying coefficients. Besides this analysis aspect, we propose some techniques for the
synthesis of boundary and distributed controls.

The Lyapunov analysis has been a common and powerful approach to analyse and control systems in fi-
nite dimension for several decades. Among the large literature on stability analysis and stabilisation of finite
dimensional system let us mention [3] covering a large number of results on the resolution of Linear Matrix
Inequalities (LMI) coming from the Lyapunov analysis. In [14], a numerical toolbox to solve various control
problems, in particular those written in terms of LMI, is presented. It allows in particular an optimisation of
any given convex cost (such as the trace of the Lyapunov matrix). Thus, it is particularly attractive to express
problem under LMI form to take advantages of the existing toolboxes.

The use of Lyapunov function is now appearing for hyperbolic systems. Lyapunov converse results have been
stated recently in [12]. More specifically, a special attention has been made on quadratic Lyapunov functions.
Indeed, this class of functions allows to express conditions for stability as Matrix Inequalities (MI). We can cite
also [5], [10], [15], and [17] for the linear case. LMI conditions derived by an operator approach is used in [11]
for the H∞ boundary control of parabolic and hyperbolic systems. Quadratic Lyapunov function has also been
used for 2 × 2 quasilinear systems [7] and n × n quasilinear systems [6]. MI-based conditions derived from a
quadratic Lyapunov function were stated in [4] for the construction of boundary observers for linear as well
as for quasilinear hyperbolic systems. However, the approach by a quadratic Lyapunov function is not always
effective to prove stability for hyperbolic systems. A result from [1] gives a necessary and sufficient condition
for the existence of a quadratic Lyapunov function. In [9], an example with a stabilising static output feedback
has been designed such that the previous condition is violated and thus that there does not exist a quadratic
Lyapunov function for this system.

The results in this paper are related to the resolution of the LMIs proposed in [15] and to the control synthesis.
We also propose a Lyapunov function with an “affine” kernel similar to the one used in [8]. The conditions involve
the spatial variable, hence the number of constraints is infinite. These conditions are analogous to stability
conditions for finite-dimensional Linear Parameter Varying (LPV) systems. Hence, an approach inspired by
this framework is applied to find a candidate Lyapunov function. More precisely, to reduce the numerical
complexity, different approximations based on properties of the exponential and affine functions are considered
in this paper. The control synthesis relies on a combination of classical techniques coming from the stabilisation
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for discrete and continuous-time finite dimensional systems. Then, the latter overapproximation techniques are
used to get a finite number of conditions.

The paper is organized as follows. In Section 2, we propose new LMI conditions for the stability of systems
described by (1)–(3). In Section 3, we address the problem of the design of static boundary and distributed
controllers. In Section 4, overapproximation techniques are presented to reduce the complexity of the LMI
conditions stated so far. Finally, in Section 5, methods are tested on academic examples and with the Saint-
Venant equations with friction.

Notation. The set of complex numbers is denoted by C. The set of square real matrices of dimension n is
denoted by Rn×n. Given a matrix A, the transpose of the matrix A is denoted by A>. Given N square matrices
A1, . . . , AN , of respective dimension k1, . . . , kN , the block diagonal matrix A ∈ R(k1+···+kN )×(k1+···+kN ) whose
block diagonal matrices are A1, . . . , AN , is denoted by diag [A1, . . . , AN ]. The identity matrix of dimension n
is denoted by In. For a symmetric matrix A ∈ Rn×n, A being positive definite is denoted by A > 0, while A
being positive semi-definite is denoted by A ≥ 0. The smallest eigenvalue of a matrix A ∈ Rn×n is denoted by
λmin (A) while its largest eigenvalue is denoted by λmax (A). The derivative of a matrix A(x) with respect to
variable x is denoted by A′(x).

2. Conditions for Stability

In this section, we propose a Lyapunov function, and derive some conditions for the solution to system (1)–(3)
to satisfy (4).

Let us introduce the following notation

Λ(x) = diag
[
Λ−(x),Λ+(x)

]
,

where Λ−(x) = diag [λ1(x), . . . , λm(x)] and Λ+(x) = diag [λm+1(x), . . . , λn(x)]. Let us denote |Λ(x)| the
matrix whose elements are the absolute value of the elements of the matrix Λ(x), that is

|Λ(x)| = diag
[
−Λ−(x),Λ+(x)

]
, (5)

and let us denote by Ĩn,m the matrix

Ĩn,m =

[
−Im 0m,n−m

0n−m,m In−m

]
. (6)

For a matrix A in Rn×n, we decompose it in four block matrices A−− in Rm×m, A−+ in Rm×(n−m), A+− in

R(n−m)×m, and A++ in R(n−m)×(n−m) such that A =
[
A−− A−+

A+− A++

]
.

Exponential Kernel.

In [15], sufficient conditions have been given for the stability of (1)–(3) with Λ(x) and F (x) constant. We
consider a slightly different Lyapunov function

V (y) =

∫ 1

0

y>(x) |Λ(x)|−1Q(x)y(x)dx , (7)

where

Q(x) = diag
[
e2µxQ−, e−2µxQ+

]
, (8)

with Q− in Rm×m, Q+ in R(n−m)×(n−m) are two symmetric positive definite matrices and µ a real coefficient.
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Proposition 2.1. If there exist ν > 0, µ in R, and symmetric positive definite matrices Q− in Rm×m and Q+

in R(n−m)×(n−m) such that for Q(x) given by (8) the following conditions hold, for all x ∈ [0, 1],

Q(x)Λ(x) = Λ(x)Q(x) , (9)

− 2µQ(x) + F>(x) |Λ(x)|−1Q(x) +Q(x) |Λ(x)|−1 F (x) ≤ −2ν |Λ(x)|−1Q(x) , (10)

together with[
Im 0m,n−m
G+− G++

]>
Ĩn,mQ(0)

[
Im 0m,n−m
G+− G++

]
≤
[

G−− G−+

0n−m,m In−m

]>
Ĩn,mQ(1)

[
G−− G−+

0n−m,m In−m

]
, (11)

then the linear hyperbolic system (1)–(3) is GES.

Proof. For the stability analysis we consider the candidate Lyapunov function (7), where Q(x) is given by (8).
Let us introduce the constants

λ = min
x∈[0,1]

λmin

(
|Λ(x)|−1Q(x)

)
, (12)

λ = max
x∈[0,1]

λmax

(
|Λ(x)|−1Q(x)

)
. (13)

The matrix |Λ(x)|−1Q(x) being symmetric positive definite (due to condition (9) and since Q(x) and |Λ(x)|−1

are symmetric positive definite), one can conclude that λ, λ > 0 and for all y ∈ L2 ((0, 1);Rn),

λ |y|2L2((0,1);Rn) ≤ V (y) ≤ λ |y|2L2((0,1);Rn) . (14)

Let us compute the time-derivative of the candidate Lyapunov function (7) along the solutions to system (1),
(2). Using the commutativity condition (9), we have

V̇ = 2

∫ 1

0

y>t (t, x) |Λ(x)|−1Q(x)y(t, x)dx

= −2

∫ 1

0

y>(t, x)Ĩn,mQ(x)yx(t, x)dx+ 2

∫ 1

0

y>(t, x)Q(x) |Λ(x)|−1 F (x)y(t, x)dx .

Noting that −2y>Ĩn,mQyx = −
(
y>Ĩn,mQy

)
x

+ y>Ĩn,mQ′y and Ĩn,mQ′ = −2µQ, one has

V̇ = −
[
y>(t, x)Ĩn,mQ(x)y(t, x)

]1
0
− 2µ

∫ 1

0

y>(t, x)Q(x)y(t, x)dx

+ 2

∫ 1

0

y>(t, x)Q(x) |Λ(x)|−1 F (x)y(t, x)dx

=

[
y−(t, 0)
y+(t, 1)

]> [[
Im 0m,n−m
G+− G++

]>
Ĩn,mQ(0)

[
Im 0m,n−m
G+− G++

]

−
[
G−− G−+

0n−m,m In−m

]>
Ĩn,mQ(1)

[
G−− G−+

0n−m,m In−m

]] [
y−(t, 0)
y+(t, 1)

]
+ 2

∫ 1

0

y>(t, x)Q(x) |Λ(x)|−1 F (x)y(t, x)dx− 2µ

∫ 1

0

y>(t, x)Q(x)y(t, x)dx .

Then, (10) and (11) imply that V̇ ≤ −2νV . Hence, for all t ∈ R+, one has V (y(t, ·)) ≤ e−2νtV
(
y0
)
. Combining

this relation with (14), the proof is complete. �
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Remark 2.2. In the proof of Proposition 2.1, for the computation of the time derivative of V , we have proceeded
as if the solutions were in C1. Nonetheless, the calculus remains valid with L2-solutions. It is due to the density
of C1-solutions in the set of L2-solutions, see [2, Page 67, Section 2.1] for a developed explanation.

The relation between the previous stability conditions and LPV systems is done in the following proposition.

Proposition 2.3. Let µ in R. Conditions (10) and (11) are satisfied if and only if the continuous time LPV
system

ṗ(t) = diag
[
e2µxIm, e

−2µxIn−m
] (
|Λ(x)|−1 F (x)− µIn

)
p(t) , x ∈ [0, 1] , (15)

and the discrete time system

h(t+ 1) = diag
[
Im, e

−µIn−m
]
eµGdiag [Im, e

µIn−m]h(t) (16)

share a common block diagonal Lyapunov matrix diag [Q−, Q+], where Q− and Q+ are symmetric matrices in
Rm×m and R(n−m)×(n−m) respectively.

Proof. Condition (10) describes a condition for the stability of the continuous time LPV system (15) via the
existence of the Lyapunov matrix diag [Q−, Q+].

Condition (11) may be developed as

P =

[
P−− P−+
P+− P++

]
≤ 0 , (17)

with

P−− = e2µG>−−Q
−G−− +G>+−Q

+G+− −Q− ,

P−+ = e2µG>−−Q
−G−+ +G>+−Q

+G++ ,

P+− = P>−+ ,

P++ = e2µG>−+Q
−G−+ +G>++Q

+G++ − e−2µQ+ .

The matrix P in (17) may be rewritten as

P = (eµG)
>
diag

[
Q−, e−2µQ+

]
eµG− diag

[
Q−, e−2µQ+

]
. (18)

Thus, with (18), inequality (17) leads to establish

P ≤ 0⇔ eµG>diag
[
Im, e

−µIn−m
]
diag

[
Q−, Q+

]
diag

[
Im, e

−µIn−m
]
eµG

≤ diag
[
Im, e

−µIn−m
]
diag

[
Q−, Q+

]
diag

[
Im, e

−µIn−m
]

⇔ diag [Im, e
µIn−m] (eµG)

>
diag

[
Im, e

−µIn−m
]
diag

[
Q−, Q+

]
× diag

[
Im, e

−µIn−m
]
eµGdiag [Im, e

µIn−m] ≤ diag
[
Q−, Q+

]
.

Hence, the discrete-time system (16) shares a common block diagonal Lyapunov matrix diag [Q−, Q+] with the
continuous-time LPV system (15). It concludes the proof of Proposition 2.3. �

Remark 2.4. A consequence of Proposition 2.3 is a trade-off in the choice of µ between the satisfaction of (10)
and (11). Positive or negative values of µ allow to consider (15) more stable or unstable respectively, but have
the reverse effect on (16).
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Affine Kernel.

Other sufficient conditions for the global exponential stability of system (1)–(3) are obtained when considering
a different kernel Q(x) in (7). The next proposition is built using

Q(x) = diag
[
(1 + µx)Q−, (1− µx)Q+

]
, (19)

in (7).

Proposition 2.5. If there exist ν > 0, µ ∈ (−1, 1), and symmetric positive definite matrices Q− in Rm×m and
Q+ in R(n−m)×(n−m) such that for Q(x) given by (19) the following conditions hold, for all x ∈ [0, 1],

Q(x)Λ(x) = Λ(x)Q(x) , (20)

− µQ(0) + F>(x) |Λ(x)|−1Q(x) +Q(x) |Λ(x)|−1 F (x) ≤ −2ν |Λ(x)|−1Q(x) , (21)

together with

[
Im 0m,n−m
G+− G++

]> [ −Q− 0m,n−m

0n−m,m Q+

] [
Im 0m,n−m
G+− G++

]
≤
[

G−− G−+

0n−m,m In−m

]> [−(1+µ)Q− 0

0 (1−µ)Q+

] [
G−− G−+

0n−m,m In−m

]
, (22)

then the linear hyperbolic system (1)–(3) is GES.

Proof. As mentioned earlier, we consider the candidate Lyapunov function (7) where Q(x) is given by (19).
We used the definitions of λ and λ given in (12) and (13) in the context of Q(x) given by (19). The matrix

|Λ(x)|−1Q(x) is positive definite (due to condition (20)), one can conclude that λ, λ > 0. Therefore, for all
y ∈ L2 ((0, 1);Rn),

λ |y|2L2((0,1);Rn) ≤ V (y) ≤ λ |y|2L2((0,1);Rn) . (23)

Let us compute the time-derivative of the candidate Lyapunov function along the solutions to system (1), (2).
Using the commutativity condition (20), we have

V̇ = 2

∫ 1

0

y>t (t, x) |Λ(x)|−1Q(x)y(t, x)dx

= −2

∫ 1

0

y>x (t, x)

[
−Im 0m,n−m

0n−m,m In−m

]
Q(x)y(t, x)dx+ 2

∫ 1

0

y>(t, x)Q(x) |Λ(x)|−1 F (x)y(t, x)dx

= −2

∫ 1

0

y>x (t, x)P(x)y(t, x)dx+ 2

∫ 1

0

y>(t, x)Q(x) |Λ(x)|−1 F (x)y(t, x)dx ,
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where P(x) =
[
−(1+µx)Q− 0m,n−m

0m,n−m (1−µx)Q+

]
. Noting that −2y>x Py = −

(
y>Py

)
x

+ y>P ′y we get

V̇ = −
[
y>(t, x)P(x)y(t, x)

]1
0
− µ

∫ 1

0

y>(t, x)Q(0)y(t, x)dx

+ 2

∫ 1

0

y>(t, x)Q(x) |Λ(x)|−1 F (x)y(t, x)dx

=

[
y−(t, 0)
y+(t, 1)

]> [[
Im 0
G+− G++

]>
P(0)

[
Im 0m,n−m
G+− G++

]

−
[
G−− G−+

0n−m,m In−m

]>
P(1)

[
G−− G−+

0n−m,m In−m

]] [
y−(t, 0)
y+(t, 1)

]
− µ

∫ 1

0

y>(t, x)Q(0)y(t, x)dx+ 2

∫ 1

0

y>(t, x)Q(x) |Λ(x)|−1 F (x)y(t, x)dx .

Then, (21) and (22) imply that V̇ ≤ −2νV . Hence, for all t ∈ R+, one has V (y(t, ·)) ≤ e−2νtV
(
y0
)
. Combining

this relation with (23) the proof is complete. �

Remark 2.6. The condition
Q(x)Λ(x) = Λ(x)Q(x) , (24)

holds as soon as Q− and Q+ are diagonal (as in [10]) but this is not necessary. It becomes necessary
when the eigenvalues of Λ(x) are of multiplicity 1. It may happen that the matrices cannot be chosen diagonal
even in the constant case. For instance, let us consider the following matrices in R2×2

Λ = I2 ,

F =

[
−10 −9
10 6

]
,

G =
1

2
I2 .

It may be proved that there do not exist a real µ and a diagonal matrix Q in R2×2 such that (10) and (11) hold
(see Appendix A). However, there exist a real µ and a non-diagonal matrix Q such that it satisfies (9), (10),
and (11) as, for instance

µ = 0.2 ,

Q =

[
3.3860 2.2424
2.2424 3.1074

]
.

3. Controller Synthesis

3.1. Boundary Control Synthesis

We consider next the problem of boundary control synthesis, when boundary condition (2) is given by

G = T + LKB , (25)

where matrices T in Rn×n, L in Rn×q (n > q) are given and the matrix KB in Rq×n has to be designed such that
system (1)–(3) with the boundary conditions (25) is GES. We propose results based on the use of the Lyapunov
function (7) in the context of the exponential kernel (8) only. The case of the affine kernel is considered in
Appendix B.
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Theorem 3.1. If there exist ν > 0, µ in R, a matrix U in Rq×n, and symmetric positive definite matrices S−

in Rm×m, S+ in R(n−m)×(n−m) such that, with S(x) = diag
[
e−2µxS−, e2µxS+

]
, the following conditions hold,

for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (26)

− 2µS(x) + S(x)F>(x) |Λ(x)|−1 + |Λ(x)|−1 F (x)S(x) ≤ −2νS(x) |Λ(x)|−1 , (27)[
diag

[
S−, e−2µS+

]
(TS(0) + LU)

>

TS(0) + LU diag
[
e−2µS−, S+

]] ≥ 0 , (28)

then the boundary control given by (25) with

KB = US−1(0) , (29)

is such that system (1)–(3) is GES and a Lyapunov function of the form (7) exists with Q(x) = S−1(x).

Proof. Replacing U by KBS(0) and applying the Schur complement formula (see, for instance, [3, Pages 7–8])
in (28) one gets

diag
[
S−, e−2µS+

]
− S(0) (T + LKB)

>
diag

[
e−2µS−, S+

]−1
(T + LKB)S(0) ≥ 0 . (30)

Reassembling the term in one matrix and multiplying from the left and right by S−1(0) we get a matrix

M =

[
M−− M−+
M+− M++

]
≥ 0 , (31)

with

M−− =
(
S−
)−1 − e2µ (T + LKB)

>
−−
(
S−
)−1

(T + LKB)−− − (T + LKB)
>
+−
(
S+
)−1

(T + LKB)+− ,

M−+ = −e2µ (T + LKB)
>
−−
(
S−
)−1

(T + LKB)−+ − (T + LKB)
>
+−
(
S+
)−1

(T + LKB)++ ,

M+− = M>−+ ,

M++ = e−2µ
(
S+
)−1 − e2µ (T + LKB)

>
−+
(
S−
)−1

(T + LKB)−+

− (T + LKB)
>
++

(
S+
)−1

(T + LKB)++ .

Letting Q− = (S−)
−1

, Q+ = (S+)
−1

we get

• condition (9) by multiplying left and right (26) by Q(x),
• condition (10) by multiplying left and right (27) by Q(x),
• condition (11) from the matrix M in (31). Indeed, M is equal to the matrix −P in (17) in the proof of

Proposition 2.3, this latter is equivalent to the inequality (11).

It concludes the proof of Theorem 3.1. �

3.2. Distributed Control Synthesis

We consider the case of a distributed control that is that the matrix in the right-hand side of (1) is of the
form

F (x) = H(x) +B(x)KD(x) , x ∈ [0, 1] , (32)

where matrices H(x) in Rn×n, B(x) in Rn×p (n > p) are given, and matrix KD(x) in Rp×n has to be designed
such that system (1)–(3) is GES with the distributed control (32). In the following, we assume that KD(x) is
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given by

KD(x) =
∑̀
i=1

αi(x)Ki , (33)

where αi, Ki i = 1, . . . , `, are, respectively, some continuous real functions and matrices in Rp×n.

Remark 3.2. Examples of suitable functions αi, in (33), are the Bézier functions basis and spline basis functions
of degree 1.

Remark 3.3. Though most of the physical devices are controlled from the boundaries (see, for instance, [2]
or [5]), there exist physical applications embedding such distributed controller (32). For instance, the evolution
of a population of bacteria or animals in cultivation conditions may be described by a system of the form (1).
As a matter of example, in [13], a hyperbolic PDE model of chemostat is considered. In such situation y(t, x)
represents the number of individuals of age x at time t, the function F is a mortality function or a sampling.
Thus, the control may be to synthesise this mortality rate or this sampling, for instance to insure some criteria
on the cultivation process. In the latter reference, it should be noted that the control quantity is a dilution rate
and is time dependent contrary to (32).

Henceforth, for a given µ in R, let us denote by Ien,m(x) the matrix

Ien,m(x) = diag
[
e2µxIm, e

−2µxIn−m
]
. (34)

Theorem 3.4. Let an integer ` > 0 be given. If there exist ν > 0, µ in R, matrices Ui in Rp×n,
i = 1, . . . , `, and symmetric positive definite matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that, with
S(x) = diag

[
e−2µxS−, e2µxS+

]
, the following conditions hold, for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (35)(
|Λ(x)|−1H(x)− µIn

)
S(x) + S(x)

(
|Λ(x)|−1H(x)− µIn

)>
+
∑̀
i=1

αi(x)
(
Ien,m(x)

)−1
U>i B

>(x) |Λ(x)|−1 +
∑̀
i=1

αi(x) |Λ(x)|−1B(x)Ui
(
Ien,m(x)

)−1
≤ −2νS(x) |Λ(x)|−1 , (36)[
diag

[
S−, e−2µS+

]
(GS(0))

>

GS(0) diag
[
e−2µS−, S+

]] ≥ 0 , (37)

with Ien,m(x) given in (34), then the distributed control given by (32) and (33) with

Ki = UiS
−1(0) , i = 1, . . . , ` , (38)

is such that system (1)–(3) is GES and a Lyapunov function of the form (7) exists with Q(x) = S−1(x).

Proof. We know that system (1)–(3) is exponentially stable if conditions of Proposition 2.1 hold. To apply
this result let us check (9), (10), and (11) successively. Using the Schur complement formula with (37), letting

Q− = (S−)
−1

and Q+ = (S+)
−1

as in the proof of Theorem 3.1, conditions (9) and (11) are satisfied. We can
rewrite (10) as

(
|Λ(x)|−1 F (x)− µIn

)>
Q(x) +Q(x)

(
|Λ(x)|−1 F (x)− µIn

)
≤ −2ν |Λ(x)|−1Q(x) .
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We use the expression of F given by (32), (33) and get

(
|Λ(x)|−1

(
H(x) +B(x)

∑̀
i=1

αi(x)Ki

)
− µIn

)>
Q(x)

+Q(x)

(
|Λ(x)|−1

(
H(x) +B(x)

∑̀
i=1

αi(x)Ki

)
− µIn

)
≤ −2ν |Λ(x)|−1Q(x) . (39)

This last inequality is not convex in Ki and Q(x). To overcome this issue we multiply (39) at the left and right
by S(x), we get

(
|Λ(x)|−1H(x)− µIn

)
S(x) + S(x)

(
|Λ(x)|−1H(x)− µIn

)>
+
∑̀
i=1

αi(x)S(x)K>i B(x)> |Λ(x)|−1 +
∑̀
i=1

αi(x) |Λ(x)|−1B(x)KiS(x) ≤ −2νS(x) |Λ(x)|−1 ,

and we let Ki = UiS
−1(0), i = 1, . . . , `, which implies (36). This concludes the proof of Theorem 3.4. �

Remark 3.5. The simultaneous synthesis of a boundary control and of a distributed control is possible. For the
exponential kernel it consists in the computation of matrices S−, S+, U , and Ui , i = 1, . . . , `, satisfying (26),
(28), and (36). For the affine kernel it consists in the computation of matrices S−, S+, U , and Ui , i = 1, . . . , `,
satisfying (B.1), (B.3), and (B.9). The motivation for applying both controllers may be from an optimal point
of view. Indeed, two controllers give more degrees of freedom for governing the state equation and thus it allows
to drive the system to the origin with a better performance. It may be possible that a system is not stabilisable
using boundary or distributed control but it can be stabilised by combining the two types of controllers.

4. Overapproximation Techniques

Conditions (10) and (21) involve the spatial variable x ∈ [0, 1]. Hence, the number of LMI is infinite. Thus,
some overapproximation may be introduced in order to numerically check it. Here, the term overapproximation
means that the original constraints are embedded in a larger set having nice structural properties which may
be exploited (see, for instance, [5]). In this section we aim at giving some practical techniques for the stability
analysis and the control synthesis in the context of the exponential kernel (8) only. As for Section 3, the case
of the affine kernel (19) is considered in Appendix B.

For each conditions given up to know we propose a result for their overapproximation. We distinguish two
cases: spatially varying and non-spatially varying F and Λ. For the clarity of the exposition we propose a
summary table of the results at the end of the section.

4.1. Non-Spatially Varying Case

Let us suppose F (x) = F , Λ(x) = Λ. The main goal of this section is to provide a way to numerically verify
conditions of Propositions 2.1 and 2.5 and of Theorems 3.1, B.1, 3.4, and B.2.

For fixed µ in R, Q− in Rm×m, and Q+ in R(n−m)×(n−m), we write

Qij = diag
[
e2µiQ−, e−2µjQ+

]
, i, j = 0, 1 . (40)

Lemma 4.1. For all x ∈ [0, 1], Q(x) lies in the convex hull of {Q00, Q01, Q11} if µ > 0 and of {Q00, Q10, Q11}
if µ < 0.
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Proof. We assume that µ > 0, the case µ < 0 is analogous. Q : x 7→ Q(x) is a parametrized curve in the
(Q−, Q+) plane. We can express it as an explicit curve. We have e2µxe−2µx = 1, thus the expression of the
explicit curve is given by

h(X) =
1

X
, X ∈ ρ =

[
e−2µ, 1

]
.

This curve is convex on this interval. Then,

1

αe−2µ + (1− α)
≤ αg

(
e−2µ

)
+ (1− α)g(1) , α ∈ (0, 1) ,

where g(X) =
(

1−e2µ
1−e−2µ

)
X + e2µ + 1. When X lies in ρ, g(X) describes the straight line between Q00 and Q11.

Hence, for X ∈ ρ one has h(X) ≤ g(X). Thus, Q(x) lies in the convex hull of {Q00, Q01, Q11}. �

Remark 4.2. In the proof of Lemma 4.1 we do not consider the case µ = 0. Indeed, we getQ(x) = diag [Q−, Q+].
Thus, matrix inequality (10) is a “classical” linear matrix inequality which does not involve the spatial variable x.

Proposition 4.3. If there exist ν > 0, µ in R \ {0}, and symmetric positive definite matrices Q− in Rm×m
and Q+ in R(n−m)×(n−m) such that

QijΛ = ΛQij , (41)

− 2µQij + F> |Λ|−1Qij +Qij |Λ|−1 F ≤ −2ν |Λ|−1Qij , (42)

hold for all (i, j) ∈ {(0, 0), (0, 1), (1, 1)} if µ > 0 and for all (i, j) ∈ {(0, 0), (1, 0), (1, 1)} if µ < 0, together with[
Im 0m,n−m
G+− G++

]>
Q00Ĩn,m

[
Im 0m,n−m
G+− G++

]
≤
[

G−− G−+

0n−m,m In−m

]>
Q11Ĩn,m

[
G−− G−+

0n−m,m In−m

]
, (43)

then conditions (9), (10), and (11) are satisfied for all x ∈ [0, 1].

Proof. We have that

• the inequality (43) corresponds to (11),
• by Lemma 4.1, the constraints given by the equality (9) and LMI (10) are embedded in the polytope

built by the points Q00, Q01, and Q11.

Thus, conditions (9), (10), and (11) are satisfied. The proof of Proposition 4.3 is complete. �

Remark 4.4. The approximation with the exponential kernel (8) can be made tighter by increasing the number
of points describing the polytope embbeding the constraints given by condition (9) and LMIs (10), (11). For

instance, on Figure 1 there are 4 points: Q11, Q̃, Q̆, and Q00. The impact of the number of points is explored
numerically in the next section.

Conditions for the construction of boundary and distributed controller can be overapproximated in the same
way as the conditions for stability. Let us suppose that H(x) = H and B(x) = B, for all x ∈ [0, 1]. For fixed µ
in R, S− in Rm×m, and S+ in R(n−m)×(n−m), we write, for i, j = 0, 1,

Sij = diag
[
e−2µiS−, e2µjS+

]
, (44)

S̆ij = diag
[
e−2µiS−, e−2µjS+

]
, (45)

and

Iijn,m = diag
[
e−2µiIm, e

2µjIn−m
]
. (46)
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Q+

Q−

e−2µ 1

1

e2µ
Q(x)

Q01

Q11

Q00

Q̃

Q̆

Figure 1. Illustration of the elevation of number of points representing the polytope used for
the overapproximation in the (Q−, Q+)-plane. Case µ > 0.

Proposition 4.5. If there exist ν > 0, µ in R \ {0}, a matrix U in Rq×n, and symmetric positive definite
matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that the following conditions hold,

SijΛ = ΛSij , (47)

− 2µSij + SijF
> |Λ|−1 + |Λ|−1 FSij ≤ −2νSij |Λ|−1 , (48) S̆01

(
T S̆00 + LU

)>
T S̆00 + LU S̆10

 ≥ 0 , (49)

for (i, j) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0 and for (i, j) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then conditions (26), (27),
and (28) are satisfied for all x ∈ [0, 1].

Proof. We have that

• the inequality (28) corresponds to (49),
• by Lemma 4.1, the constraints given by the equality (26) and LMIs (27) are embedded in the polytope

built by the points S00, S10, and S11 if µ > 0 or by the points S00, S01, and S11 if µ < 0.

Thus, conditions (26), (27), and (28) are satisfied. The proof of Proposition 4.5 is complete. �
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Proposition 4.6. Let an integer ` > 0 be given. If there exist ν > 0, µ in R \ {0}, matrices Ui in Rp×n,
i = 1, . . . , `, and symmetric positive definite matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that the following
conditions hold,

SjkΛ = ΛSjk , (50)(
|Λ|−1H − µIn

)
Sjk + Sjk

(
|Λ|−1H − µIn

)>
+
∑̀
i=1

min
x∈[0,1]

αi(x)
(
Ijkn,m

)−1
U>i B

> |Λ|−1 +
∑̀
i=1

min
x∈[0,1]

αi(x) |Λ|−1BUi
(
Ijkn,m

)−1 ≤ −2νSjk |Λ|−1 , (51)

(
|Λ|−1H − µIn

)
Sjk + Sjk

(
|Λ|−1H(x)− µIn

)>
+
∑̀
i=1

max
x∈[0,1]

αi(x)
(
Ijkn,m

)−1
U>i B

> |Λ|−1 +
∑̀
i=1

max
x∈[0,1]

αi(x) |Λ|−1BUi
(
Ijkn,m

)−1 ≤ −2νSjk |Λ|−1 , (52) S̆01

(
GS̆00

)>
GS̆00 S̆10

 ≥ 0 , (53)

for (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0 and for (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then conditions (35), (36),
and (37) are satisfied for all x ∈ [0, 1].

Proof. First of all the maximum and the minimum of αi, i = 1, . . . , `, are well-defined since αi are continuous
functions defined in the compact [0, 1]. We have that

• the inequality (53) corresponds to (37),
• by Lemma 4.1, the constraints given by the equality (35) and LMI (36) are embedded in the polytope

built by the points S00, S10, and S11 if µ > 0 or by the points S00, S01, and S11 if µ < 0. Noting
that any value of a continuous function can be expressed as a convex combination of its maximum and
minimum, condition (36) holds for all x ∈ [0, 1].

The proof of Proposition 4.6 is complete. �

4.2. Spatially-Varying Case

We may generalize the previous results when Λ and F are both spatially varying and lie in a convex hull.
We assume that the parametrized matrix

W (x) = |Λ(x)|−1 F (x) , (54)

lies for all x ∈ [0, 1] in the convex hull

W :=

{
W : W =

N∑
i=1

αiWi,

N∑
i=1

αi = 1

}
, (55)

for given matrices Wi, i = 1, . . . , N . We have the following propositions.

Proposition 4.7. If there exist ν > 0, µ in R \ {0}, and diagonal positive definite matrices Q− in Rm×m and
Q+ in R(n−m)×(n−m) such that

− 2µQjk +W>i Qjk +QjkWi ≤ −2ν
∣∣Λ̄∣∣−1Qjk , (56)[

Im 0m,n−m
G+− G++

]>
Ĩn,mQ00

[
Im 0m,n−m
G+− G++

]
≤
[

G−− G−+

0n−m,m In−m

]>
Ĩn,mQ11

[
G−− G−+

0n−m,m In−m

]
, (57)
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where

Λ̄ = diag

[
min
x∈[0,1]

λ1(x), . . . , min
x∈[0,1]

λm(x), max
x∈[0,1]

λm+1(x), . . . , max
x∈[0,1]

λn(x)

]
, (58)

for all i = 1, . . . , N , and (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ < 0, then
conditions (9), (10), and (11) are satisfied for all x ∈ [0, 1].

Proof. Multiplying (56) by αi and making the sum for i = 1, . . . , N , we get

−2µQjk +W (x)>Qjk +QjkW (x) ≤ −2ν
∣∣Λ̄∣∣−1Qjk , (59)

for all x ∈ [0, 1], (j, k) = {(0, 0), (0, 1), (1, 1)} if µ > 0 and (j, k) = {(0, 0), (1, 0), (1, 1)} if µ < 0.

• Using Lemma 4.1 and the definition of Λ̄ in (58), one gets (10).
• Condition (9) is automatically satisfied because of the diagonal form of Q− and Q+.

The proof of Proposition 4.7 is complete. �

Remark 4.8. In the statement of Proposition 4.7 we assume that the matrices Q− and Q+ are diagonal. It
allows to avoid to add an other assumption on the structure of Λ. For the results related to the spatially-varying
case we will always state this assumption.

Proposition 4.9. If there exist ν > 0, µ in R\{0}, a matrix U in Rq×n, and diagonal positive definite matrices
S− in Rm×m, S+ in R(n−m)×(n−m) such that the following conditions hold,

− 2µSjk + SjkW
>
i +WiSjk ≤ −2νSjk

∣∣Λ̄∣∣−1 , (60) S̆01

(
T S̆00 + LU

)>
T S̆00 + LU S̆10

 ≥ 0 , (61)

for all i = 1, . . . , N , and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then
conditions (26), (27), and (28) are satisfied for all x ∈ [0, 1].

Proof. As in the proof of Proposition 4.7 we multiply (60) by αi, and make the sum for i = 1, . . . , N , getting

−2µSjk + SjkW (x)> +W (x)Sjk ≤ −2νSjk
∣∣Λ̄∣∣−1 , (62)

for all x ∈ [0, 1], (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0.

• Using Lemma 4.1 and the definition of Λ̄ in (58), one gets (27).
• Using the diagonal form of S− and S+, condition (26) is automatically satisfied.
• Condition (61) is equivalent to condition (28).

The proof of Proposition 4.9 is complete. �

For the distributed controller synthesis, in the case where H as well as B are spatially-varying we may
generalize the above method. We assume that the parametrized matrices

|Λ(x)|−1H(x) , (63)

and
|Λ(x)|−1B(x) , (64)

lie, respectively, in

R :=

{
R : R =

M1∑
i=1

βiRi,

M1∑
i=1

βi = 1

}
, (65)
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and

Z :=

{
Z : Z =

M2∑
i=1

γiZi,

M2∑
i=1

γi = 1

}
, (66)

for given matrices Ri, Zj , i = 1, . . . ,M1, j = 1, . . . ,M2. In this context we have the following propositions.

Proposition 4.10. Let an integer ` > 0 be given. If there exist ν > 0, µ in R \ {0}, matrices Ui in Rp×n,
i = 1, . . . , `, and diagonal positive definite matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that the following
conditions hold

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
>

+
∑̀
i=1

min
x∈[0,1]

αi(x)
(
Ijkn,m

)−1
U>i Z

>
ι2 +

∑̀
i=1

min
x∈[0,1]

αi(x)Zι2Ui
(
Ijkn,m

)−1 ≤ −2νSjk
∣∣Λ̄∣∣−1 , (67)

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
>

+
∑̀
i=1

max
x∈[0,1]

αi(x)
(
Ijkn,m

)−1
U>i Z

>
ι2 +

∑̀
i=1

max
x∈[0,1]

αi(x)Zι2Ui
(
Ijkn,m

)−1 ≤ −2νSjk
∣∣Λ̄∣∣−1 , (68) S̆01

(
GS̆00

)>
GS̆00 S̆10

 ≥ 0 , (69)

for all ι1 = 1, . . . ,M1, ι2 = 1, . . . ,M2, and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if
µ < 0, then conditions (35), (36), and (37) are satisfied for all x ∈ [0, 1].

Proof. We multiply (67) and (68) by βι1 , γι2 , and make the sum for ι1 = 1, . . . ,M1, ι2 = 1, . . . ,M2, we get

(R(x)− µIn)Sjk + Sjk (R(x)− µIn)
>

+
∑̀
i=1

min
x∈[0,1]

αi(x)
(
Ijkn,m

)−1
U>i Z(x)> +

∑̀
i=1

min
x∈[0,1]

αi(x)Z(x)Ui
(
Ijkn,m

)−1 ≤ −2ν
∣∣Λ̄∣∣−1 Sjk , (70)

(R(x)− µIn)Sjk + Sjk (R(x)− µIn)
>

+
∑̀
i=1

max
x∈[0,1]

αi(x)
(
Ijkn,m

)−1
U>i Z(x)> +

∑̀
i=1

max
x∈[0,1]

αi(x)Z(x)Ui
(
Ijkn,m

)−1 ≤ −2ν
∣∣Λ̄∣∣−1 Sjk . (71)

• Using Lemma 4.1, the definition of Λ̄ in (58) and the fact that any value of a continuous function can
be expressed as a convex combination of its minimum and maximum, one gets (36).

• Condition (35) is automatically satisfied because of the diagonal form of S− and S+.
• Condition (69) is equivalent to condition (37).

The proof of Proposition 4.10 is complete. �
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Since Section 4 gathers a lot of results we propose a summary table.

Stability Analysis
Non Spatially Varying Proposition 4.3
Spatially Varying Proposition 4.7

Controller Synthesis
Boundary Control

Non Spatially Varying Proposition 4.5
Spatially Varying Proposition 4.9

Distributed Control
Non Spatially Varying Proposition 4.6
Spatially Varying Proposition 4.10

Table 1. Summary table of the results of Section 4 relative to the exponential kernel (8).

5. Numerical Experiments

In this section, several examples are presented to illustrate the results of the paper. All the solutions of the
LMIs have been computed with the Yalmip solver [14].

5.1. Stability Analysis, illustrating Proposition 4.3

Example 5.1. Let us consider the following matrices

Λ = diag [−3, 1] ,

F =

[
−1 0.2
1 0.2

]
, (72)

G =

[
0.2 −0.3
0.6 0.1

]
. (73)

The matrix F in (72) is non-Hurwitz and the matrix G in (73) is such that ρ (G) < 1. This last property is
classical for the stability analysis of linear and quasilinear hyperbolic system [6], [10].

Figure 2 shows that the result obtained with only three points for the polytope is optimal. Indeed the
numerical value of ν obtained with three points is the same than with higher number of points. This result
might be expected because all the constraints of the LMI are enclosed by the overapproximation with the
polytope described by three points. The lower curve corresponds to the result of the algorithm when the
objective is to maximize ν. In order to make this objective tractable, a relaxation on the right-hand side of the
inequality (10) is made. The upper curve is the result of the algorithm when the objective is to minimize the
trace of Q(0). Unexpectedly, the second algorithm gives a better ν than the first one.

The Lyapunov function (7) with the affine kernel (19) does not converge, which is not surprising when we
look at LMIs (B.16) and (B.17) in Appendix B. Indeed, to satisfy these latter LMIs we need a large positive
µ, that means a µ near to be one, but in the same time increasing the µ will make the verification of (B.18)
complex. Hence, the Lyapunov function (7) with the affine kernel (19) may not give results when the matrix F
is not Hurwitz.

Example 5.2. Let us consider the following matrices

Λ = diag [−1, 1] ,

F =

[
−0.3 0.1
0.1 −0.3

]
, (74)

G =

[
0.1 −0.8
0.6 −0.4

]
. (75)

In this example the matrix F in (74) is Hurwitz and the matrix G in (75) is contractive that is ρ(G) < 1.
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Figure 2. Evolution of ν as a function of µ for Example 5.1 for the gridding method depending
on the number of points.

Figure 3 shows that the algorithm for which the objective is to minimize the trace of Q(0) seems to give a
better ν than the algorithm for which the objective is to maximize ν. Moreover, it shows that the Lyapunov
function (7) with the affine kernel (19) gives a better ν for the first µ than the exponential kernel (8), and gives
solutions at some µ while the other kernel fails. Moreover, the shape of the curve obtained in this example is
not the same as the one presented in Example 5.1. This comes from the fact that the matrix F is Hurwitz,
hence increasing µ moves the eigenvalues of |Λ|−1 F − µI2 in the left half-plane of C, so it will increase the
parameter ν. The algorithm stops due to LMI (11) which is no more solvable for large µ. Thus, this example
illustrates also Proposition 2.3.

5.2. Controller Design, illustrating Theorems 3.1, B.1, and 3.4

Example 5.3. Let us consider system (1)–(3) with

Λ = diag [−1, 2] , (76)

F =

[
−0.1 0.1
0.5 −0.8

]
, (77)

under the boundary control (25) where

T =

[
−0.5 1
0.5 1

]
,

L> =
[
0.5 −1

]
.

Let us choose ν = 0.1. The design algorithm gives

µ = 0.1580 ,

KB =
[
0.5596 0.7910

]
,
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Figure 3. Evolution of ν as a function of µ for Example 5.2.

which lead to the following

G =

[
−0.2202 1.3955
−0.0596 0.2090

]
. (78)

We check numerically the behavior of the solution to (1)–(3) with the matrix G given by (78), with a two-step
variant of the Lax-Friedrichs (LxF) method [16]. The initial condition is chosen as

y0(x) =

[√
2 sin (πx)√
2 sin (2πx)

]
, x ∈ [0, 1] . (79)

Figure 4 shows the evolution of the state of the system (1)–(3) with initial condition given by (79) and under
the boundary control (78).

Example 5.4. Let us consider system (1)–(3) with

Λ = diag [−2, 1] , (80)

G =

[
0.5 −0.4
0.2 0.8

]
, (81)

under the distributed control (32) where

H =

[
−0.5 0.2
0.2 0.5

]
,

B> =
[
0.5 1

]
,

(`, α) = (1, 1) .

Numerically, ν is fixed to 0.3. The design algorithm gives

µ = 0.15 ,

KD =
[
−0.3130 −1.1485

]
,
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Figure 4. Evolution of the first component y1 (left) and of the second component y2 (right)
of system (1)–(3) with Λ and F given, respectively, by (76) and (77), initial condition given
by (79), and under the boundary control (78).
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Figure 5. Evolution of the first component y1 (left) and of the second component y2 (right)
of system (1)–(3) with Λ and G given, respectively, by (80) and (81), initial condition given
by (79), and under the distributed control (82).

which lead to the following

F =

[
−0.6565 −0.3743
−0.1130 −0.6485

]
. (82)

Figure 5 shows the evolution of the state of the system (1)–(3) with initial condition given by (79) and under
the distributed control (82).
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5.3. Saint-Venant Equations

We illustrate Proposition 4.7 with the Saint-Venant equations for a prismatic horizontal open channel with a
rectangular cross-section and a unit width, as considered in [1]. The dynamics driven the water velocity V (t, x)
and the water level H(t, x) in the pool at time t ∈ R+ and space-location x ∈ [0, L], are described by the
Saint-Venant equations

∂tH(t, x) + ∂x (H(t, x)V (t, x)) = 0 , (83)

∂tV (t, x) + ∂x

(
V 2

2
(t, x) + gH(t, x)

)
+ gC

V 2(t, x)

H(t, x)
= 0 , (84)

with C a friction coefficient and g the gravity acceleration. The channel is provided with some control devices
allowing to assign the flow-rate on both sides of the channel, that is

Q1(t) = H(t, 0)V (t, 0) , (85)

Q2(t) = H(t, L)V (t, L) . (86)

System (83), (84) is non-linear, and the objective is to stabilize the water level at a desired steady state (H∗, V ∗)
which is constant with respect to time but depends on the space variable. Hence, system (83), (84) is linearized
around the steady state (H∗, V ∗), and write in characteristic coordinates. We get

∂ty1(t, x)− λ1(x)∂xy1(t, x) = γ1(x)y1(t, x) + δ1(x)y2(t, x) , (87)

∂ty2(t, x) + λ2(x)∂xy2(t, x) = γ2(x)y1(t, x) + δ2(x)y2(t, x) , (88)

with the characteristics velocities

−λ1(x) = V ∗(x)−
√
gH∗(x) ,

λ2(x) = V ∗(x) +
√
gH∗(x) ,

and the spatially-varying coefficients

γ1(x) =
gCV ∗

2

(x)

H∗(x)

 3

4
(√

gH∗(x) + V ∗(x)
) − 1

V ∗(x)
+

1

2
√
gH∗(x)

+
3gSb

4
(√

gH∗(x) + V ∗(x)
) ,

γ2(x) =
gCV ∗

2

(x)

H∗(x)

 3

4
(√

gH∗(x)− V ∗(x)
) − 1

V ∗(x)
+

1

2
√
gH∗(x)

+
gSb

4
(√

gH∗(x) + V ∗(x)
) ,

δ1(x) =
gCV ∗

2

(x)

H∗(x)

 3

4
(√

gH∗(x) + V ∗(x)
) − 1

V ∗(x)
− 1

2
√
gH∗(x)

− gSb

4
(√

gH∗(x) + V ∗(x)
) ,

δ2(x) =
gCV ∗

2

(x)

H∗(x)

 3

4
(√

gH∗(x)− V ∗(x)
) − 1

V ∗(x)
− 1

2
√
gH∗(x)

− 3gSb

4
(√

gH∗(x) + V ∗(x)
) .

The steady state (H∗, V ∗) satisfies H∗(x)V ∗(x) = Q∗ where Q∗ is a constant and V ∗ satisfies the ODE

dV ∗(x)

dx
=

gC

Q∗(x)

[
V ∗

5

(x)

gQ∗(x)− V ∗3(x)

]
, x ∈ [0, L] ,
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with the initial condition

V ∗(0) = V ∗0 .

The numerical values chosen are L = 1 km, g = 9.81 m.s−2, C = 0.002 s2.m−1, Q∗ = H∗V ∗ = 1 m3.s−1, and
the initial condition V ∗0 = 0.5 m.s−1. We compute numerically the matrices Wi for

µ = 1.4 . (89)

We compute numerically the steady state and the polytope W given by W ∈ W if and only if
Wi,j ∈

[
minx∈[0,1]Wi,j(x),maxx∈[0,1]Wi,j(x)

]
. This corresponds to the convex hull of 16 matrices Wi. Let

us assume the controllers (85) and (86) are such that in the characteristic coordinates one has

[
y1(t, 1)
y2(t, 0)

]
=

[
0 0.2

0.3 0

] [
y1(t, 0)
y2(t, 1)

]
. (90)

It must be stressed that all of this values may be prone to numerical errors since the explicit expression of V ∗

is unknown. Next, we compute matrices Q− and Q+ such that Proposition 4.7 holds. Conditions (56)–(57) are
checked with

Q− = 1 , (91)

Q+ = 10.8171 , (92)

ν = 4.8432 . (93)

Thus, this numerical method is effective on physical device. Figure 6 shows the evolution of the Lyapunov
function V given by (7) with the kernel (8) where Q−, Q+, and µ are given by (91), (92), and (89) respectively,
along the numerical solution to system (87), (88) with boundary condition (90), and of the theoretical bound
e−2νtV

(
y0
)

where ν and y0 are given by (93) and (79) respectively. The theoretical bound ν obtained numeri-
cally is close to the exponential decay of the solution obtained by the numerical integration of the characteristic
Saint-Venant equations (87), (88), and (90).

6. Conclusion

In this work, the stability of a hyperbolic system over a bounded interval with spatially-varying coefficients
was analysed. We have proposed a Lyapunov function and stability conditions based on its time-derivative along
the solutions to the system. These conditions are expressed as LMIs. We also design boundary and distributed
controllers by the same techniques. All these conditions correspond to an infinite number of LMIs. Hence, we
proved that this numerical complexity can be relaxed. We show the effectiveness of the method with academic
examples and with the Saint-Venant equations with friction.
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[7] J.-M. Coron, B. d’Andréa Novel, and G. Bastin. A strict Lyapunov function for boundary control of hyperbolic systems of

conservation laws. IEEE Transactions on Automatic Control, 52:2–11, 2007.
[8] J. Daafouz, M. Tucsnak, and J. Valein. Nonlinear control of a coupled PDE/ODE system modeling a switched power converter

with a transmission line. Systems & Control Letters, 70:92–99, 2014.

[9] F. Di Meglio, R. Vazquez, and M. Krstic. Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a
single boundary input. IEEE Transactions on Automatic Control, 58(12):3097–3111, 2013.

[10] A. Diagne, G. Bastin, and J.-M. Coron. Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws.

Automatica, 48:109–114, 2012.
[11] E. Fridman and Y. Orlov. An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems. Auto-

matica, 45:2060–2066, 2009.
[12] I. Karafyllis and M. Krstic. On the relation of delay equations to first-order hyperbolic partial differential equations. ESAIM:

Control, Optimisation and Calculus of Variations, 20(3):894–923, 2014.

[13] I. Karafyllis, M. Malisoff, and M. Krstic. Ergodic theorem for stabilization of a hyperbolic PDE inspired by age-structured

chemostat. Preprint submitted to arxiv on January 2015. Available at: arxiv.org/pdf/1501.04321.pdf.
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Appendix A. Proof about Remark 2.6

Let us prove that there do not exist a real µ and a diagonal matrix Q such that conditions (10) and (11)
hold for the example of Remark 2.6.

Condition (10) for stability is rewritten as

(F − µI2)
>
Q+Q (F − µI2) < 0 . (A.1)

Condition (11) is rewritten as

1

4
Q ≤ e−2µQ ,

which implies 1
4 ≤ e

−2µ that is µ ≤ ln(4)
2 = λ. To find a matrix F such that it does not exist a diagonal Q such

that (A.1) hold, we suppose that F is written as

F = A+ λI2 =

[
a+ λ b
c d+ λ

]
,

where A =
[
a b
c d

]
. Using (A.1) the matrix A shall satisfy

A>Q+QA < 2 (µ− λ)Q ≤ 0 .

To insure the existence of a solution to the latter Lyapunov equation we suppose that A is Hurwitz (trace(A) =
a + d < 0, det(A) = ad − bc > 0). Without loss of generality the diagonal matrix Q can be written as [ 1 0

0 α ],
with α > 0. One gets

QA+A>Q =

[
2a b+ αc

b+ αc 2αd

]
.

The determinant of the above matrix is given by 4adα− (b+ αc)
2
, which is a polynomial of degree 2 in α,

P (α) = −α2c2 + (4ad− 2bc)α− b2 .

The objective is to obtain a matrix A such that the Lyapunov inequality A>Q + QA < 0 has no diagonal
solution. Hence, if the determinant is negative the counter example is obtained. The determinant of P satisfies

(4ad− 2bc)
2 − 4b2c2 < 0⇔ 16a2d2 − 16adbc < 0

⇔ a2d2 < adbc

⇔ ad (ad− bc) < 0

⇔ ad < 0 .

Hence, with (a, b, c, d) = (−10− λ,−9, 10, 6− λ) we find F and it satisfies the condition on a, b, c, and d.
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Appendix B. Results Relative to the Affine Kernel

In this section, it is gathered the extension to the affine kernel (19) of the propositions proposed in Sections 3
and 4 when considering the exponential kernel (8).

B.1. Boundary Control Synthesis

Theorem B.1. If there exist ν > 0, µ in (−1, 1), a matrix U in Rq×n, and symmetric positive definite matrices

S− in Rm×m, S+ in R(n−m)×(n−m) such that, with S(x) = diag
[
(1 + µx)

−1
S−, (1− µx)S+

]
, the following

conditions hold, for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (B.1)

− 2µS(0) + S(x)F>(x) |Λ(x)|−1 + |Λ(x)|−1 F (x)S(x) ≤ −2νS(x) |Λ(x)|−1 , (B.2)[
diag [S−, (1− µ)S+] (TS(0) + LU)

>

TS(0) + LU diag
[
(1 + µ)

−1
S−, S+

]] ≥ 0 , (B.3)

then the boundary control given by (25) with

KB = US−1(0) , (B.4)

is such that system (1)–(3) is GES and a Lyapunov function of the form (7) exists with Q(x) = S−1(x).

Proof. The proof is similar to the one of Theorem 3.1. Replacing U by KBS(0) and applying the Schur
complement formula in (B.3) one gets

diag
[
S−, (1− µ)S+

]
− S(0) (T + LKB)

>
diag

[
(1 + µ)

−1
S−, S+

]−1
(T + LKB)S(0) ≥ 0 . (B.5)

Reassembling the term in one matrix and multiplying from the left and right by S−1(0) we get the matrix

M̃ =

[
M̃−− M̃−+
M̃+− M̃++

]
≥ 0 , (B.6)

with

M̃−− =
(
S−
)−1 − (1 + µ) (T + LKB)

>
−−
(
S−
)−1

(T + LKB)−− − (T + LKB)
>
+−
(
S+
)−1

(T + LKB)+− ,

M̃−+ = − (1 + µ) (T + LKB)
>
−−
(
S−
)−1

(T + LKB)−+ − (T + LKB)
>
+−
(
S+
)−1

(T + LKB)++ ,

M̃+− = M̃>−+ ,

M̃++ = (1− µ)
(
S+
)−1 − (1 + µ) (T + LKB)

>
−+
(
S−
)−1

(T + LKB)−+

− (T + LKB)
>
++

(
S+
)−1

(T + LKB)++ .

Letting Q− = (S−)
−1

, Q+ = (S+)
−1

we get

• condition (20) by multiplying left and right (B.1) by Q(x),
• condition (21) by multiplying left and right (B.2) by Q(x),

• condition (22) from the matrix M̃ in (B.6).

It concludes the proof of Theorem B.1. �
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B.2. Distributed Control Synthesis

Henceforth, for a given µ in (−1, 1) let us denote Ian,m(x) the matrix

Ian,m(x) = diag [(1 + µx) Im, (1− µx) In−m] (B.7)

Theorem B.2. Let an integer ` > 0 be given. If there exist ν > 0, µ in (−1, 1), matrices Ui in Rp×n,
i = 1, . . . , `, and symmetric positive definite matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that, with

S(x) = diag
[
(1 + µx)

−1
S−, (1− µx)

−1
S+
]
, the following conditions hold, for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (B.8)(
|Λ(x)|−1H(x)− µIn

)
S(x) + S(x)

(
|Λ(x)|−1H(x)− µIn

)>
+
∑̀
i=1

αi(x)
(
Ian,m(x)

)−1
U>i B

>(x) |Λ(x)|−1 +
∑̀
i=1

αi(x) |Λ(x)|−1B(x)Ui
(
Ian,m(x)

)−1
≤ −2νS(x) |Λ(x)|−1 , (B.9)[
diag [S−, (1− µ)S+] (GS(0))

>

GS(0) diag
[
(1 + µ)

−1
S−, S+

]] ≥ 0 , (B.10)

with Ian,m(x) given in (B.7), then the distributed control given by (32) and (33) with

Ki = UiS
−1(0) , i = 1, . . . , ` , (B.11)

is such that system (1)–(3) is GES and a Lyapunov function of the form (7) exists with Q(x) = S−1(x).

Proof. The proof of Theorem B.2 is immediate with the proof of Theorems B.1 and 3.4. �

B.3. Overapproximation: Λ and F constants

Conditions of Proposition 2.5 can be easily verified. For fixed µ in (−1, 1), Q− in Rm×m, Q+ in R(n−m)×(n−m),
we write

Q0 = diag
[
Q−, Q+

]
, (B.12)

Q1 = diag
[
(1 + µ)Q−, (1− µ)Q+

]
, (B.13)

and we have the following proposition.

Proposition B.3. If there exist ν ∈ R+, µ ∈ (−1, 1), and symmetric positive definite matrices Q− in Rm×m
and Q+ in R(n−m)×(n−m) such that

Q0Λ = ΛQ0 , (B.14)

Q1Λ = ΛQ1 , (B.15)

− µQ0 + F> |Λ|−1Q0 +Q0 |Λ|−1 F ≤ −2ν |Λ|−1Q0 , (B.16)

− µQ0 + F> |Λ|−1Q1 +Q1 |Λ|−1 F ≤ −2ν |Λ|−1Q1 , (B.17)[
Im 0m,n−m
G+− G++

]> [ −Q− 0m,n−m

0n−m,m Q+

] [
Im 0m,n−m
G+− G++

]
≤
[

G−− G−+

0n−m,m In−m

]> [−(1−µ)Q− 0m,n−m

0n−m,m (1+µ)Q+

] [
G−− G−+

0n−m,m In−m

]
,

(B.18)
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then conditions (20), (21), and (22) are satisfied for all x ∈ [0, 1].

Proof. Note that Q(x) satisfies

Q(x) = diag
[
(1 + µx)Q−, (1− µx)Q+

]
= (1− x)Q0 + xQ1 .

Since 1 − x (resp. x) is positive and Q0 (resp. Q1) verifies (B.16) (resp. (B.17)) then (1 − x)Q0 (resp. xQ1)
verifies also (B.16) (resp. (B.17)). Hence, condition (21) holds. In the same manner condition (20) holds. The
verification of (22) is immediate since (B.18) is equivalent. It concludes the proof of Proposition B.3. �

Similarly to what have been done with the exponential kernel (8), we can find some tractable conditions for
the checking of conditions of Theorems B.1 and B.2. For fixed µ in (−1, 1), S− in Rn×n, S+ in R(n−m)×(n−m),
we write

S(x) = diag
[
[(1 + µx)

−1
S−, (1− µx)

−1
S+
]
, x ∈ [0, 1] , (B.19)

and for i, j = 0, 1,

S̃ij = diag
[
(1 + µi)

−1
S−, (1− µj)−1 S+

]
, (B.20)

Ŝij = diag
[
(1 + µi)

−1
S−, (1− µj)S+

]
, (B.21)

Îijn,m = diag [(1 + µi) Im, (1− µj) In−m] . (B.22)

Since (B.19) is no more affine in the (S−, S+)-plane we need the following lemma.

Lemma B.4. For all x ∈ [0, 1], S(x) lies in the convex hull of
{
S̃00, S̃10, S̃11

}
if µ > 0 and of

{
S̃00, S̃01, S̃11

}
if µ < 0.

Proof. We assume that µ > 0, the case µ < 0 is analogous. The map S(x) is a parametrized curve in the
(S−, S+)-plane. We can express it as an explicit curve. We have (1 + µx)−1(1 − µx)−1 = (1 − µ2x2)−1, thus
the expression of the explicit curve is given by

h̃(X) =
X

2X − 1
, X ∈ ρ̃ =

[
(1 + µ)

−1
, 1
]
.

This curve is convex on this interval. Then,

h̃
(
α (1 + µ)

−1
+ (1− α)

)
≤ αg̃

(
(1 + µ)

−1
)

+ (1− α)g̃(1) , α ∈ (0, 1) ,

where g̃(X) =
(

(1+µ)−1−1
(1−µ)−1−1

)
X + (1 + µ)

−1
+ 1. When X lies in ρ̃, g̃(X) describes the straight line between S̃00

and S̃11. Hence, for X ∈ ρ̃ one has h̃(X) ≤ g̃(X). Thus, S lies in the convex hull of
{
S̃00, S̃10, S̃11

}
. �

Proposition B.5. If there exist ν > 0, µ in (−1, 0) ∪ (0, 1), a matrix U in Rq×n, and symmetric matrices S−

in Rm×m, S+ in R(n−m)×(n−m) such that the following conditions hold,

S̃ijΛ = ΛS̃ij , (B.23)

− 2µS̃ij + S̃ijF
> |Λ|−1 + |Λ|−1 FS̃ij ≤ −2νS̃ij |Λ|−1 , (B.24) Ŝ01

(
T Ŝ00 + LU

)>
T Ŝ00 + LU Ŝ10

 ≥ 0 , (B.25)
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for (i, j) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0 and for (i, j) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then conditions (B.1), (B.3),
and (B.2) are satisfied for all x ∈ [0, 1].

Proof. We have that

• the inequality (B.25) is equivalent to (B.3),
• by Lemma B.4 the constraint of equality (B.1) and LMI (B.3) are embedded in the polytope built by

the points S̃00, S̃10, and S̃11 if µ > 0 or by the points S̃00, S̃01, and S̃11 if µ < 0.

Thus, conditions (B.1), (B.2), and (B.3) are satisfied for all x ∈ [0, 1]. The proof of Proposition B.5 is complete.
�

Proposition B.6. Let an integer ` > 0 be given. If there exist ν > 0, µ in (−1, 0) ∪ (0, 1), matrices Ui in
Rp×n, i = 1, . . . , `, and symmetric positive definite matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that the
following conditions hold,

S̃jkΛ = ΛS̃jk , (B.26)(
|Λ|−1H − µIn

)
S̃jk + S̃jk

(
|Λ|−1H − µIn

)>
+
∑̀
i=1

min
x∈[0,1]

αi(x)
(
Îjkn,m

)−1
U>i B

> |Λ|−1 +
∑̀
i=1

min
x∈[0,1]

αi(x) |Λ|−1BUi
(
Îjkn,m

)−1
≤ −2νS̃jk |Λ|−1 , (B.27)

(
|Λ|−1H − µIn

)
S̃jk + S̃jk

(
|Λ|−1H(x)− µIn

)>
+
∑̀
i=1

max
x∈[0,1]

αi(x)
(
Îjkn,m

)−1
U>i B

> |Λ|−1 +
∑̀
i=1

max
x∈[0,1]

αi(x) |Λ|−1BUi
(
Îjkn,m

)−1
≤ −2νS̃jk |Λ|−1 , (B.28) Ŝ01

(
GŜ00

)>
GŜ00 Ŝ10

 ≥ 0 , (B.29)

for (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0 and for (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then conditions (B.8), (B.9),
and (B.10) are satisfied for all x ∈ [0, 1].

Proof. First of all the maximum and the minimum of αi, i = 1, . . . , `, are well-defined since αi are continuous
functions defined in the compact [0, 1]. We have that

• the inequality (B.29) corresponds to (B.10),
• by Lemma B.4 the constraint of equality (B.8) and LMI (B.9) are embedded in the polytope built by

the points S̃00, S̃10, and S̃11 if µ > 0 or by the points S̃00, S̃01, and S̃11 if µ < 0.

Thus, conditions (B.8), (B.9), and (B.10) are satisfied for all x ∈ [0, 1]. The proof of Proposition B.6 is
complete. �
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B.4. Overapproximation: Λ and F spatially-varying

Similar results may be stated for the stability conditions and controller design conditions whenever Λ and F
are spatially varying. We are considering the sets W, R, and Z defined in (55), (65), and (66) respectively. Let
us remind that, for all i = 1, . . . , N , Wi are in W, for all j = 1, . . . ,M1, Rj are in R, and for all k = 1, . . . ,M2,
Zk are in Z.

Proposition B.7. If there exist ν > 0, µ in (−1, 1), and diagonal positive definite matrices Q− in Rm×m and
Q+ in R(n−m)×(n−m) such that

− µQ0 +W>i Q0 +Q0Wi ≤ −2ν
∣∣Λ̄∣∣−1Q0 , (B.30)

− µQ0 +W>i Q1 +Q1Wi ≤ −2ν
∣∣Λ̄∣∣−1Q1 , (B.31)[

Im 0m,n−m
G+− G++

]> [ −Q− 0m,n−m

0n−m,m Q+

] [
Im 0m,n−m
G+− G++

]
≤
[

G−− G−+

0n−m,m In−m

]> [−(1−µ)Q− 0m,n−m

0n−m,m (1+µ)Q+

]
×
[

G−− G−+

0n−m,m In−m

]
, (B.32)

for all i = 1, . . . , N , where
∣∣Λ̄∣∣ is defined in (58) and Q0, Q1 are respectely defined in (B.12), (B.13), then

conditions (20), (21), and (22) are satisfied for all x ∈ [0, 1].

Proof. The proof is similar to the proof of Proposition 4.7. Multiplying (B.30) and (B.31) by αi and making
the sum for i = 1, . . . , N , we get

− µQ0 +W (x)>Q0 +Q0W (x) ≤ −2ν
∣∣Λ̄∣∣−1Q0 (B.33)

− µQ0 +W (x)>Q1 +Q1W (x) ≤ −2ν
∣∣Λ̄∣∣−1Q1 , (B.34)

for all x ∈ [0, 1].

• Using the fact that
Q(x) = (1− x)Q0 + xQ1 ,

and the definition of Λ̄ in (58), one gets (21).
• Condition (20) is automatically satisfied because of the diagonal form of Q− and Q+.

The proof of Proposition B.7 is complete. �

Proposition B.8. If there exist ν > 0, µ in (−1, 0)∪ (0, 1), a matrix U in Rq×n, and diagonal positive definite
matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that, the following conditions hold,

− 2µS̃jk + S̃jkW
>
i +WiS̃jk ≤ −2νS̃jk

∣∣Λ̄∣∣−1 , (B.35) Ŝ01

(
T Ŝ00 + LU

)>
T Ŝ00 + LU Ŝ10

 ≥ 0 , (B.36)

for all i = 1, . . . , N , and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then
conditions (B.1), (B.2), and (B.3) are satisfied for all x ∈ [0, 1].

Proof. As in the proofs of Proposition 4.7 and 4.9 we multiply (B.35) by αi, and make the sum for i = 1, . . . , N ,
getting

−2µS̃jk + S̃jkW (x)> +W (x)S̃jk ≤ −2νS̃jk
∣∣Λ̄∣∣−1 , (B.37)

for all x ∈ [0, 1], (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0.

• Using Lemma B.4 and the definition of Λ̄ in (58), one gets (B.2).
• Condition (B.1) is automatically satisfied because of the diagonal form of S− and S+.
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• Condition (B.3) is equivalent to condition (B.36).

The proof of Proposition B.8 is complete. �

Proposition B.9. Let an integer ` > 0 be given. If there exist ν > 0, µ in (−1, 0)∪ (0, 1), matrices Ui in Rp×n,
i = 1, . . . , `, and diagonal positive definite matrices S− in Rm×m, S+ in R(n−m)×(n−m) such that the following
conditions hold

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
>

+
∑̀
i=1

min
x∈[0,1]

αi(x)
(
Îjkn,m

)−1
U>i Z

>
ι2 +

∑̀
i=1

min
x∈[0,1]

αi(x)Zι2Ui

(
Îjkn,m

)−1
≤ −2νSjk

∣∣Λ̄∣∣−1 , (B.38)

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
>

+
∑̀
i=1

max
x∈[0,1]

αi(x)
(
Îjkn,m

)−1
U>i Z

>
ι2 +

∑̀
i=1

max
x∈[0,1]

αi(x)Zι2Ui

(
Îjkn,m

)−1
≤ −2νSjk

∣∣Λ̄∣∣−1 , (B.39) Ŝ01

(
GŜ00

)>
GŜ00 Ŝ10

 ≥ 0 , (B.40)

for all ι1 = 1, . . . ,M1, ι2 = 1, . . . ,M2, and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if
µ < 0, then conditions (B.8), (B.9), and (B.10) are satisfied for all x ∈ [0, 1].

Proof. Using Lemma B.4 and the proof of Proposition 4.10 the result follows. �

As for Section 4 we propose a summary table for the results of Appendix B.

Stability Analysis
Non Spatially Varying Proposition B.3
Spatially Varying Proposition B.7

Controller Synthesis
Boundary Control

Non Spatially Varying Proposition B.5
Spatially Varying Proposition B.8

Distributed Control
Non Spatially Varying Proposition B.6
Spatially Varying Proposition B.9

Table 2. Summary table of the results of Appendix B relative to the affine kernel (19).


