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Abstract Although the fields of systems and integrative biology are in full expansion, few teams
are involved worldwide into the study of reproductive function from the mathematical modeling
viewpoint. This may be due to the fact that the reproductive function is not compulsory for indivi-
dual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive
physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves
not only several organs and tissues, but also intricate time (from the neuronal millisecond timescale
to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical mode-
ling, and especially multiscale modeling, can renew our approaches of the molecular, cellular and
physiological processes underlying the control of reproductive functions. In turn, the remarkable
dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers
and applied mathematicians. In this article, we draw a panoramic review of some mathematical mo-
dels designed in the framework of the female HPG, with a special focus on the gonadal and central
control of follicular development. On the gonadal side, the modeling of follicular development calls
to the generic formalism of structured cell populations, that allows one to make mechanistic links
between the control of cell fate (proliferation, differentiation or apoptosis) and that of the follicle
fate (ovulation or degeneration) or to investigate how the functional interactions between the oo-
cyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic
side, models based on dynamical systems with multiple timescales allow one to represent within a
single framework both the pulsatile and surge patterns of the neurohormone GnRH (gonadotropin-
releasing hormone). Beyond their interest in basic research investigations, mathematical models can
also be at the source of useful tools to study the encoding and decoding of the (neuro-)hormonal
signals at play within the HPG axis and detect complex, possibly hidden rhythms, in experimental
time series.

Keywords Multiscale, Mathematical models, ovarian follicle, GnRH surge, cell kinetics, hormonal
rhythms



1 Introduction

This article deals with the multiscale modeling and analysis of some dynamical processes arising wi-
thin the hypothalamo-pituitary-gonadal (HPG) axis, with a special focus on the female reproductive
axis.
The HPG axis can be considered as the paragon of neuroendocrine axes, since it both concentrates
all remarkable dynamics that can be exhibited by these axes and owns its unique specificities,
as gonads are the only organs that host germ cells. It involves neuronal and non-neuronal cells
spread across the hypothalamus (and connected with other brain areas including the cortex), the
gonadotropic cells in the pituitary gland, and the gonads : ovaries in females, testes in males (see
Figure 1). Via hypothalamic neurons, the reproductive function is subject to many environmental
cues such as the daylength, food availability and social interactions, as well as to internal signals
such as stress or metabolic status. If the conditions are favorable, specific hypothalamic neurons
secrete in a pulsatile manner the gonadotropin-releasing hormone (GnRH), the “conductor” of the
reproductive axis. The pulsatile GnRH secretion pattern ensues from the synchronization of the
secretory activity of individual GnRH neurons. The release of GnRH into the pituitary portal blood
induces the secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by the
pituitary gland. The gonadotropins LH and FSH act on somatic cells within the gonads to support
the development of germ cells and their endocrine gonadal function. In turn, hormones secreted by
the gonads (steroid hormones such as androgens, progestagens and estrogens or peptide hormones
such as inhibin) modulate the secretion of GnRH, LH and/or FSH within entangled feedback loops.
In females, the GnRH secretion pattern dramatically alters once per ovarian cycle, in response to
the time-varying levels of ovarian steroids, resulting in the GnRH surge characterized by massive
continuous release of GnRH. The GnRH surge is responsible for ovulation, leading to the release of
fertilizable oocytes from ovarian follicles. Also, the GnRH pulse frequency changes along the ovarian
cycle, and exerts a differential control onto the secretion of gonadotropins.
The modeling approaches that will be overviewed here are specially involved in the understanding
of the triggering of the GnRH ovulatory surge by the hypothalamus and the development of ovarian
follicles from initiation up to ovulation. Depending on the specific physiological issue addressed by
the model, their starting point can be either middle-out (from the intermediary, mesoscopic level
up and down to the other levels), bottom-up (from the microscopic to the macroscopic level) or
top-down (from the macroscopic to the microscopic level). All these approaches have been introdu-
ced elsewhere and we refer the reader in particular to [1, 2, 3, 4] for a detailed exposition. Some
additional materials on the model formulations are provided as on-line supplements ; they are yet
not intended to replace the complete and rigorous presentations of the models. Similarly, we will
not give any direct citation to the large corpus of bibliographic references on which the biological
assumptions of the models were grounded ; we again refer to the original expositions of the models,
where there are thoroughly commented [5, 6, 7, 8]. Also, even if the model formulations are based on
generic biological principles that can be applied to many mammalian species, most of the numerical
applications presented here have been undertaken in the ewe, which appears to be a very valuable
animal model in our context, for several reasons that will be exposed throughout this article.
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2 Multiscale modeling based on middle-out approaches : the ins-
tance of follicular development

Ovarian folliculogenesis is a unique instance of development still occurring during adulthood. It spans
several months, starting from the time when primordial follicles (made up of an oocyte surrounded
by a few flattened granulosa cells) leave the quiescent pool and initiate a process of growth and
functional maturation ending up either by ovulation (release of a fertilizable oocyte), or (in most
of the cases) degeneration at any stage of development. After initiation, follicular development
can be separated into two distinct periods. During basal development, the morphological structure
of the follicle settles progressively as an antral follicle (spheroidal structure with a central cavity
and two tissular layers, the granulosa sheltering the oocyte within the cumulus oophorus and the
theca delimitating the follicle from the ovarian cortex) that becomes more and more responsive
to gonadotropins. During terminal development, the follicle is strictly dependent on gonadotropin
supply and becomes a very efficient tissue for steroidogenesis.
Large domestic species are particularly interesting to investigate the bases of follicular development.
Especially, in the ovine species, experimentalists can have access to a variety of data ranging from
cell kinetics of granulosa cells or ultrasonographic in vivo monitoring of follicle growth, to endocrine
time series of pituitary and ovarian hormones, and, in addition, there exist in several sheep strains
natural mutations affecting the ovulation number and follicle physiology [9].

2.1 Deterministic and continuous spatio-temporal formalism for terminal de-
velopment

The terminal part of follicular development corresponds to the latest stages where both the selection
of ovulatory follicles and ovulation occur, and whose salient features can be summarized as :

— it is an hormonally-controlled process in which the basic functional events are the responses
of granulosa cells to the pituitary hormones and especially FSH ;

— the level of pituitary hormones is in turn tuned within a feedback loop involving the whole
cohort of growing follicles, hence the whole population of granulosa cells amongst those
follicles.

Terminal development is thus an intrinsically multiscale process, where the granulosa cell is the
pivot linking the lower, intracellular level, on which the signaling machinery operates to convert the
hormonal signal into a cell’s fate (progression along the cell cycle, differentiation or apoptosis), with
the upper, tissular level, on which the coordinated evolution of cells is converted into a follicle’s fate
(ovulation or atresia).
Moreover, at these stages, the morphodynamic changes are rather simple (they are almost limited to
an increase in the antrum diameter), while the biochemical status of cells change steadily (through
the expression of steroidogenic enzymes and LH receptors). Also, the number of follicular cells is
great (on the order of hundreds of thousand or millions), so that the cell number can be considered
as a real (rather than integer) value ruled by a continuous formalism.
Putting these observations together, we chose to design a middle-out approach centered on the
granulosa cell level and focused on the spatio-temporal evolution of the cell densities in follicles and
their interactions (indirect coupling induced by the pituitary-ovarian feedback loop) [6, 1]. The cell
density corresponds to the local repartition of cells on a functional space, where they are spread
according to their position within or outside the cell cycle and level of terminal maturation.
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The resulting model is a specific instance of structured cell populations grounded on the following
master equation, provided for any f th follicle of a Nf -sized cohort :

∂φif
∂t

+
∂gif (uf )φif

∂a
+
∂hif (γ, uf )φif

∂γ
= −λi(γ, U)φif on Ωi, i ∈ {1, 2, 3} , f ∈ {1, . . . , Nf}

The structuring (continuous) variables, a and γ, correspond respectively to the age and maturity of
the follicular cells ; they define the 2D (functional) domain on which the cell population evolves. The
i index corresponds the cell phases, which are delimited both horizontally and vertically by given
ranges of age and maturity values (see Figure 2) ; Ω1, Ω2 and Ω3 are respectively associated with
phase G1, phase SM (aggregating phases S,M and G2 of the cell cycle) and phase D (differentiated
phase after cell cycle exit). The specific expression of the model terms may depend on the space
variables either indirectly, through a phase-dependency (within a given phase, the value of the
function is the same whatever the cell location), or directly, with an explicit dependency on the
variable. In addition, these terms may depend on variables representing the endocrine control : U(t)
(plasma FSH) and uf (t) (locally available FSH). φif (t; a, γ) represents the density of cells of age
a and maturity γ in phase i at time t within follicle f . Within an elementary surface δaδγ, the
density can be viewed as the local cell crowding. The transfer from one phase to another is governed
by appropriate conditions defined on the internal boundaries of the domain and grounded on the
continuity in cell fluxes, for instance a mitosis-induced doubling condition on the SM-G1 interface.
Within the domain, cells are transported rightwards with a speed defined by the (time-varying) aging
velocity gif , and, either upwards or downwards according to the sign of the maturation velocity hif .
In contrast to the process of cell proliferation, that occurs punctually at the mitosis age and is thus
embedded as a boundary condition, the cell death process is distributed over ages, so that it appears
in the right hand side, where λi is the apoptosis rate. More details on the model formulation are
provided in the appendix (see Sketch of the model for terminal follicular development).
The hormonal control is set dynamically and collectively from the feedback pressure exerted by the
whole cohort of follicles, denoted byM(t). The contribution of each follicleMf (t) corresponds to the
continuous equivalent of the weighted sum of its follicular cells over the whole domain (first-order
moment of the density according to the maturity) :

Mf (t) =

∫ ∫
γφfdadγ, M(t) =

Nf∑
f=1

Mf (t)

The global control variable U(t) is a decreasing sigmoidal function of M(t), while the local control
variable uf (t) is proportional to U(t), with a rate evolving as an increasing sigmoidal function of
Mf (t).
The behavior of each follicle in response to this endocrine environment can be studied according to
different macroscopic markers such as the total number of viable cells (see Figure 3), cumulative
number of cells lost through apoptosis, global maturity (that can be interpreted as its steroidogenic
ability), growth fraction (proportion of proliferative cells), and mitotic index. At the same time,
the microscopic cell dynamics underlying these macroscopic outputs can be monitored in detail :
repartition of cells into the different phases of the cell cycle, numbering of generations in term of
cell divisions or age at cell cycle exit, heterogeneity amongst cells (see Figure 2), instantaneous cell
loss. On the follicular level, the critical freedom degrees are the velocities of aging (progression along
the cell cycle) and maturation, which determine both the need for and responsiveness to FSH and,
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as a consequence, the proper use of the follicular proliferative resource (progressive switch between
proliferation and differentiation ultimately setting the size of the pool of steroidogenically active
cells) and the transit time through the vulnerability window where the follicle is the most sensitive
to apoptosis-induced atresia.
Even if the focus of the model is on the ovarian side, it nevertheless accounts for the other levels
of the HPG axis involved in follicle selection and ovulation, through the time-varying level of FSH
(a direct function of the ovarian maturity M(t)) and triggering of the ovulatory surge (defined
indirectly from a threshold on this maturity). Despite its simplicity, the multilevel character of the
model, in addition to its multiscale character on the ovarian level, allows one to investigate the
impact of the subtle endocrine interplay within the HPG axis, including the degree of pituitary
sensitivity towards the inhibitory feedback of the ovarian estradiol and inhibin, and hypothalamic
sensitivity towards the stimulatory feedback of estradiol.

2.2 Stochastic and discrete spatio-temporal formalism for basal development

After initiation, the basal development of ovarian follicles spans a long period where follicles are
not strictly dependent on the gonadotropin supply, even if they may be gonadotropin-responsive
before the transition to terminal development. Along these stages, the most striking changes concern
the morphodynamics of follicles, with the progressive organization of the follicle structure that is
settled first by the oocyte growth and increase in the number of granulosa cell layers, and then by
the formation of distinct thecal layers and completion of the antrum, that leads to the distinction
between the cumulus and mural granulosa cells.
Up to now, we have been interested in the “compact” phase of basal development (until the appea-
rance of the first antral gaps), when paracrine interactions between the oocyte and its surrounding
granulosa cells are prominent, and the shaping of the growing follicle is mainly due to the balance
between the increase in the oocyte volume and the proliferation of granulosa cells leading to an
increasing number of cell layers. Also, the starting number of granulosa cells is extremely low (on
the order of ten), so that the cell fates have to be considered on both an individual (discrete) and
stochastic ground.
Since the morphologic information are as relevant as the functional ones along this compact phase,
we chose to design a model that would allow us to follow not only the balance between oocyte growth
and granulosa proliferation, but also to trace the (radial and tangential) location of granulosa cells
with respect to the time-varying boundary of the oocyte [2].
The model considers three interacting scales : (i) a microscopic, local scale corresponding to an indi-
vidual cell embedded in its immediate environment, (ii) a mesoscopic, semi-local scale corresponding
to either anatomical or functional subareas of follicles and (iii) a macroscopic, global scale correspon-
ding to the whole follicle. These three scales are intricately merged on the dynamical ground, since
the main events (cell division or displacement), as well as the oocyte growth law involve at least two
different scales. The main freedom degrees are, on one side, the average cycle duration of granulosa
cells within a given cell layer, that results from the influence exerted by diffusive proliferative factors
emanating from the oocyte, and, on the other size, the sensitivity of the oocyte to trophic factors
emanating from granulosa cells. The relative contribution of the oocyte and granulosa cell-derived
factors is evolving constantly, since, not only the cell number increases, but also, as a consequence
of oocyte growth, the volume of the layers, hence the maximal number of cells per layer.
On the mathematical ground, the model is driven by a multiscale stochastic process, informing at
the same time on (i) the (discrete) number of cells around the oocyte Nt, that is incremented by
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one each time a cell division occurs ; (ii) the location (Xk) of each kth cell amongst the Nt cells
(k = 1, · · · , Nt), informing both on the radial distance from the oocyte surface (corresponding to
the layer number) and the angular location within a cell layer, and (iii) the individual age (Ak)
of each kth cell, assessed as the time elapsed since the division that gave birth to it (the age of
both daughter cells is reset at division). The age variable evolves constantly since the cell gets older
with time between two divisions, while the location changes passively due to the oocyte growth and
actively whenever a displacement event occurs.
The oocyte growth is represented by a differential equation with a deterministic part (intrinsic
oocyte growth) and a stochastic part accounting for the trophic effect of the follicular cells, i.e.
the weighted contributions of cells according to the cell layer they belong to (the smaller the layer
number, the greater the contribution).
The law of evolution of the stochastic process underlying the model formulation is too tedious to
be described here in detail ; complementary information are nevertheless provided in the appendix
(see Sketch of the stochastic model for basal follicular development). It is sufficient to say that
it operates as a counting process, that registers all the events of cell division and displacement
affecting the population, so that both the cell number and cell repartition between layers change.
More specifically, the cell number increases along the successive divisions, new layers are created
and progressively filled with new cells or cells moving from the deeper layers. In the same time, the
volume and capacity of the layers increase as the oocyte diameter increases. The timing and pattern
of these changes are ruled by the expression chosen for the probability laws of cell division (an
increasing function of cell age and decreasing function of distance) and cell displacement (where the
probability of motion depends on the local tolerance to overcrowding and the level of crowding in
the cell neighborhood). As a result, as illustrated in Figure 4, one can follow the model outputs on
different scales : the temporal evolution of the cell number, oocyte diameter and follicular diameter
(sum of the oocyte diameter and the cell layer depth) on the macroscopic scale, and the repartition
within the follicle of either individual cells or a subpopulation of cells, respectively on the microscopic
and mesoscopic scale.
A proper balance between oocyte growth and granulosa cell proliferation is required for normal
morphogenesis in follicular development. In addition to reproducing the first stages of follicular
development in wild-type situations [10], the model also helps to explain situations of imbalance
that may lead either to a greater than normal oocyte surrounded by fewer granulosa cells and layers,
as observed in naturally occurring genetic mutations in sheep, or, on the contrary, a smaller oocyte
trapped within a deep cell corona.

3 Multiscale modeling based on top-down/bottom-up approaches :
the instance of the secretory pattern of GnRH

The ovarian cycle is driven by the finely tuned pattern of GnRH secretion, subject to the feedback
exerted by estradiol and progesterone of ovarian origin. During each cycle, the pulsatile regime
switches to the ovulatory surge leading to massive GnRH release [11], while, along the pulsatile
regime, the pulse frequency is slowed down during the luteal phase and increases steadily until the
surge triggering during the follicular phase. The generation of this complex secretory pattern starts
on the level of individual GnRH neurons, whose electric and ionic activities are coupled with the
downstream secretory activity. Individual neuron activities are coordinated on the level of neuron
assemblies such as clusters, up to the whole population level. On each level, the neuronal activities
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are modulated by numerous afferences coming from regulatory neurons.

3.1 The cyclic transition from GnRH pulses to GnRH surge

The question of the effects of ovarian steroids (estradiol and progesterone) on GnRH neurons can
be investigated from different angles according to the species. The most precise neuroanatomical
studies have been performed in rodents (mice and rats). In contrast, physiological studies intending
to dissect in time the effects of ovarian steroids have mostly been undertaken in domestic species,
especially in the ewe. This species is particularly useful for studying GnRH secretion rhythms, since it
has a large body size compatible with repeated sampling of pituitary portal blood and cerebrospinal
fluid and further analysis of GnRH time series, the duration of its ovarian cycle (around 21 days)
makes it easier to dissect the different steps in the temporal sequence of steroid action and, as for
follicular development, it is closer to human ovarian physiology compared to rodents.
Since we were primarily interested in the physiological impact of the GnRH secretory pattern (cen-
tral control of ovulation), we tackled first the question of alternation between the pulsatile regime
and the surge regime of secretion. We thus adopted a top-down approach, that was designed on
the most macroscopic level, that of the populations of GnRH and regulatory neurons, keeping in
mind that the representation of the populations could be refined later and separated into different
subpopulations or functional clusters. Our approach is based on the interactions between an average
GnRH neuron representing the whole population of secretory neurons, and an average regulatory
neuron, representing the combined effect of the different populations of regulatory neurons [8]. The
corresponding dynamical system reads :

εδ
dx

dt
= −y + f(x)

ε
dy

dt
= a0x+ a1y + a2 + cX

ε
dX

dt
= −Y + g(X)

dY

dt
= X + b1Y + b2

where f(x) and g(x) are two cubic functions (hence they have two local extrema) : f(x) = −x3+3λx
and g(X) = −X3 + 3µX.
Even if it is not as such multiscale in space, the model is nevertheless clearly multiscale in time,
with 3 timescales O(1), O(ε), O(δε) (from the slowest to the fastest). Each subsystem (x, y) and
(X,Y ) is indeed itself a slow-fast system with two timescales and in addition the (X,Y ) system is
slower than the (x, y) one. Slow-fast systems are widely used in modeling for electrophysiology and
neurosciences. They are well suited to representing dynamics characterized by sudden changes such
as action potentials.
The faster system corresponds to the average activity of GnRH secreting neurons, while the slower
one corresponds to the average activity of regulatory neurons. The x,X (fast) variables relate to
neuron electrical activities, while the y, Y (slow) variables relate to ionic and secretory dynamics.
In each system, the fast and slow variables feedback on each other. The coupling between both
systems is mediated through the unilateral influence of the slow regulatory interneurons onto the
fast GnRH ones (cX term). The pulsatile release of GnRH is associated with the ionic dynamics
through a thresholding effect (see appendix Sketch of the model for the GnRH secretory pattern
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along the ovarian cycle). With the appropriate choice of parameter values, the regulating system
operates within an oscillatory dynamic regime accounting for the cyclic character of the steroid
feedback exerted onto the hypothalamus along the ovarian cycle. The coupling term aggregates
the global balance between inhibitory and stimulatory neuronal inputs onto the GnRH neurons.
As a result, the secreting system alternates between an oscillatory regime, similar as that of the
regulating system (yet with a much higher, as well as time-dependent frequency), where this system
exhibits series of pulses, and a quasi-steady state regime corresponding to the surge mode.
This model with multiple timescales offers a single dynamical framework for both the surge and
pulse regime of GnRH secretion, and accounts for the qualitative (i.e. the right sequence of secretory
events) and quantitative (i.e. the frequency, duration, amplitude of secretory events) specifications
drawn from experimental studies, which amounts to embedding time- and dose-dependent steroid
control within the model (see further explanations in [3, 12]).
The model is able to meet precise quantitative relations between the secretion signal features. Apart
from the total duration of the ovarian cycle, which is expressed in physical time, these relations can
all be expressed as ratios, regarding (i) surge duration over the whole cycle duration, (ii) the duration
of the luteal phase over that of the follicular phase, (iii) pulse amplitude over surge amplitude, and
(iv) pulse frequency in luteal phase compared to follicular phase (see Figure 5). The model can also
be used to perform in silico experiments inspired from several experimental protocols, that all deal
with the steroid control of GnRH secretion, yet in very distinct situations corresponding to different
underlying neuroendocrine mechanisms : default of progesterone priming during the luteal phase,
that affects the amplitude of the subsequent surge (luteal deficiency situation), surge blockade
induced by administration of luteal levels of progesterone during the follicular phase, short-term
effects of either progesterone or estradiol bolus administration on the pulse properties.

3.2 Synchronization in individual GnRH neurons

In the previous model, the synchronization of the ionic/secretory activities underlying the pulsatile
character of GnRH secretion (apart from the surge) was taken for granted. The question of synchro-
nization is as much a neuroscience issue than a reproductive one. It can be tackled from a bottom-up
viewpoint to try deciphering the emergent network behavior from individual behaviors. In this new
approach, what is taken for granted is the oscillatory character of the ionic (Calcium) dynamics
of individual neurons, and the challenge consisted in reproducing events of global synchronization
over a background of asynchronous activities [4]. Such events can be observed in ex vivo culture of
olfactive placodes, that take advantage of the extra-cerebral embryonic origin of GnRH neurons and
enable experimentalists to monitor electrophysiological markers such as action potential, intracel-
lular calcium levels or GnRH release on a timespan of several hours. An intriguing feature of these
placodes is their ability to exhibit synchronized, large amplitude calcium peaks that occur at the
same frequency than the species-specific GnRH pulse frequency, as it has been well documented in
rodents [13]. To account for both the mostly asynchronous individual dynamics and the recurrent,
yet relatively rare, events of synchronization, we proposed the following network model :

dxj/dt = τ
(
−yj + 4xj − x3j − φfall(Caj)

)
dyj/dt = τεkj(xj + a1yj + a2 − ηjφsyn(σ))

dCaj/dt = τε
(
φrise(xj)− Caj−Cabas

τCa

)
 j = 1 . . . N

dσ/dt = τ
(
δεσ − γ(σ − σ0)φσ

(
1
N

∑N
i=1Cai − Cadesyn

))
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where N is the number of neurons and φrise(xj), φfall(Caj) are increasing sigmoidal functions (see
also the appendix, Sketch of the model for calcium oscillations in embryonic GnRH neurons).
In the absence of the coupling term (ηjφsyn(σ))), the first three equations of this system represent
the dynamics of the electric activity xj , recovery variable yj and intracellular individual calcium
Caj in an individual neuron. The recipe for the system formulation is similar as that of the x, y
subsystem in the previous section, with an additional variable Caj interplaying with variable xj .
The common feature to every neuron is the excitable and rhythmic character of calcium dynamics,
yet each neuron exhibits its own period (interpeak interval, IPI) and amplitude, within a range of
admissible values. When the coupling term is activated, the mathematical structure of the model
accounts for a phenomenon of synchronization between neurons, that, roughly speaking, is based
on the forward neurons waiting for the others in the peak stage, so that all peaks occur within a
short range of time and the average calcium value is higher than the individual peak amplitudes.
After each synchronized peak, there is a short silent episode and then the individual oscillations
resume again in an asynchronous manner until the next event of synchronization (see Figure 6). The
synchronization events occur on a much slower time scale (typically 50-60mn in rodents) than the
individual peaks (typical IPI of 6-8 min) ; the time constant τ scales the time unit to physical time
(min). The model is also able to reproduce additional and less frequent experimental observations,
such as partial recruitment of cells within the synchronization process or the occurrence of doublets
of synchronization, which appears to be sensitive to the distribution of the parameter tuning the
sensitivity of a neuron to the network dynamics (ηj in the second equation). Within this modeling
framework, the coupling operating here is of volume transmission type ; the question remains open,
on both the modeling and experimental grounds, of which neuronal connectivity could operate in a
similar way as the global variable σ.

4 Further comments on the modeling of the HPG axis

The different organs involved in the HPG axis both process on their own sides and communicate with
one another within entangled feedback loops. Hence, up to some extent, they can be considered se-
parately in the most pertinent frameworks, provided that the scientific logic of neuroendocrine axes
is kept in mind through the definition of endocrine inputs and outputs. For instance, the ovulation
timing results from the coordination between two controlled processes acting on the ovarian level
(follicle selection) and hypothalamic level (GnRH surge triggering). The former needs a middle-out
modeling approach coped with specific partial differential equations (conservation laws), while the
latter involves excitable neuronal dynamics, that can be handled by coupled nonlinear (relaxation)
oscillators. Yet, in the long term, disposing of real-time interconnected, multiscale models of the dif-
ferent organic components of the HPG axis (gonadal function, hypothalamic and pituitary control)
would be very useful tools to address physiological and clinical challenging questions and also to
teach reproductive physiology interactively.
Up to now, we have tried to illustrate how multiscale models formulated from appropriate formalisms
can help investigate some remarkable dynamic properties of the HPG axis in a relatively compact
way. With such formalisms the links between different scales is explicit and mechanistic, which goes
far beyond the statistical association between events or phenomena observed on different scales (as
is often the case for molecular markers of diseases for instance). The other side of the coin is that
the analysis and simulation of such models are not obvious and even raise open problems for the
community of Applied Mathematics, that need to be solved before the models can be fully exploited
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on the biological ground (we refer the interested reader to [7, 14, 15, 16]). This is especially true as
far as the validation and quantitative calibration of the model (choice of the parameter values) are
concerned, which are particularly challenging issues in a multiscale modeling approach, that still
need methodological developments to be solved and even rigorously defined. Indeed, in each modeling
approach presented so far, attention is paid not only to the ability of the model to reproduce already
complex qualitative behaviors occurring simultaneously on different scales, but also to meet detailed
specifications summarizing the available quantitative knowledge. Meeting those constraints cannot
be only a matter of brute force optimization procedures ; it is also grounded on the results of the
theoretical analysis of the model equations. Also, in contrast to the ambient context of big data
management, the quantitative calibration of physiological multiscale models is confronted with the
lack of quantitative and dynamic data [17] and the technical difficulties still hampering the temporal
monitoring of reproductive systems in vivo. On the gonadal side, there is a need for retrieving
accurate information about cell dynamics (duration of the cell cycle and its different phases, changes
in cell kinetic indexes as mitotic index, labeling index, growth fraction . . .). On the central side,
the equivalent of functional imaging in neuroscience is still missing in neuroendocrinology to allow
experimentalists to follow neurosecretory events in a non invasive manner.
In the approaches described so far, we focused on the distal (gonadal) and central (hypothalamic)
levels of the HPG. The intermediary (pituitary) level also raises interesting dynamical issues, that
are worth being studied on their own, and also with the perspective of ultimately connecting models
designed on different levels of the HPG. In males, where the dynamical issues are mainly limited to
the control of LH pulse frequency by the interplay between GnRH and testosterone, a quite com-
prehensive understanding of the feedback loops relating the testes to the hypothalamo-pituitary
complex is possible and amenable to modeling. In [18] for instance, a model based on stochastic
differential equations proposes an integrative description of the synthesis and release of GnRH and
LH under the control of testosterone. In females, the central and endocrine control of gonadotro-
pin secretion is far more complex and results both in the subtile coordination between FSH and
LH levels along the ovarian cycle and the GnRH-driven ovulatory surge. Drawing a mechanistic
and physiological picture of processes in play would need to capture the basic dynamical principles
underlying the decoding of GnRH signal features (frequency, amplitude, duration of pulses) by pi-
tuitary cells, such as (i) the differential control exerted by GnRH pulse frequency onto gonadotropin
secretion, starting from the differential expression of the specific FSH or LH β-subunit (reviewed in
[19]), (ii) the original signaling cascade of GnRH amongst G protein coupled receptors due to its
lacking a C-terminal intra-cytoplasmic tail, (iii) the interplay between the endocrine control exerted
by ovarian hormones and paracrine control exerted locally by activin, follistatin and inhibin, and
(iv) the concurrent pronounced changes in GnRH receptor numbers. GnRH signaling in pituitary
cells is largely studied both on the experimental and modeling grounds (see as significant instances
among others [20, 21]) and cannot be developed in the scope of this review. We just point here
that, to our knowledge, none of the biochemically-designed models can distinguish the effect of an
increase in the cumulative dose of GnRH from that of a genuine frequency increase (“pure frequency
effect” obtained by compensating the frequency for duration and/or amplitude of GnRH pulses).
This ascertainment motivated us to study, in a very simplified setup (feedforward signaling mo-
tifs), how a given dose of hormone can induce different outputs from the target system, depending
on how this dose is distributed in time [22] and we found that nonlinearity in the steady state
input-output function of the system predicts the optimal input pattern. Understanding how such
input-output functions can be an emergent property of realistic signaling networks remains a totally

F. Clément Multiscale modeling of the HHG axis 9



open question.
Beyond their purpose for basic research and mechanistic knowledge, dynamical models can also
be used in the context of the HPG axis from the more practical viewpoint of data analysis, and
especially for model-based analysis of time series. Experimental time series of hormonal levels in
(neuro-)endocrinological studies are, most of the time, obtained from the peripheral blood system.
Due to the sampling process and clearance from the blood, they may differ drastically from the
instantaneous hormone release [23]. Moreover, they are subject to the inherent noise introduced
by the hormonal assay. Studies based on deconvolution tools (see e.g. [24]) have attempted to re-
construct the theoretical signal from experimental time series without any possibility of biological
validation. We have introduced another approach using dynamical models integrating the properties
of secretion events and mimicking the experimental protocol to generate synthetic time series that
reproduce the whole process leading from secretion to experimental time series, through sampling
and hormonal assay. This approach allowed us both to explain and to validate our DynPeak algo-
rithm for the dynamical analysis of luteinizing hormone (LH) rhythm [25], which is freely available
at https://www-rocq.inria.fr/sisyphe/paloma/dynpeak.html. A similar approach also helped up to
retrieve as much information as possible from long-term LH time series and to detect hidden (cir-
cannual) rhythms by comparing the time-frequency signatures of experimental and synthetic data
[26].
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Figure 1 : Overview of the female hypothalamo-pituitary-gonadal (HPG) axis and
endocrine control of the ovarian cycle

The HPG axis involves three main organic levels : the hypothalamus, pituitary gland and ovaries,
whose activities are coordinated by entangled endocrine feedback loops. During most of the ovarian
cycle, the secretion pattern of the hypothalamic neuro-hormone GnRH (gonadotropin-releasing
hormone) is pulsatile. The release of GnRH into the hypothalamo-pituitary portal blood induces
the secretion from the pituitary gland of the luteinizing hormone (LH), that also follows a clear
pulsatile pattern, and follicle-stimulating hormone (FSH). LH and FSH control the development of
ovarian follicles and their secretory activity (as well as that of the corpus luteum). In turn, hormones
released by the ovaries (steroid hormones such as progesterone and estradiol or peptide hormones
such as inhibin) modulate the secretion of GnRH, LH and/or FSH. All along the ovarian cycle,
GnRH pulse frequency adapts to the steroid environment (low frequency during the progesterone-
dominated luteal phase and high frequency during the estradiol-dominated follicular phase). Once
per cycle, in response to the increasing levels of estradiol emanating from the pre-ovulatory follicles,
the GnRH secretion pattern alters dramatically and a massive release occurs. The GnRH surge
triggers in turn the LH surge that induces the ovulation of the selected follicles. (Adapted from
[12]).
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Figure 2 : Sketch of the simulation domain and microscopic outputs of the multiscale
model for terminal follicular development

Top panel : Functional domain in age (abscissa) and maturity (ordinate). Two successive cycles are
represented in the lower part of the domain ; the upper part corresponds to the differentiated area
after cell cycle exit from phase G1 ; the hatched area delimitates the zone of the domain where cell
loss can occur through apoptosis. Bottom panel : instance of cell repartition along a simulation,
with the color code indicating the local amplitude of the density. On the selected snapshot, the cell
density is distributed over two consecutive cell cycles and the passage through the SM-G1 interface
has resulted in a mitosis-induced doubling of the density. The part of the density distributed in
phase D corresponds to cells that have exited the cell cycles during the G1 phases of both the
current and former cell cycles. (Courtesy of Marie Postel).
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Figure 3 : Macroscopic outputs of the multiscale model for terminal follicular develop-
ment

Top panel : Cell number in a single ovulatory follicle subject to biological specifications retrieved
in the ovine species. The change in the cell number is represented as a function of time (bottom
horizontal axis), and diameter (top horizontal axis), with initial time corresponding to a 1mm
diameter. The left vertical axis is tipped with a unit of one million cells, while the right one marks
the ratio of cell number increase with respect to the initial number. The red bullets correspond to
the experimental observations, the black lines to interpolation curves, and the blue dashed lines
correspond to simulated values. The experimental set combines different sources of data that were
used to relate the cell number to the follicular diameter on one hand and the follicle diameter to
time (or follicular age) on the other hand (details in [5]). The insert shows the associated decrease in
the growth fraction. Bottom panel : simulation of a cohort of follicles. In this instance, the cohort is
made up of eight follicles, amongst which two ovulate with a different stabilized number of granulosa
cells, while the others degenerate (Courtesy of Marie Postel).
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Fig. 6. Simulation results corresponding to different oocyte and granulosa cell growth rates in
sheep follicles. Panels A, D, and G illustrate the relationships between follicle and oocyte diameter;
panels B, E, and H illustrate the relationships between granulosa cell number, follicle diameter,
and oocyte diameter; panels C, F, and I illustrate the relationships between the number of cell
layers surrounding the oocyte and the number of granulosa cells. Panels A, B, and C: Results
of one simulation fitting with the data set of wild-type (++) sheep. The points in panels A and
B correspond to the pooled data sets ++ 1, ++ 2, and ++ 3, represented in panels A and B of
Figure 5. Panels D, E, and F: Results of two simulations corresponding to (1) large oocytes and
low granulosa cell numbers (dotted curves) and fitting with the data set of BB sheep (2) very large
oocytes and very low granulosa cell numbers (solid curves) and fitting with the data set of II sheep.
The points in panels D and E correspond to the data sets BB and II represented in panels C and D
of Figure 5. Panels G, H, and I: Results of one simulation corresponding to an instance of small
oocytes and high granulosa cell numbers. The oocyte diameter (33 µm) and cell number (22) at
initial time are the same in all cases, while the values of parameters κ1 and/or λ1 differ according
to the genotype. ++ case: λ1 = 500, κ1 = 3.5 10−5 (orange (in the electronic version) cross in
Figure 10); BB case: λ1 = 500, κ1 = 1.25 10−4(open pink (in the electronic version) square in
Figure 10); II case: λ1 = 60.9, κ1 = 4.4 10−4 (open cyan (in the electronic version) diamond in
Figure 10).

of κ1 defining an interval [κ1min , κ1max ] such that we clearly got over- or undersized
oocytes. Searching within this interval by dichotomy, we got another κ1 value, such
that the follicle belongs to neither the large oocyte domain nor the small oocyte
one. More precisely, this means that, outside this interval, the normalized difference
between the observed diameter, dsim

O , and the expected (experimentally observed) di-
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Fig. 6. Simulation results corresponding to different oocyte and granulosa cell growth rates in
sheep follicles. Panels A, D, and G illustrate the relationships between follicle and oocyte diameter;
panels B, E, and H illustrate the relationships between granulosa cell number, follicle diameter,
and oocyte diameter; panels C, F, and I illustrate the relationships between the number of cell
layers surrounding the oocyte and the number of granulosa cells. Panels A, B, and C: Results
of one simulation fitting with the data set of wild-type (++) sheep. The points in panels A and
B correspond to the pooled data sets ++ 1, ++ 2, and ++ 3, represented in panels A and B of
Figure 5. Panels D, E, and F: Results of two simulations corresponding to (1) large oocytes and
low granulosa cell numbers (dotted curves) and fitting with the data set of BB sheep (2) very large
oocytes and very low granulosa cell numbers (solid curves) and fitting with the data set of II sheep.
The points in panels D and E correspond to the data sets BB and II represented in panels C and D
of Figure 5. Panels G, H, and I: Results of one simulation corresponding to an instance of small
oocytes and high granulosa cell numbers. The oocyte diameter (33 µm) and cell number (22) at
initial time are the same in all cases, while the values of parameters κ1 and/or λ1 differ according
to the genotype. ++ case: λ1 = 500, κ1 = 3.5 10−5 (orange (in the electronic version) cross in
Figure 10); BB case: λ1 = 500, κ1 = 1.25 10−4(open pink (in the electronic version) square in
Figure 10); II case: λ1 = 60.9, κ1 = 4.4 10−4 (open cyan (in the electronic version) diamond in
Figure 10).

of κ1 defining an interval [κ1min , κ1max ] such that we clearly got over- or undersized
oocytes. Searching within this interval by dichotomy, we got another κ1 value, such
that the follicle belongs to neither the large oocyte domain nor the small oocyte
one. More precisely, this means that, outside this interval, the normalized difference
between the observed diameter, dsim

O , and the expected (experimentally observed) di-

Figure 4 : Multiscale outputs of the model for basal follicular development

Leftmost panel : 3D-like views of microscopic outputs ; to observe the oocyte (big yellow cell), the
cell mass constituted by granulosa cells (small green cells) of the follicle has been partially recessed.
Left center panel : histological slices of follicles at different stages of development corresponding
to model outputs in both flanking panels (courtesy of Danielle Monniaux). Right center panel :
mesoscopic outputs showing the distribution of cells emanating from the same ancestor cell ; the
intensity of blue staining is proportional to the proportion of clonal cells with respect to the whole
population. Rightmost panel : Fitting of macroscopic outputs (A : oocyte diameter versus follicular
diameter, B : follicle diameter versus cell number) to experimental data obtained in wild-type ewes
[10]. Adapted from [2].
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Figure 5 : GnRH output from the multiple-timescales model and corresponding levels
of ovarian steroid hormones along an ovarian cycle

The bottom panel is a sketch of the GnRH ouput from the pulse and surge generator model for
an idealized species, that shows the qualitative and quantitative sequence of secretory events (low
pulsatile regime in the luteal phase, high frequency regime in the follicular phase, triggering of the
surge, resumption of pulsatility). The pattern shown here is close to what is observed in the rhesus
monkey, with as long a follicular phase as a luteal one. The top model shows the GnRH output
subject to specifications designed in the ewe species. The middle panel is a handmade sketch of
the corresponding levels of progesterone and estradiol that feedbacks on GnRH secretion through a
complex hypothalamic circuitry. (Adapted from [12]).
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Figure 6 : Calcium output in the GnRH network reproducing the experimental results
observed in olfactive placodes [13].

Top panel : asynchronous regime in the absence of coupling. The dynamics of intracellular calcium
is shown in three different neurons with slightly different periods and amplitudes (Courtesy of
Alexandre Vidal). Bottom panel : recurrent synchronization of high amplitude peaks in the presence
of coupling. Three synchronized peaks occur within the simulation, amongst a network of fifty
neurons (the same color can be used for several individual neurons). (Adapted from [4]).
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Sketch of the model for terminal follicular development

We provide here a more comprehensive formulation of the multiscale PDE model ; we nevertheless
refer to the more mathematically-oriented articles cited in the main text for a rigorous presentation.
To alleviate the notations, we drop the i exponent initially used to make the phase-dependency ex-
plicit. Also, we rename the structuring variables a and γ by the classical space variables x and y.

In each follicle, the cell density is governed by the master equation

∂φf
∂t

+
∂(gf (x, y, uf (t))φf )

∂x
+
∂(hf (x, y, uf (t))φf )

∂y
= −λ(x, y, U(t))φf ,

defined on the whole numerical domain (Ω1∪Ω2∪Ω3) consisting of the successive G1 and SM phases
of the cell cycles, and the single differentiated phase D.
At initial time, the follicular cells are distributed according to φf (0, x, y) = φ0f (x, y) ; all cells are
within the first cell cycle and they are desynchronized. Their maturity is uniformly distributed within
a subpart of the range (0, γs).
The aging and maturation functions are formulated according to the following expressions (here and
in the sequel, all parameters are real positive constants) :

gf (x, y, uf ) =

{
γ1uf + γ2 in phase G1
1 in phases SM and D

hf (x, y, u) =

{
τh(−y2 + (c1y + c2)(1− exp(

−u
ū

))) in phases G1 and D
0 in phase SM

The rate of cell death is non negative only in a strip overlapping the top of phases G1 and bottom
of phase D ([y−s , y+s ], hatched area in Figure 2), where it is defined by

λ(x, y, U) = Λ̄ exp
(
−(y − ys)2/ȳ

)
× (Umax − U) /Umax

This rate is maximal when both U(t) takes its lowest value Umin (penalization due to poor hormonal
supply), and y = ys (highest sensitivity to apoptosis at the cell cycle exit transition).

The Nf equations in the PDE system {φ1, . . . , φNf } are linked together through the control terms
uf (t) and U(t), that depend on the first-order moments in maturity of the densities :

m1
f (t) =

∫∫
yφf (t, x, y)dxdy (follicular maturity) M(t) =

Nf∑
1

m1
f (t) (ovarian maturity)

The plasma FSH level U(t) is defined by

U(t) = S(M(t)) with S(M) = Umin +
Umax − Umin(

1 + exp(c(M −M))δ
)

The locally bioavailable FSH level uf (t) is defined proportionally to U(t) as

uf (t) = bf (m1
f (t))U(t) with bf (m) = b1 +

1− b1
1 + exp (−b2(m− b3))
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The model is completed by appropriate boundary conditions on both the inner and outer boundaries.

The inner boundary conditions hold on the interfaces separating the whole domain into the different
cell phases. They are defined as :

1. condition of cell flux continuity on the interfaces between phases G1 and SM (horizontal cell
fluxes : φf (t, x+, y) = gfφf (t, x−, y)) and between phases G1 and D (vertical cell fluxes :
φf (t, x, y+) = φf (t, x, y−)) ;

2. condition of mitosis-induced doubling of the cell fluxes on the interfaces between phases SM
and G1 (birth of two daughter cells from one mother cell : gfφf (t, x+, y) = 2φf (t, x−, y)) ;

3. waterproof condition between phases SM and D (φf (t, x, y+) = 0).

The formulation of the boundary conditions on the outer boundaries are based on the facts that (i)
there is no cell influx from outside, (ii) the maximal maturity is bounded and (iii) the number of
successive cell cycles is adapted to the timespan of the biological process (alternatively, boundary
conditions as those defined on the SM/G1 interface can be applied as periodic conditions on the
vertical outer boundaries).
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Sketch of the stochastic model for basal follicular development

Oocyte-granulosa interaction terms

KITLG          oocyte growth 
 
 
BMP15           granulosa cell  
GDF9           proliferation 

BMP15 
GDF9 

KITLG2 

KIT 

KITLG1 

GJA OOCYTE 

Zona Pellucida 

GRANULOSA  

KITL : Kit-Ligand, BMP : Bone Morphogenetic Protein, GDF : Growth differentiation factor, GJA :
gap-junction protein α

1. Effect of the granulosa cells on the oocyte growth

DO(t) = DO(0) +

∫ t

0
Fdet (DO(s))

∑
i

wiNi(t)ds

The growth of the oocyte diameter D0(t) is ruled by a combination of a deterministic (red)
part Fdet (intrinsic growth with saturation at a maximal diameter) and a stochastic (blue)
part driven by the weighted contribution of granulosa cells (modulation of the growth slope) :
all cells within a same layer, Ni(t), have the same weight wi, which decreases as i, the layer
number, increases. Note that the maximal number of layers is time dependent and that the
exact expression of the equation has been simplified for the sake of clarity.

2. Direct effect of the oocyte on granulosa cells : probability of cell division

pdiv(t) = 1− exp−Ak(t)/λi

The instantaneous division probability of the kth cell (amongst all Nt(t) cells) is ruled by a
combination of cell age Ak (the older the cell, the greater the probability) and the prolifera-
tive effect of the oocyte translated into a cell-layer dependent value of the average cell cycle
duration (parameter λi increases with the layer number i).
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Interaction-based shaping and growth of the follicle

As a result of the cell division events, the number of cells Nt(t) increases in a incremental way (one
cell more each time a cell division occurs). On the other side, the oocyte diameter increases and the
capacity of each layer increases. The balance between both processes sets the level of crowding in the
cell neighborhood and rules the probability for cell displacement :

pdisp(L(i,j)t , t) =
1

1 + e−
di,j−µ
σ

L(i,j)t represents an elementary volume element within the follicle (such as the red-filled areas in
the center panel below, with i the cell layer and j the angular location within the layer). The t index
recalls that this volume inflates with oocyte growth. di,j is the local cell density within this element
(number of cells per unit volume), µ is a reference crowding level (in the case when cells are as-
similated to incompressible spheres fulling the whole available volume), while σ is a parameter of
tolerance to overcrowding. Cell motion is locally isotropic, yet with a short spatial range, so that, as
the cell number increases, new layers are progressively filled and the layer number increases.

5	

-	About	20	cells	surrounding	the	oocyte	=>	PDE	model	

-	Oocyte/Granulosa	dialog	=>	SPACE/AGE	model	

Biological	background	

2D view of the possible displacement for cell lying in a given (yellow) elementary volume of the
follicle ; a schematic view of the layers is superimposed on an histological slice

Putting all these terms together allows us to describe the law of evolution of the cell population, by
a stochastic point process, denoted by Zt, describing both the current total cell number Nt, and, for
each kth cell, the time elapsed since the last cell division (Ak) and its location with respect to the
oocyte (Xk) :

Zt =

Nt∑
k=1

δ(Xk(t),Ak(t)),

where δ stands the Dirac delta function (a distribution function which is concentrated at a single
point in space). At initial time, Z0 =

∑N0
k=1 δ(Xk(0),Ak(0)) corresponds to the primary follicle stage

with one single layer of granulosa cells surrounding the oocyte.
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Sketch of the model for the GnRH secretory pattern along the
ovarian cycle

The model consists of two coupled systems. Each system is described by the well-known FitzHugh-
Nagumo model, a simplified version of the biophysical Hodgkin-Huxley model, initially designed to
explain the ionic mechanisms underlying action potentials in the squid giant axon.
The systems are formulated in a similar way except that one is faster than the other. The coupling
is unilateral ; the system corresponding to an average GnRH neuron is forced by that corresponding
to an average regulatory neuron.



ε
dX

dt
= −Y + g(X)

dY

dt
= X + b1Y + b2

Regulating system

εδ
dx

dt
= −y + f(x)

ε
dy

dt
= a0x+ a1y + a2 + cX

yout = y(t)χ{y(t)>yth}


Secreting system
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Figure 1.4 Limit cycle of the Regulating System and corresponding time trace of variable X . The values of parameters b1

and b2 are chosen so that the Regulating System admits an unstable singular point lying on the middle branch of the cubic
X-nullcline surrounded by a limit cycle (left panel). Due to the slow-fast property of the Regulating System, the limit cycle is
of Relaxation type and the periodic X time trace is characterized by fast transitions between two main regimes : slow increase
from Xmin to �� and slow decrease from Xmax to �.

This yields the global model :

"�
dx

dt
= �y + f(x), (1.3a)

"
dy

dt
= a0x + a1y + a2 + cX (1.3b)

"
dX

dt
= �Y + g(X), (1.3c)

dY

dt
= X + b1Y + b2, (1.3d)

yout(t) = y(t)�{y(t)>yth}. (1.3e)

An appropriate choice of c and a2 values ensures that the output yout of this model displays the following pattern
(Figure 1.5) driven by the periodic oscillation of X along the relaxation limit cycle of the Regulating System
(1.3c)-(1.3d). During the slow increase of X from Xmin to �� (X < 0), the GnRH Secreting system (1.3a)-(1.3a)
remains in the pulsatility regime. Since the coupling between the two systems is slow-fast, the GnRH Secreting
System produces many pulses in this time interval. When X jumps to positive values, the GnRH Secreting System
switches to the surge regime : (x, y) reaches the vicinity of the stable singular point and y (as well as yout)
undergoes a great increase. Once X returns to negative values, the GnRH Secreting System switches back to the
pulse regime, y (as well as yout) decreases quickly and the whole process starts again. Hence, the pattern of the
model output reproduces the alternation between the pulse and surge regime shown in the bottom panel of Figure
1.5. Note that, since the GnRH Secreting System is faster than the Regulating System and the (X, Y ) limit cycle
is of relaxation type, the pulse regime coincides almost exactly with the phase X < 0, and the surge regime with
X > 0.

7

Typical oscillatory pattern possibly
exhibited by a FitzHugh-Nagumo system

g(X) and f(x) are cubic functions ; a typical expression can be f(x) = −x3 + 4x.

All parameters are positive constants.
Time separation constants ε and δ are “small” with respect to the other parameters (with a typical
value close to 0.01) and define the different timescales of the model. These parameters also control
some quantitative specifications. ε affects the pulse frequency ; it is on the order of the inverse of
the number of pulses along a whole ovarian cycle and affects the relative duration of the pulsatile
versus surge regime. δ controls the relative duration of a pulse with respect to the average interpulse
interval.
The parameters b1 and b2 are chosen so that (X,Y ) operates in an oscillatory regime ; (X,Y ) follows
a so-called relaxation cycle alternating slow and fast parts. The slow parts correspond to the point
(X,Y ) moving close to either the left or right branch of the graph of the function Y = g(X) in the
(X,Y ) phase plane (teal and red parts marked by one arrow-head in the Figure above), while the fast
parts correspond to almost horizontal jumps back and forth from one branch to the other (orange
parts marked by two arrow-heads).
In turn, the behavior of the secreting system is driven by the periodic behavior of the regulating
system. The secreting system also displays an oscillatory (pulsatile) pattern when the coupling term
cX is such that the intersection point between the cubic function y = f(x) and the straight line
y = a0x+ a1y+ a2 + cX remains on the middle branch (see Figure below). The shape of the relaxa-
tion cycle is similar to that of the regulating system, yet its period is much shorter.
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The pulsatile release of GnRH is associated with the ionic dynamics through a thresholding effect
(χ is the indicator function, its value is 1 when its argument is true and 0 if it is false) ; yth is the
critical intracellular calcium concentration needed to trigger a pulse (excitation-secretion coupling).
When this point passes through the local extrema of the cubic function, the system undergoes a
dramatic dynamic change (a Hopf bifurcation) and it switches to the surge mode, that corresponds
dynamically to a quasi-steady state (the (x, y) point tracks a steady-state whose coordinates vary
with time).
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Figure 1.3 Phase portrait of the GnRH Secreting System and output yout signal in the pulse regime (panels A-B) and surge
regime (panels C-D-E). In each panel A and B, the cubic curve and the straight line represent the x- and y-nullcline respectively.
The orange point corresponding to their intersection represents a singular point of the GnRH Secreting System. For I in an
interval of values defined by the other parameters, the GnRH Secreting System admits an unstable singular point surrounded
by an attractive limit cycle of relaxation type (panel A). Along this orbit, the generated y signal (grey pattern in panel B) is
serrated and the thresholded yout signal (blue pattern in panel B) is pulsatile. For greater values of I , a stable singular point
lies on the left branch of the cubic x-nullcline. Due to the slow-fast property of the GnRH Secreting System, the orbits first
reach the x-nullcline quickly, and then follow it while tending to the singular point (panel C). Panels D and E show the time
trace of y along the lower and upper orbits displayed in panel C respectively.
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Pulsatile versus surge regime

Left part : pulsatile regime. Top panel : graph of the relaxation cycle (x, y) ; parts of the cycle marked
by one arrow-head are slower than those marked by two arrow-heads. The intersection point between
the cubic function and straight line is materialized by an orange bullet. Bottom panel : traces in time
of y(t) along the relaxation cycle (grey line) and corresponding thresholded output yout (blue line).
Right part : surge regime ; the intersection points now lies on the left branch. Adapted from [12].
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Sketch of the model for calcium oscillations in embryonic GnRH
neurons

Individual calcium dynamics

dxj
dt

= τ
(
−y + 4x− x3 − φfall(Ca)

)
dyj
dt

= τεk (x+ a1y + a2)

dCaj
dt

= τε

(
φrise(x)− Ca− Cabas

τCa

)

Calcium-induced hyperpolarization of the neuron membrane

φfall(Ca) =
µCa

Ca+ Ca0

Calcium dynamics induced by the polarization of the neuron membrane

φrise(x) =
λ

1 + exp(−ρCa(x− xon))

τCa modulates the decay rate of calcium level to the baseline Cabas

Embedding of the individual dynamics within a network of N neurons


dx/dt = τ

(
−yj + 4xj − x3j − φfall(Caj)

)
dy/dt = τεkj(xj + a1yj + a2−ηjφsyn(σ))

dCa/dt = τε
(
φrise(xj)− Caj−Cabas

τCa

)
 j = 1 . . . N

dσ/dt = τ
(
δεσ − γ(σ − σ0)φσ

(
1
N

∑N
i=1Cai − Cadesyn

))
σ is a global variable representing the network state
acting on each neuron through a thresholded effect

φsyn(σ) =
1

1 + exp(−ρsyn(σ − σon))

and subject to a reset mechanism induced by each episode of calcium synchronization

φσ(u) =
1

1 + exp(−ρσu)
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Outputs of the single neuron model and synchronization mechanism

Left panel : typical instance of the time changes in variables x, y and Ca for the individual neuron
model. Right panel : generation of a synchronization episode. The blue parts correspond to the
unsynchronized regime, when σ < σon and φsyn(σ) ' 0, and the red parts to the synchronized
regime, when σ > σon and φsyn(σ) ' 1. As long as σ < σon, each cell follows it owns rhythm ;
the cells are asynchronous and the mean calcium level remains low. When σ exceeds σ0, φsyn(σ) is
activated and the cells for which ηj is large enough produce, all almost at the same time, a higher
calcium peak than in the asynchronous period of the oscillation. The mean calcium level then exceeds
Cadesyn which resets σ to a value close to σ0. (Adapted from [4]).
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