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Optimization of strain selection in evolutionary continuous culture

Terence Bayen∗, Francis Mairet†

June 16, 2016

Abstract

In this work, we study a minimal time control problem for a perfectly mixed continuous culture with
n ≥ 2 species and one limiting resource. The model that we consider includes a mutation factor for the
microorganisms. Our aim is to provide optimal feedback control laws to optimize the selection of the
species of interest. Thanks to Pontryagin’s Principle, we derive optimality conditions on optimal controls
and introduce a sub-optimal control law based on a most rapid approach to a singular arc that depends
on the initial condition. Using adaptive dynamics theory, we also study a simplified version of this model
which allows to introduce a near optimal strategy.

Keywords. Process control. Biotechnology. Chemostat model. Optimal feedback. Pontryagin Maximum
Principle. Singular control.

1 Introduction

Continuous culture can be used to select through competition microorganisms of interest from a pool of species
(initially present or appearing through mutations) [15, 18]. In a chemostat (i.e. with a constant dilution rate),
the competitive exclusion principle (see [23]) states that the species which can grow at a rate equal to the
dilution rate with the smallest substrate concentration survives whereas the others disappear as time goes to
infinity. Thus, this operating mode allows species selection. The question, then, is whether it is possible to
drive the competition between species in order to speed up the selection process. Based on optimal control
theory, our aim is to find an optimal dilution strategy in order to minimize the time to reach a certain target
where a given species is predominant.

This problem has been tackled in [1] in the case of two species. For this minimum time control problem,
it is shown that the optimal strategy is of type Bang-Singular with at most one switching point, i.e. it is the
concatenation of a bang arc (for which the control is extremal) and of a singular arc (for which the control is
not extremal). The singular arc consists in the regulation of the substrate (i.e. an auxostat) at a set-point
corresponding to the maximum of the difference between the growth rates of both species. Considering a more
realistic framework of a selection process, we study in this paper the case of n ≥ 2 species with mutations: each
species i gives rise to neighbor species i − 1 and i + 1. We use the Pontryagin Maximum Principle (see [22])
to derive necessary optimality conditions on optimal controls, and we show that any singular arc is contained
in a hyperplane of the state space corresponding to a constant substrate concentration σ. This allows us to
propose a feedback control law of type Bang-Singular as in the case n = 2. We present numerical simulations
obtained by a direct method that validate the proposed control law based on a most rapid approach to a
singular arc (see [1, 7]). For n ≥ 3 and contrary to the case n = 2, the singular arc may depend on the initial
condition i.e. the value of σ depends both on the characteristics of the system and on the initial condition.
This phenomenon has been also encountered in [14] for the optimization of a fed-batch system. An alternative
approach to the determination of σ is to use adaptive dynamics (see [10, 11]). This will allow us to provide a
near optimal strategy that can be useful for a practitioner.

The paper is organized as follows. After the problem statement (Section 2), we apply in Section 3 the
Pontryagin Maximum Principle to derive optimality conditions on the problem and we tackle the determination
of an optimal value σ for the singular arc using second order necessary conditions (see [4, 17]). We also provide
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numerical simulations to validate the proposed control law based on a most rapid approach to a singular arc
that depends on initial conditions. In the last section, we propose a near-optimal strategy for a simplified
model derived from the adaptive dynamics theory which can be easily implemented and also overcomes the
difficulty to obtain an optimal value of σ along a singular arc.

2 Statement of the problem

We consider the growth of n species (with concentration xi, 1 ≤ i ≤ n) in competition for one limiting
substrate (with concentration s) in a chemostat model (see [23]). Assuming small mutations with a constant
mutation rate a� 1 (i.e. mutations of species i creates species i− 1 and i+ 1), the mutation-selection process
can be represented by the following controlled system:{

ẋi = (µi(s)− u)xi + a(xi+1 + xi−1)− 2aixi,

ṡ = −
∑

1≤j≤n µj(s)xj + u(sin − s),
(2.1)

where 1 ≤ i ≤ n and the convention x0 = xn+1 = 0. The parameter ai is defined by:

ai :=

{
a/2 if i ∈ {1, n},
a if i ∈ {2, ..., n− 1}.

Here, sin is the input substrate concentration, u is the dilution rate (which is the control variable in this
setting), µi is the specific growth rate of species i, and we have considered adimensioned yield coefficients.
System (2.1) can be seen as an approximation of the population dynamics model{

∂tx(t, ϕ) = (µ(s(t), ϕ)− u)x(t, ϕ) + α∆ϕx(t, ϕ),

ṡ(t) = −
∫
R∗+
µ(s(t), ϕ)x(t, ϕ)dϕ+ u(sin − s(t)),

(2.2)

where x(t, ϕ) stands for the distribution of a phenotypic trait ϕ ∈ R∗+, µ is the growth rate function depending
on s and ϕ, and the diffusion term ∆ϕx(t, ϕ) represents mutations (here α > 0). Such kind of model has been
widely used in adaptive dynamics in order to represent and analyze evolution by selection and mutations (see
e.g. [19, 21]).

As a case study, we consider the following hypotheses on the specific growth rates (see Fig. 1):

(H1) The growth functions of the species for (2.1) are of Monod type:

µi(s) := µ̄
s

ki + s
, 1 ≤ i ≤ n, (2.3)

where µ̄ > 0 is the maximum growth rate and 0 < k1 < k2 < ... < kn are the half-saturation constants.

This hypothesis is based on experimental observations in chemostat cultures: the mutation-selection process
can increase the number of substrate transporters and thus decrease the half-saturation constant ki (see e.g
[13, 20]).

It is convenient to introduce the variable M defined by M := s +
∑

1≤j≤n xj which represents the total
mass of the system. By differentiating M w.r.t. t, one finds:

Ṁ = u(sin −M). (2.4)

Therefore the set E defined by

E :=
{

(x, s) ∈ R∗+ × · · · × R∗+ × [0, sin] ; s+
∑

1≤j≤n

xj = sin

}
, (2.5)

is invariant and attractive for system (2.1). For sake of simplicity, we consider initial conditions in this set, so
the system can be reduced as follows:

ẋi = (µi(s)− u)xi + a(xi+1 + xi−1)− 2aixi, (2.6)

2



Figure 1: Picture Left: Specific growth rate for the initial strain (in blue) and the selected strain (in red) after
ten days of chemostat culture [20]. Picture right: Specific growth rate µi for n = 20 species.

where 1 ≤ i ≤ n and s = sin −
∑

1≤j≤n xj . Initial conditions for (2.6) are taken within the invariant set F
defined by

F :=
{
x ∈ Rn+ ; 0 <

∑
1≤j≤n

xj ≤ sin
}
.

Given η ≥ 0 we also consider the following set of initial conditions Fη defined by:

Fη :=
{
x ∈ F ; x1 ≥ η and xi ≥ 0, 2 ≤ i ≤ n

}
.

It will be useful when studying the system without mutations (i.e. when a = 0). In this case, we will assume
that the concentration of the first species is initially over a given threshold (but all the species do not need to
be present initially). The set of admissible controls is defined by:

U := {u : [0,+∞)→ [0, umax] ; u meas.}, (2.7)

where umax denotes the maximal dilution rate. Without any loss of generality we suppose that umax = 1.
Next, we consider that the dilution rate can be chosen large enough in order to compete the growth of the
species which amounts to do the following hypothesis:

(H2) The parameter µ̄ is such that µ̄ < 1.

The target set T is then defined by:

T :=
{
x ∈ F ;

∑
1≤j≤n

kjxj ≤ k̃
∑

1≤j≤n

xj

}
, (2.8)

where k1 < · · · < kp < k̃ < kp+1 < · · · < kn, with p ∈ {2, . . . , n − 2}. It corresponds to the selection of a

population with a low weighted averaged half-saturation constant k̂:

k̂ :=

∑
1≤j≤n kjxj∑

1≤j≤n xj
≤ k̃.

The optimal control problem can be now stated as follows. Given an initial condition x0 = (x0
1, ..., x

0
n) ∈ F ,

our aim is to find a control u ∈ U steering the solution xu(·) of (2.6) from x0 to the target T in minimal time:

inf
u∈U

Tu s.t. xu(Tu) ∈ T , (2.9)

where Tu ∈ [0,+∞] is the first entry time into the target T . If possible, one would like to obtain a feedback
control law driving (2.6) in minimal time to the target T .

Let us now discuss the existence of an optimal control for (2.9). Without mutation (i.e. when a = 0),
the competitive exclusion principle (see [23]) implies that for a constant value for the control u < µ1(sin), we
have:

lim
t→+∞

x1(t) > 0 and lim
t→+∞

xi(t) = 0, i > 1. (2.10)
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This property then provides a strategy that steers any initial condition to the target set in finite horizon (as
k1 < k̃). With mutations, it has been shown in [9] that the washout is the unique steady state on the boundary
of Rn+, i.e. there are no mono-species steady-states. Nonetheless, in the limit of small mutations, it was proved
in [19] that the population converges towards dirac masses on a structured model of species competition. In
our case study, we give the following controllability result.

Proposition 2.1. Given η > 0, there exists a0 > 0 such that for any mutation rate a satisfying 0 ≤ a ≤ a0,
the target is reachable from any initial condition in Fη.

Proof. Let ε > 0 be such that k̃ − ε > k1 and Tε ⊂ T be defined by:

Tε :=
{
x ∈ F ;

∑
1≤j≤n

kjxj ≤ (k̃ − ε)
∑

1≤j≤n

xj

}
. (2.11)

First step: study of the case a = 0. For any initial condition x0 ∈ Fη, any constant control ū < µ1(sin) steers
the unique solution of (2.6) with a = 0 from x0 to the set Tε in a finite time τū(x0). This follows using the
competitive exclusion principle as k1 < k̃ − ε (see [23] and recall (2.10)). Moreover, for any initial condition
in Fη, we can utilize the same value of the control (i.e. u = ū). Now, the mapping x0 7→ τū(x0) can be
interpreted as the first entry time into the target Tε. Therefore it corresponds to the minimal time function to
reach Tε from x0 with (2.6) and where the set of admissible controls is reduced to the constant control equal
to ū. Using standard regularity results for the value function (see [6]), the mapping τ is continuous over Fη
which is a compact subset of Rn+. Hence, τ is bounded over this set and thus there exists T > 0 such that for
any x0 ∈ Fη, the solution of (2.6) with a = 0 reaches Tε in time less or equal than T .

Second step: study of the case a 6= 0. The dynamics (2.6) depends linearly on the parameter a ≥ 0. By
classical results of differentiable dependance w.r.t. parameters for the solutions of an ordinary differential
equation, the mapping a 7−→ x(T, x0, a) is of class C1 (where x(·, x0, a) denotes the unique solution of (2.6)
starting from x0 at t = 0). We deduce that for 1 ≤ i ≤ n, one has:

∂xi
∂a

(T, x0, a) =

∫ T

0

gi(x(t, x0, a)) dt,

where gi(x) := xi+1 + xi−1 − 2xi for 2 ≤ i ≤ n, g1(x) = x2 − x1, and gn(x) = xn−1 − xn. As trajectories lie
in the set F , one has 0 ≤ xi(t) ≤ sin for any time t ≥ 0 and for 1 ≤ i ≤ n. Thus, one finds:

|xi(T, x0, a)− xi(T, x0, 0)| ≤ sup
a≥0

∣∣∣∣∣
∫ T

0

gi(x(t, x0, a)) dt

∣∣∣∣∣ ≤ 4Tsin|a|, 1 ≤ i ≤ n.

In particular, there exists a0 > 0 such that for any a ∈ R, one has:

0 ≤ a ≤ a0 ⇒ ∀x0 ∈ Fη, x(T, x0, a) ∈ T ε
2
.

It follows that for any a ∈ [0, a0], any solution of (2.6) starting in Fη has reached the target set T in time less
than T which ends the proof.

Remark 2.1. (i) We point out the fact that if a = 0 and xi(0) = 0 for 1 ≤ i ≤ p, then the target cannot be
reached by (2.6) with a = 0. Thus, the reasoning above does not hold any more. This explains the choice of
taking initial conditions in the set Fη.
(ii) If now x0

1 > 0 but x0 /∈ Fη, then the previous proof shows that the system can reach the target in a finite
horizon T ≥ 0. However, T could be arbitrarily long in this case as x0

1 can be very small. Nevertheless, it is
still possible to apply the reasoning above to show that for a fixed initial condition x0 ∈ F such that x0

1 > 0,
then if a is small enough the system (2.6) will reach the target in a finite horizon. In that case, a0 is not
uniform (i.e. it depends on initial conditions).

We now investigate optimal strategies steering (2.6) in minimal time to the target set T .
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3 Optimality results

3.1 Pontryagin Maximum Principle

In this part, we derive necessary optimality conditions for problem (2.9) using the Pontryagin Maximum
Principle (PMP), see e.g [22]. First, the existence of an optimal control for problem (2.9) follows directly from
Fillipov’s Theorem (see e.g [8]) using standard compactness arguments and the fact that the target can be
reached from any initial condition in Fη (η > 0) (this is guaranteed by Proposition 2.1 at least when a is small
enough). Recall now that the normal cone NC(x) to a non-empty closed convex set C ⊂ Rn is defined at some
point x ∈ C by NC(x) := {y ∈ Rn, 〈y, c− x〉 ≤ 0, ∀c ∈ C} where 〈·, ·〉 denotes the usual scalar product over
Rn. We denote by H : Rn × Rn × R× R→ R the Hamiltonian associated to (2.9), that is:

H = H(x, λ, η, u) =
∑

1≤j≤n

λj (µj(s)xj + a(xj−1 + xj+1)− 2ajxj)− u
∑

1≤j≤n

λjxj + η,

where λ = (λ1, · · · , λn) denotes the adjoint vector. Let u ∈ U an optimal control, x(·) the corresponding
trajectory starting from a point x0 ∈ F , and Tu the terminal time corresponding to the control u. Then, there
exists an absolutely continuous function λ : [0, Tu] → Rn and η ≤ 0 such that the following conditions are
satisfied:

• The pair (λ, η) is non-trivial i.e.:
(λ(·), η) 6= 0. (3.1)

• With the convention that λ0 = λn+1 = 0, the adjoint vector satisfies almost everywhere the adjoint
equation on [0, Tu]: λ̇i(t) = − ∂H

∂xi
(x(t), λ(t), η, u(t)), 1 ≤ i ≤ n, or equivalently

λ̇i = −λi(µi(s)− u)− a(λi−1 + λi+1) + 2aiλi +
∑

1≤j≤n

λjµ
′
j(s)xj , 1 ≤ i ≤ n. (3.2)

• The control u satisfies the maximization condition almost everywhere on [0, Tu]:

u(t) ∈ arg max
0≤v≤1

H(x(t), λ(t), η, v). (3.3)

• The adjoint vector satisfies the transversality condition at the terminal time Tu (see e.g. [24]):

λ(Tu) ∈ −NT (x(Tu)). (3.4)

We call extremal trajectory a quadruplet (x, λ, η, u) satisfying (2.6)-(3.2)-(3.3). If η < 0, resp. η = 0, then
we say that the extremal is a normal extremal, resp. an abnormal extremal. In the normal case, we can
always assume that η = −1 by homogeneity of the Hamiltonian and the linearity of (3.2). As the system is
autonomous, the Hamiltonian is conserved along any extremal trajectory, moreover the value of H is zero as
the terminal time is free. Hence, any extremal trajectory satisfies:

H(x(t), λ(t), η, u(t)) = 0. (3.5)

for any time t ∈ [0, Tu]. The switching function φ associated to the control u is defined by:

φ :=
∂H

∂u
= −

∑
1≤j≤n

λjxj (3.6)

From (3.3), we obtain the following control law. For a.e. t ∈ [0, Tu] one has: φ(t) > 0 ⇒ u(t) = 1,
φ(t) < 0 ⇒ u(t) = 0,
φ(t) = 0 ⇒ u(t) ∈ [0, 1].

(3.7)

If the control u is non-constant in any neighborhood of a point t0, then we say that t0 is a switching point
which implies that φ(t0) = 0. A singular arc is a time interval I = [t1, t2] where the switching function φ
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vanishes over I. We then say that the trajectory is singular on the interval I (see [4, 17]). The singular control
is defined as the control us(·) such that the associated trajectory is singular (its expression can be obtained
by differentiating twice φ w.r.t. t in the case of a singular arc of order 1, see [4, 17]). We say that the singular
arc is admissible provided that us ∈ [0, 1] over I. If the switching function is such that φ > 0, resp. φ < 0 on
a time interval I, then we say that the trajectory contains a bang arc B+, resp. a bang arc B−. The behavior
of φ is important to study the optimal trajectories. By differentiating the switching function w.r.t. t, we find
that φ̇ satisfies:

φ̇ = −(sin − s)
∑

1≤j≤n

λjµ
′
j(s)xj , (3.8)

over the interval [0, Tu]. Let us now explicit the transversality condition. As the boundary of T is a hyperplane,
the adjoint vector at the terminal time is given by

λ(Tu) = −α

 k1 − k̃
...

kn − k̃

 , (3.9)

where α ∈ R+. Using that x(Tu) belongs to the boundary of the set T , we find that

φ(Tu) = 0. (3.10)

Hence, the switching function vanishes at the first entry time into the target. As a consequence, it can be
expected that an optimal trajectory is singular in a left neighborhood of the terminal time Tu in order to
satisfy the transversality condition (3.10).

3.2 Characterization of the singular arcs

Singular arcs are of particular interest in the optimal synthesis of the problem. In fact, we will see that the
singular control can be expressed in feedback form (that is, us will be written in terms of the state variables
only). Moreover, they provide a feeding strategy steering (2.6) to the target set. In the next proposition, we
give a geometric characterization of singular arcs.

Proposition 3.1. Suppose that an extremal trajectory contains a singular arc on a time interval I := [t1, t2].
Then, there exists σ ∈ (0, sin) such that for any time t ∈ I we have s(t) = σ.

Proof. Consider an extremal trajectory defined over a time interval [0, Tu] and suppose that there exists a
time interval I = [t1, t2] where φ is zero. Then, by differentiating φ w.r.t. t, we obtain:∑

1≤j≤n

λjxj(t)µ
′
j(s(t)) = 0, (3.11)

for any time t ∈ I. Suppose now that there exists t0 in the interior of I such that ṡ(t0) 6= 0. By standard
results in optimal control theory (see e.g [5]) we know that a singular control is smooth in a neighborhood of t0
in I. Thus, ṡ is continuous in a neighborhood V of t0 and we deduce that ṡ(t) 6= 0 for t ∈ V. By differentiating
(3.11) w.r.t. t and using the fact that ṡ 6= 0 in V, we find that∑

1≤j≤n

λj(t)xj(t)µ
′′
j (s(t)) = 0. (3.12)

By induction, it follows that for any t ∈ V we have:∑
1≤j≤n

λj(t)xj(t)µ
(k)
j (s(t)) = 0, 1 ≤ k ≤ n, (3.13)

where s 7−→ µ
(k)
j (s) is the k-th derivative of µj w.r.t. s. Now, let us define a map y : V → Rn by:

y(t) := (λ1(t)x1(t), . . . , λn(t)xn(t)),

and a matrix A(s) = (ak,j(s))1≤k,j≤n ∈ Mn(R) by ak,j(s) := µ
(k)
j (s). From (3.13), we find that for any time

t ∈ V, y(t) is in the kernel of A(s(t)). Now, as the µj are rational fractions linearly independent (see (H1)),

6



the equation det(A(s)) = 0 has at most a finite number of solutions over R. If Z denotes the set of solutions
of the algebraic equation det(A(s)) = 0, then by reducing V if necessary, we can find a neighborhood V ′ of t0
where y(t) ∈ kerA(s(t)) and s(t) /∈ Z for any time t ∈ V ′. Therefore, the vector y(t) must be zero in V ′ i.e.
we must have λ = 0 on V ′. As the adjoint equation is linear w.r.t. λ, we obtain that λ is zero along [0, Tu]. If
η is non-zero, then we obtain a contradiction with H = 0. We deduce that η must be zero and we have again
a contradiction with the PMP as we would have (η, λ) = 0. Thus one has ṡ(t) = 0 for every time t ∈ I. As
t 7−→ us(t) is smooth over I, we deduce that s is constant over I which ends the proof.

Hereafter, we will denote by Sσ a singular arc corresponding to a constant substrate concentration s = σ
over a time interval I, which corresponds to an auxostat (see e.g [2]). In the invariant manifold F , a singular
arc corresponds also to a turbidostat (i.e. a constant biomass concentration). These operating modes are
commonly used for strain selection (see e.g [2]). We now show that a singular arc is always admissible:

Corollary 3.1. Consider a singular extremal trajectory defined over a time interval I := [t1, t2] and let
σ ∈ (0, sin) such that for any t ∈ I one has s(t) = σ. Then, the singular control us is admissible and can be
expressed in feedback form as:

us[x] =

∑
1≤j≤n µj(σ)xj∑

1≤j≤n xj
. (3.14)

Proof. As we have ṡ = 0 along a singular arc, we obtain (3.14) from (2.6). From (H2), we have µj(s) < 1,
1 ≤ j ≤ n for any s ∈ [0, sin]. Thus, we deduce that 0 ≤ us[x] ≤ 1 which concludes the proof.

If in addition a singular extremal trajectory reaches the target, then the following properties hold.

Proposition 3.2. Consider an optimal trajectory which is singular over a time interval of type [t1, Tu] with
t1 < Tu. Then there exists σ ∈ [0, sin] such that:∑

1≤j≤n

(kj − k̃)xj(Tu)µ′j(σ) = 0, (3.15)

and ∑
1≤j≤n

(kj − k̃)xj(Tu)µ′′j (σ) ≥ 0. (3.16)

Proof. We obtain (3.15) combining (3.9) and (3.11). Now, by differentiating φ twice w.r.t. t, one obtains:

φ̈ = −ṡ(sin − s)
∑

1≤j≤n

λjµ
′′
j (σ)xj +

1

sin − s
φ̇
(
ṡ−

∑
1≤j≤n

µ′j(s)xj

)
.

Therefore, we find that for t ∈ [t1, Tu] one has:

∂

∂u

d2Hu

dt2
(x(t), λ(t), η, u(t)) = −(sin − s(t))2

∑
1≤j≤n

λj(t)µ
′′
j (σ)xj(t).

We know that if a singular arc is optimal, then it satisfies the so-called Legendre-Clebsch condition (see e.g
[4, 17]) which amounts to saying that the following inequality holds:

∂

∂u

d2Hu

dt2
(x(t), λ(t), η, u(t)) ≥ 0 ∀t ∈ [t1, t2].

We thus obtain (3.16) using (3.9) which concludes the proof.

A deeper insight into the characterization of a singular arc is given by the next proposition which provides
a range for σ.

Proposition 3.3. Consider an optimal trajectory which is singular over a time interval of type [t1, Tu] with
t1 < Tu. Then, the value of σ along the singular arc satisfies σ ∈ (k1, kn).

7



Proof. First, note that for 1 ≤ i ≤ n, one has:

∂νi
∂ki

= µ̄
s− ki

(s+ ki)3
,

where νi(ki, s) := µ′i(s) = µ̄ki
(ki+s)2

depends both on s ∈ [0, sin] and ki ∈ R∗+. Now, suppose that σ ≤ k1. It

follows that ∂νi
∂ki

(k, σ) < 0 for k ∈ (k1, kn], and so we get:

µ′1(σ) > µ′2(σ) > . . . > µ′n(σ) > 0. (3.17)

At the terminal time Tu, the trajectory reaches the target and thus, the transversality condition implies:∑
1≤j≤p

(k̃ − kj)xj(Tu) =
∑

p+1≤j≤n

(kj − k̃)xj(Tu) > 0.

Using the previous inequality and (3.17), one finds:∑
1≤j≤p

(k̃ − kj)xj(Tu)µ′j(σ) > µ′p(σ)
∑

1≤j≤p

(k̃ − kj)xj(Tu) = µ′p(σ)
∑

p+1≤j≤n

(kj − k̃)xj(Tu)

>
∑

p+1≤j≤n

(kj − k̃)xj(Tu)µ′j(σ).

Finally, we get the inequality
∑

1≤j≤n(kj − k̃)xj(Tu)µ′j(σ) < 0, in contradiction with (3.15), so we must have
σ > k1. Similarly, we can show that σ < kn.

It is also worth noting that any singular trajectory drives the system to the target (provided that a is small
enough) as shown in the next proposition.

Proposition 3.4. Given η > 0, there exists a0 > 0 such that for any a ∈ [0, a0], then for any value of
σ ∈ (0, sin), the singular trajectory Sσ drives (2.6) from any initial condition in Fη into the target in finite
horizon.

Proof. For 1 ≤ i ≤ n, let pi := xi

sin−s the fraction of species i in the system (recall that we have sin − s =∑n
j=1 xj). By differentiating pi w.r.t. t, we get:

ṗi = pi
∑

1≤j≤n

(µi(s)− µj(s))pj + a(pi+1 + pi−1)− 2aipi, 1 ≤ i ≤ n, (3.18)

with the convention that p0 = pn+1 = 0. We now consider a singular arc defined over a time interval [t1, t2],
and let σ ∈ (0, sin) be such that s(t) = σ for any time t ∈ [t1, t2].
First step: we suppose that a = 0. From (3.18), the mapping t 7−→ p1(t) is increasing and bounded by 1. Thus,
there exists p∞1 ∈ (0, 1] such that p1(t)→ p∞1 when t→ +∞. Now, let us set αi :=

∑
1≤j≤n |µi(σ)−µj(σ)| > 0

and α := max1≤i≤n(αi). As one has 0 ≤ pi ≤ 1 for 1 ≤ i ≤ n, we deduce that

0 ≤ |ṗi| ≤ αi ≤ α, 1 ≤ i ≤ n,

and thus for 1 ≤ i ≤ n, pi is uniformly continuous over R+. If we set f(t) := ln(p1(t)), we deduce that f(t)
converges to a finite value when the time t goes to infinity. Moreover, one has

ḟ(t) =

n∑
j=2

(µ1(σ)− µj(σ))pj(t), t ≥ 0,

and we deduce that ḟ is uniformly continuous. Applying Barbalat’s Lemma yields that ḟ(t) converges to zero
when t got to infinity. Thus:

lim
t→+∞

n∑
j=2

(µ1(σ)− µj(σ))pj(t) = 0.
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This implies that pj(t)→ 0 when t→ +∞ (using that µ1(σ)−µj(σ) > 0 for j ≥ 2), and thus p1(t)→ 1 when

t→ +∞. Finally, the quantity
∑

1≤j≤n kjpj converges to k1 < k̃. We have thus proved that given ε > 0, any
solution of (3.18) with a = 0 enters the set Tε (recall (2.11)) in a finite horizon. Using similar arguments as
in the proof of Proposition 2.1, we infer that there exists T > 0 such that any trajectory starting in the set
Fη will reach Tε in time less than T .

Second step: we suppose that a > 0. We utilize the differentiable dependency of the solutions of an ordinary
differential equation w.r.t. parameters (see also the proof of Proposition 2.1). As (3.18) is linear w.r.t. a and
0 ≤ pi ≤ 1, we deduce that there exists a constant C > 0 such that for any p0 ∈ [0, 1]n with

∑
1≤j≤n p

0
j = 1

one has:
|pi(T, p0, a)− pi(T, p0, 0)| ≤ Ca, 1 ≤ i ≤ n,

where t 7−→ pi(t, p
0, a) denotes the unique solution of (3.18) over R+ starting from p0 at time 0. We can now

conclude as in the proof of Proposition 2.1 to show that if a is small enough, any solution of (3.18) starting
from Fη will enter the set T ε

2
in time less than T . This concludes the proof.

Remark 3.1. Similarly as in Remark 2.1 (ii), we can show that given an initial condition x0 /∈ Fα such that
x0

1 > 0, there exists a0 such that if 0 ≤ a ≤ a0, then the solution of (2.6) (corresponding to Sσ) will reach the
target set in finite horizon (however, a0 may not be uniform and depends on the initial condition x0).

3.3 Optimal synthesis and numerical simulations

We provide in this section numerical simulations of (2.9) based on a direct method using the software bocop

[3]. Together with section 3.2, this will allow us to propose a feedback control law driving optimally the system
to the target set.

The direct method uses a time discretization to transform the infinite-dimensional optimal control problem
into a nonlinear optimization problem, solved here by interior point techniques. Software bocop typically uses
a discretization by a Lobatto IIIC formula (6th order), a constant initialization, and a tolerance for NLP solver
set at 10−10. Numerical simulations have been performed with n = 10 species, using 300 time steps. Fig. 2
depicts optimal trajectories, which are of the form Bang-Singular B±Sσ i.e. a concatenation of a bang arc
u = 0 or u = 1 (depending on the initial substrate concentration), and of a singular arc until reaching the
target. We have repeated this simulation for different initial conditions. From Lemma 3.3 we know that σ
belongs to the interval (k1, kn), which is verified numerically. On Fig. 3, we can see that the value of σ along
a singular arc depends on initial conditions (this is in line with the results of [14] when the dimension of the
state space is greater than 3).

In view of the characterization of the singular arcs, we introduce a feedback control law uσ[·] depending
on the state x = (x1, ..., xn) and a substrate concentration σ as follows:

uσ[x] = 0 if
∑

1≤j≤n xj < sin − σ,
uσ[x] = 1 if

∑
1≤j≤n xj > sin − σ,

uσ[x] = us[x] if
∑

1≤j≤n xj = sin − σ.
(3.19)

Based on the numerical simulations (see Fig. 2 and 3) and on section 3.2, we conjecture the following optimality
result.

Conjecture 3.1. For any initial condition x0 ∈ F , there exists σ(x0) ∈ (k1, kn) such that the feedback control
uσ(x0) is optimal for (2.9).

In other words, any optimal control is of type B±Sσ(x0). This control law can be interpreted as a most
rapid approach (see e.g [7]) to a singular arc s = σ(x0) (depending on the initial condition x0) : whenever
s > σ(x0) or equivalently

∑
1≤j≤n xj > sin− σ(x0), then the control u = 0 allows s to decrease until reaching

the value σ(x0). The same remark holds whenever the substrate concentration is such that s < σ(x0) using
u = 1.

We can also point out the fact that at time 0, then x1 is usually small (typical initial conditions for a
monoclonal population are such that xi(0) = 0 for 1 ≤ i ≤ n− 1) whereas if the time goes to infinity, then x1

will be positive and xi � 1 for i > 1. Hence, it is not evident how one can estimate the value of σ(x0). As its
determination remains a difficult question, we now propose an alternative approach to (2.9).
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Figure 2: Optimal trajectories of type bang-singular obtained numerically by a direct method with n = 10.
Left: substrate concentration. Right: control u. Top: substrate concentration at t = 0 is high, the optimal
trajectory is of type B−Sσ. Down: substrate concentration at t = 0 is low, the optimal trajectory is of type
B+Sσ.

Figure 3: Effect of the initial condition on the value of σ along a singular arc Sσ. The initial condition
corresponds to a monoclonal population of species k i.e. xk(0) = 3 and xi(0) = 0 for i 6= k.
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4 Near optimal strategy

In an evolutionary experiment, a chemostat system is inoculated with a species xn, and the culture is operated
in continuous mode in order to obtain new mutants. Nonetheless, it is not possible to guess how much the
species will evolve (how much the half-saturation constant k will decrease). Since the system is actually
unknown, the value of σ cannot be determined (even numerically). Here, we propose a near-optimal strategy,
based on a model simplification assuming very small mutation rate, that can be implemented easily. The
methodology is as follows:

• First, we derive a one-dimensional system for the evolution of the half-saturation constant k of the
Monod kinetics (see (2.3)), based on the theory of adaptive dynamics.

• We then use this equation to determine the dilution rate optimizing the decrease of the trait k.

Assuming very small mutation rate, one may suppose that mutants appear sequentially. First, a mono-
species population reaches its steady-state. Then, a first mutant - slightly different from the resident - appears.
If it can invade the population, it becomes the new resident, and so on. This corresponds to the adaptive
dynamics theory, widely used in ecology (see e.g [10, 11]).

To model this phenomenon, we proceed as follows. Let us consider the half-saturation constant k as the
evolutionary trait of the resident. The dependency of the kinetics w.r.t. k is now made explicit in the growth
function: instead of considering an index j for µj as in section 2, we write the growth rate function as follows:

µ̃(s, k) := µ̄
s

k + s
.

The dynamics of the resident is given by{
ẋ = µ̃(s, k)x− ux,
ṡ = −µ̃(s, k)x+ u(sin − s),

supposing the presence of only one species. Considering a constant dilution rate u(t) = D < µ̃(sin, k) for
t ≥ 0, the resident will reach the equilibrium point (sin− s̄, s̄), where s̄ = Dk

µ̄−D (see e.g [23]). In this condition,
the invasion fitness of a mutant - assuming that it is rare - is given by

f(k, k′) = µ̃(s̄, k′)−D = µ̃

(
Dk

µ̄−D
, k′
)
−D,

where k′ denotes the trait of the mutant, slightly different from the trait of the resident k. From the selection
gradient, one can derive the evolution of the trait k which is given by the ordinary differential equation (see
e.g [10, 11]):

k̇ = m(k)
∂f

∂k′
(k, k′)|k′=k

= m(k)
∂µ̃

∂k′
(s̄, k′)|k′=k

= −m(k)µ̄
s̄

(k + s̄)2
= −m(k)

kµ̄
D(µ̄−D), (4.1)

where m(k) > 0 is related to the mutation rate. Note that a similar equation can be obtained with a structured
model such as system (2.2) in the limit of small mutation rate, when the population concentrates on a dirac
mass (see e.g [19, 12]).

In order to speed up the mutation-selection process, one should maximize −k̇ (recalling that we are
interested in the lowest k in order to reach the target T in minimal time). Now, for a given value of the
parameter k, the problem amounts to finding an optimal dilution rate maximizing the function

D 7−→ ψ(D) :=
m(k)

kµ̄
D(µ̄−D).

We easily check that the maximum of ψ is achieved for D = µ̄
2 . Hence, in our setting, the dilution rate D = µ̄

2
should always be used to speed-up the selection, whatever is the trait k of the resident.

Definition 4.1. The near optimal strategy is defined as the constant control u = µ̄
2 .
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Remark 4.1. With D = µ̄
2 , we get s̄ = k, i.e. the substrate concentration at equilibrium is equal to the

half-saturation constant of the resident. Assuming small mutations (i.e. k ' k′), this corresponds actually to
the concentration that maximizes the difference between the growth rates of the mutant and the resident

∆µk,k′(s) := µ̃(s, k′)− µ̃(s, k)

(indeed, a simple computation shows that s 7−→ ∆µk,k′(s) is maximal for s =
√
kk′ ' k). This is in line with

the results of [1] concerning the selection with two species in competition: we have shown that the singular
strategy which regulates the concentration at a set-point corresponding to the maximum of the difference between
the growth rate of both species is optimal in this case (see [1]).

Figure 4: Comparison of the optimal strategy, i.e. an auxostat given by Control (3.19) (left) and the near-
optimal strategy, i.e. a chemostat with a dilution rate D = µ̄/2 (right). Picture Top: Time evolution of the

substrate concentration s (blue line), and weighted averaged half-saturation constant k̂ (green dashed line).
Picture middle: time-evolution of biomass concentration xi. Picture down: time-evolution of the distribution
of species i.

We now investigate how the near-optimal strategy performs in comparison with the optimal strategy.
Simulations have been carried out to evaluate this strategy using the original system (2.6) with n = 20
species (see Figure 4). The target has been reached in 588h, which corresponds to a small increase (+1%)
in comparison to the optimal strategy (582h) where the substrate concentration is regulated at σ = 1.35.
Thus, using D = µ̄/2 is a strategy with near-optimal performance while being easily implementable. In this

case, the substrate concentration follows the weighted averaged half-saturation constant k̂, which facilitates
the emergence of a mutant with a slightly lower half-saturation constant (see Remark 4.1).

Finally, we compute numerically the time to reach target using either control law (3.19) with different
values of σ (auxostat), or a constant dilution rate (chemostat), see Fig. 5. The performance of the auxostat
strongly depends on σ, but one cannot determine the optimal value in practice (given that the system is
unknown). In chemostat mode, the optimal value (for the constant dilution rate) is also dependent of the
unknown system. Nonetheless, the near-optimal strategy, corresponding to D = µ̄/2 = 0.25, is very close to
the optimal value. The real strength of this strategy is that it does not require any knowledge on the system.

Selection experiments are generally carried out maintaining a low substrate concentration in an auxostat,
or similarly a low dilution rate in a chemostat in order to exert a strong selection pressure. For example,
in a selection experiment with the yeast Saccharomyces cerevisiae, Jansen et al. [16] used a dilution rate of
0.1h−1, corresponding to approximately a quarter of the maximum growth rate of this species. In our setting,
this value can actually slow down considerably the selection process in comparison with the optimal and
near-optimal strategies. To conclude, the selection process is actually more rapid with a moderate selection
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pressure. Future work will explore whether this result still holds with more realistic model of selection-mutation
(including stochastic effects such as genetic drifts [13]).

Figure 5: Time to reach the target as a function of σ in auxostat (3.19) (left), or as a function of the dilution
rate in chemostat (right).

5 Conclusion

Thanks to the Pontryagin Maximum Principle, we have proved that singular arcs of the problem (2.9) cor-
respond to a constant value of the substrate concentration which depends on initial condition when n ≥ 3.
Moreover, an optimal feeding strategy is a concatenation of bang arcs and singular arcs which allows to provide
an alternative to the competitive exclusion principle with a constant control. In order to optimize the species
of interest, we believe that the optimal synthesis consists of a most rapid approach to a singular arc with
at most one switching point. When n = 2, we know that the proposed feedback control is optimal and we
conjecture that this property remains valid whenever n ≥ 3. This operating mode corresponds to an auxostat,
which is commonly used for strain selection. The remaining difficulty for a real implementation is to deter-
mine the substrate level of the singular arc given that the species characteristics are unknown. To overcome
this obstacle, we have defined a near-optimal strategy that can be easily implemented and that relies on the
constant control u = µ̄

2 . This value appears to be a good choice from the adaptive dynamics point of view.
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