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Abstract

In this paper, we propose a new fuzzy clustering algorithm based on the mode-
seeking framework. Given a dataset in Rd, we define regions of high density that
we call cluster cores. We then consider a random walk on a neighborhood graph
built on top of our data points which is designed to be attracted by high density
regions. The strength of this attraction is controlled by a temperature parameter
β > 0. The membership of a point to a given cluster is then the probability for the
random walk to hit the corresponding cluster core before any other. While many
properties of random walks (such as hitting times, commute distances, etc. . . ) have
been shown to enventually encode purely local information when the number of
data points grows, we show that the regularization introduced by the use of cluster
cores solves this issue. Empirically, we show how the choice of β influences the
behavior of our algorithm: for small values of β the result is close to hard mode-
seeking whereas when β is close to 1 the result is similar to the output of a (fuzzy)
spectral clustering. Finally, we demonstrate the scalability of our approach by pro-
viding the fuzzy clustering of a protein configuration dataset containing a million
data points in 30 dimensions.

1 Introduction
The analysis of large and possibly high-dimensional datasets is becoming ubiquitous
in the sciences. The long-term objective is to gain insight into the structure of measure-
ment or simulation data, for a better understanding of the underlying physical phenom-
ena at work. Clustering is one of the simplest ways of gaining such insight, by finding
a suitable decomposition of the data into clusters such that data points within a same
cluster share common (and, if possible, exclusive) properties.

In this work, we are interested in the mode seeking approach to clustering. This
approach assumes the data points to be drawn from some unknown probability distri-
bution and defines the clusters as the basins of attraction of the maxima of the density,
requiring a preliminary density estimation phase (Chen et al., 2014b; Chazal et al.,
2013; Cheng, 1995; Cho and Lee, 2010; Comaniciu and Meer, 2002; Koontz et al.,

1



1976). The theoretical analysis of this clustering framework has drawn increasing at-
tention recently, see Chen et al. (2014a); Azizyan et al. (2015); Chen et al. (2015a,b);
Arias-Castro et al. (2013). However, this (hard) clustering method provides a fairly
limited knowledge on the structure of the data: while the partition into clusters is well
understood, the interplay between clusters (respective locations, proximity relations,
interactions) remains unknown. Identifying interfaces between clusters is the first step
towards a higher-level understanding of the data, and it already plays a prominent role
in some applications such as the study of the conformations space of a protein, where a
fundamental question beyond the detection of metastable states is to understand when
and how the protein can switch from one metastable state to another (Chodera et al.,
2006). Hard clustering can be used in this context, for instance by defining the bor-
der between two clusters as the set of data points whose neighborhood (in the ambient
space or in some neighborhood graph) intersects the two clusters, however this kind of
information is by nature unstable with respect to perturbations of the data.

fuzzy clustering appears as the appropriate tool to deal with interfaces between
clusters. Instead of assigning each data point to a single cluster, it computes a degree
of membership to each cluster for each data point. The promise is that points close to
the interface between two clusters will have similar degrees of membership to these
clusters. Thus, fuzzy clustering uses a fuzzier notion of cluster membership in order to
gain stability on the locations of the clusters boundaries.

Consider a smooth density f in Rd. Under the mode seeking paradigm, clusters
correspond to the modes of f . More precisely, considering the gradient flow induced
by f:

y′(t) = ∇f(u(t))

two points x and y are in the same cluster if the gradient flow started at x and the
gradient flow started at y have the same limit which is a local maximum of f . A natural
way to turn this approach into a fuzzy clustering algorithm is to follow a perturbed
gradient flow instead, such as the diffusion process solution of

dYt =
1

β
∇(log f)dt+ dBt, (1)

where Bt is a d-dimensional Brownian motion and β is a temperature parameter con-
trolling the amount of noise introduced in the gradient flow. We use the gradient of the
logarithm of f here as this quantity arises naturally in practice. Indeed, since we only
have access to a discretization of the space through the sampled data points, we mimic
this perturbed gradient flow by a random walk on the data points. Ting et al. (2010)
proved an isotropic random walk on a neighborhood graph approximates the previous
diffusion process for β = 1 while other values of β are obtained by putting weights on
the edges of the graph. At this point, one could perform fuzzy clustering by considering
the first local maximum of the density encountered by the random walk, an approach
wich has been proposed by Chen et al. (2014b). However, as emphasized by Luxburg
et al. (2010), the hitting time to a single point for a random walk on the graph con-
verges to irrelevant quantities when the number of data points goes to infinity. We can
thus expect the clustering to fail in that case. Indeed, if we apply this method to the
fuzzy clustering of two different Gaussian measures (see Figure 1). The obtained fuzzy
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Figure 1: Fuzzy clustering output for an unbalanced mixture of gaussian. Red color
corresponds to the right cluster, blue to the left one. Finally, green points have similar
membership to both clusters.

memberships are unsatisfying. In order to circumvent this issue, we assign a zone of
high density to each cluster, called cluster core and computed using the mode-seeking
(hard) clustering algorithm ToMATo (Chazal et al., 2013). The fuzzy membership of a
point to a given cluster is then given by the probability for the random walk started at
this point to hit the corresponding cluster core first.

After a presentation of the algorithm, we provide convergence guarantees for its
output. We then study the empirical behaviour of our algorithm on synthetic data and
provide a method to select relevant values for the temperature β. Finally, we perform
some quantitative experiments on a few UCI datasets.

2 The Algorithm
Our algorithm is a fuzzy generalization of the ToMATo algorithm which relies on the
concept of prominence. LetG be a graph and f be a real valued function on the vertices
of this graph. For any α ∈ R, let Fα = f−1([α,+∞]) be the α-superlevel-set of f . A
new connected component C is born in Fα when α reaches a local maximum of f on
G and we denote by αb,C the corresponding value of α. This component then dies at
α = αd,C < αb,C when it gets connected, in Fα, to another connected component C ′

such that αb,C′ > αb,C . The prominence of C (and by extension, of the corresponding
local maximum of f ) is then simply αb,C − αd,C .

The algorithm takes as input a finite set of points X = {X1, · · · , Xn} together
with pairwise distances d(Xi, Xj). In practice only the distances are used, so there is
no need for point coordinates. Additionally, the algorithm takes in the following set of
parameters:
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• a density estimator f̂ : X → R,

• a kernel k, for example the Gaussian kernel,

• a window size h > 0,

• a prominence threshold τ > 0,

• a temperature β > 0.

The first four parameters are in fact required by ToMATo for hard mode-seeking, upon
which our algorithm relies. The last parameter is the one added in for fuzzy mode-
seeking, as per Equation (1).
Given this input, our algorithm proceeds as follows:

1. It builds a weighted neighborhood graph G on top of the point cloud X , adding
an edge with weight

wi,j =

(
1 +

1− β
β

f̂(Xj)

)
k

(
d(Xi, Xj)

h

)
(2)

between each pair of points (Xi, Xj). Remark that it is possible to replace our
kernel-based graph by a nearest neighbour graph.

2. It computes the cluster cores by running ToMATo with input X , d, log(f̂), τ
and the unweighted neighborhood graph Ḡ obtained from G by removing the
edges with weights lower than 0.5 max(k). The output of ToMATo is a set of K
clusters C1, · · · , CK . Each cluster Ci corresponds to the basin of attraction of
some peak of log(f̂) of prominence at least τ within Ḡ. Up to a reordering of
the data points, we can assume this peak to be Xi. The i-th cluster core Ci is
then taken to be the highest and most stable part of Ci, defined formally as the
connected component containing Xi within the subgraph of Ḡ spanned by those
vertices Xj such that log(f̂)(Xj) > log(f̂)(Xi)− τ/2.

3. It computes the fuzzy-membership values µ1, . . . , µK by solving the linear sys-
tem ATµ = µ, where the matrix A is defined by:

Akl =

{
δkl if Xk belongs to some cluster core
Kh(Xk, Xl) otherwise,

where Kh is the transition kernel of the random walk on the graph, i.e.

Kh(Xi, Xj) =
wi,j∑
z wi,z

. (3)

The output of the algorithm is the set of fuzzy-membership values µ1, . . . , µK com-
puted at step 3.
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3 Parameters selection

3.1 Density estimator, window size, kernel and prominence thresh-
old

These 4 parameters are tied to the classical hard mode-seeking framework. The density
estimator can be linked to the window size in practice, as is done e.g. in Mean-Shift
(Cheng, 1995) and its successors. For instance, one can consider the kernel density
estimator associated to the kernel k. This not only reduces the number of parameters to
tune in practice, but it also gives a way to select h using standard parameter selection
techniques for density estimation, which is done for example in Chen et al. (2014b).
Finally, the prominence threshold τ is used to distinguish between relevant and irrele-
vant peaks in the discrete setting. It can be selected by running ToMATo twice: once to
get the distribution of prominences of the peaks of f̂ within the neighborhood graph Ḡ,
from which τ can be inferred by looking for a gap in the distribution; then a second
time, using the chosen value of τ , to get the final hard clustering. This procedure is
detailed in Chazal et al. (2013).

3.2 Temperature parameter
This parameter is standard in fuzzy clustering. Outputs corresponding to large values
of β will tend to have smooth interfaces between clusters, while small values of β
will encourage quick transitions from one cluster to another. β can also be interpreted
as a trade-off between the respective influence of the metric and of the density in the
diffusion process: when β is small, the output of our algorithm is mostly guided by
the density and therefore close to the output of mode seeking algorithms; by contrast,
when β is large, the algorithm becomes oblivious to the density. In practice, one may
get insights into the choice of β by looking at the evolution of a certain measure of
fuzziness of the output clustering across a range of values of β. We elaborate on this in
Section 5.

4 Convergence guarantees
In this section we provide guarantees to our fuzzy clustering scheme by exploiting the
convergence of the random walk over the neighborhood graph to a continuous diffusion
process.

As is usual in mode-seeking, we assume our input data points X1, ..., Xn to be i.i.d
random variables drawn from some unknown probability density f over Rd. We also
assume that the metric d that equips the data points is the Euclidean norm, and that f
satisfies the following technical conditions:

• f is Lipschitz continuous over Rd andC1-continuous over the domain Ω = {x ∈
Rd | f(x) > 0},

• lim
‖x‖2→∞

f(x) = 0,
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• The SDE 1 is well-posed.

Standard sufficient conditions ensuring the well-posedness (particularly the non-explosion)
of the SDE 1 can be found in Albeverio et al. (2003) or in Krylov and Röckner (2005),
for example one can assume∇ log f to be Lipschitz continuous.

Our analysis connects random walks on graphs built on top of the input point
cloud X using a density estimator f̂ to the solution of Equation 1, for a fixed tem-
perature parameter β > 0. Specifically, let Mx,h denote the Markov Chain whose
initial state is the closest neighbour of x in the point cloud X (break ties arbitrarily),
and whose transition kernelKh is given by Equation 3. Following the approach of Ting
et al. (2010), we show that, under suitable conditions on the estimator f̂ , this graph-
based random walk approximates the diffusion process in the continuous domain in
the following sense: there exists s depending on h such that, as n tends to infinity,
with high probability, Mx,h

bt/sc converges weakly to the solution of Equation (1). From
there, under standard conditions for mode estimation on the window size h and on the
density estimator f̂ (see Chen et al. (2015b); Arias-Castro et al. (2013)), we obtain
the convergence of the fuzzy-membership values µi(x) computed by the algorithm
to the membership defined from the underlying continuous diffusion process µ̃i(x).
Formally, letting v1, . . . , vK be the local maxima of f of prominence higher than τ ,
and C̃1, · · · , C̃K , their associated cluster cores in the continuous domain (i.e. C̃i is the
connected component containing vi in {x ∈ Rd| log f(x) ≥ log f(vi) − τ/2}), we
define µ̃i(x) as the probability for the diffusion process solution of (1) to hit C̃i before
any other C̃j .

Theorem 1. Let β > 0 and assume ‖∇f‖ is bounded from below on the boundary of
the underlying cluster cores C̃. Let h : N→ R+ be a decreasing window size such that
lim
n→∞

h(n) = 0 while lim
n→∞

h(n)d+2n
logn =∞. Suppose the density estimator f̂n satisfies,

for any compact set U ⊂ Ω and any ε > 0,

lim
n→∞

P(sup
x∈U
|∇f(x)−∇f̂n(x)| ≥ h(n)2ε) = 0.

Then, for any compact set U ⊂ Ω, any ε > 0 and any i,

lim
n→∞

P
(

sup
x∈U
|µi(x)− µ̃i(x)| ≥ ε

)
= 0.

5 Experiments
We first illustrate the effect of the temperature parameter β on the clustering output
using synthetic data. We then apply our method on a couple UCI repository datasets
and on simulated protein conformations data. In all our experiments we use a k-nearest
neighbor graph along with a distance to measure density estimator (Biau et al., 2011)
computed using the 2k nearest-neighbors.
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(a) The data. (b) Output of ToMATo. (c) Output for β = 0.2.

(d) Output for β = 1. (e) Output for β = 2. (f) Evolution ofH with respect to
β.

Figure 2: Output of our algorithm on a simple dataset composed of two overlapping
clusters. For fuzzy clustering green corresponds to an equal membership to both clus-
ters.

5.1 Synthetic data
The first dataset is presented in Figure 2(a) and is composed of two high-density clus-
ters connected by two links. The bottom link is sampled from a uniform density while
the top link is sampled from a density that has a gap inbetween the two clusters. Stan-
dard mode seeking algorithms will have a hard time clustering the bottom link as a
density estimation can create many “noisy” local maxima: for instance, ToMATo miss-
clusters most of the bottom link (see Figure 2(b)). We display the results of our algo-
rithm for three values of β : β = 0.2 in Figure 2(c), β = 1 in Figure 2(d) and β = 2
in Figure 2(e). As we can see from the output of the algorithm, for small values of β,
the amount of noise injected in our trajectory is not large enough to compensate for the
influence of the noise in the density estimation, so the result obtained is really close to
hard clustering. Large values of β do not give enough weight to the density function
which leads to a smooth transition between the two clusters on the top link. Intermedi-
ate values of β seem to give more satisfying results. In order to gain intuition regarding
which value of β one should use, it is possible to look at the evolution of a fuzziness
value for the clustering. For example, one can consider a notion of clustering entropy:

H =
∑
i

∑
j

µj(Xi) log(µj(Xi)), (4)

which gets lower when the fuzziness of the clustering increases. As we can see in
Figure 2(f), the evolution of H with respect to β presents three distincts plateaus cor-
responding to the three behaviour highlighted earlier.

The second dataset we consider is composed of two interleaved spirals—see Fig-
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(a) Output for β = 1. (b) Output for β = 0.28. (c) Fuzzy Spectral Clustering.

Figure 3: Experiments on a cluttered spirals dataset.

ure 3. An interesting property of this dataset is that the head of each spiral is close
(in Euclidean distance) to the tail of the other spiral. Thus, the two clusters are well-
separated by a density gap but not by the Euclidean metric. We use our algorithm with
two different values of β: β = 1 and β = 0.3. We also run the spectral fuzzy-C
means on a subsampling of this dataset. The first thing we want to emphasize is that
the result of spectral clustering and our algorithm using β = 1 are similar, this is to
be expected as both algorithms rely on properties of the same diffusion operator, this
also means that other fuzzy clustering techniques based on spectral clustering will fail
on this dataset. Moreover, we can see that for β = 1, the density gap between the two
spirals is not strong enough to compensate for the proximity of the two clusters in the
Euclidean metric. On the other hand, for β ' 0.3 we recover the two clusters as we
give more weight to the density structure.

5.2 UCI datasets
In order to obtain quantitative results regarding our fuzzy clustering scheme, we evalu-
ate it in a classification scenario on a few datasets from the UCI repository: the Pendig-
its dataset (10, 000 points and 10 clusters), the Waveset dataset (5000 points and 3 clus-
ters) and the Statlog dataset (6, 435 points for 7 clusters). We preprocess each dataset
by renormalizing the various coordinates so they have unit variance. Then, for each
dataset, we run our algorithm with various values of the parameter β between 0.3 and
5, but a single value of k and τ (given by a prominence gap), along with the fuzzy
C-means algorithm for fuzziness parameters between 1.2 and 5. We also consider the
fuzzy clustering algorithm proposed by Chen et al. (2014b), for which the cluster cores
are reduced to a single point. LetX1, . . . , Xn denote our sample points and Y1, . . . , Yn
their respective labels taking values in {1, . . . ,K ′}. In these datasets, there are only
two plateaus, thus we choose β. Thus, we propose an automatic selection of β by com-
puting the values of the clustering entropy H for multiple values of β and by selecting

β = argmax
dH

dβ
,
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Algorithm / Data Waveform Pendigits Statlog
Ours with optimal β -1.1 -0.61 -0.51
Ours with automatic β selection -1.1 -0.64 -0.55
FCM -1.1 -1.35 -0.57
fuzzy mode-seeking of Chen et al. (2014b) -3.2 -0.76 -0.58

Table 1: Entropic purity obtained by fuzzy clustering algorithms on UCI datasets.

in other words we take β inbetween the two plateaus by choosing the value of β maxi-
mizing the slope of H . In order to evaluate hard clustering algorithms, it is common to
use the purity measure defined by

P = max
π

1

n

n∑
i=1

K∑
j=1

1µ̃j(Xi)=11Yi=π(j),

where π is a map from the set of clusters {1, . . . ,K} to the set of labels {1, . . . ,K ′}.
As this measure is not adapted to fuzzy clustering, we define the ε-entropic purity as

HPε = max
π

1

n

∑
i

log

ε+
∑

j,π(j)=Yi

µ̃j(Xi)

 ,

for some ε > 0. The ε parameter is used to prevent the quantity from exploding due
to possible outliers. This extension of the traditional purity can be useful to evaluate
fuzzy clustering as it can be seen as an approximation of E[log(ε+

∑
j,π(j)=Y µ̃j(X))]

which enjoys the following property.

Proposition 2. Suppose that Y ∈ {1, . . . ,K} and let ε > 0, then

argmaxf∈Rd→RK ,‖f‖1=1E[log(ε+ f(X))] =

(1− ε)−1(P(Y = j | X))1≤j≤K − ε.

Thus, for small values of ε, a fuzzy clustering minimizing the ε-entropic purity
recovers the conditional probabilities of the labels with respect to the coordinates.

We provide the best 10−3-entropic purity obtained by each algorithm on all datasets
in Table 5.2. As we can see, our algorithm outperforms the other fuzzy clustering
algorithms on these datasets. In particular we can see that the simple fuzzy mode-
seeking algorithm of Chen et al. (2014b) fails on the Waveform dataset.

Alanine dipeptide conformations. We now turn to the problem of clustering pro-
tein conformations. We consider the case of the alanine-dipeptide molecule. Our
dataset is composed of 1, 420, 738 protein conformations, each one represented as a
30-dimensional vector. The metric used on this type of data is the root-mean-squared
deviation (RMSD). The goal of fuzzy clustering in this case is twofold: first, to find the
right number of clusters corresponding to metastable states of the molecule; second, to
find the conformations lying at the border between different clusters, as these represent
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the transition phases between metasable states. It is well-known that the conformations
of alanine-dipeptide only have two relevant degrees of freedom, so it is possible to
project the data down to two dimensions (called a Ramachadran plot) to have a com-
fortable view of the clustering output. See Figure 4 for an illustration, and note that the
clustering is performed in the original space. In order to highlight interfaces between
clusters, we only display the second highest membership function. As we can see there
are 5 clusters and 6 to 7 interfaces.

Figure 4: From left to right: (a) the dataset projected on the Ramachadran plot, (b)
ToMATo output, (c) second highest membership obtained with our algorithm for β =
0.2

6 Proofs

6.1 Background on diffusion processes
Convergence of Markov chains to diffusion processes occurs in the Skorokhod space
D([0, T ],Rd), composed of the trajectories [0, T ] → Rd that are right-continuous and
have left limits, for some fixed T > 0. It is equipped with the following metric:

d(f, g) = inf
ε
{∃λ ∈ Λ, ‖λ‖ ≤ ε, sup

t
|f(t)− g(λ(t))| ≤ ε},

where Λ denotes the space of strictly increasing automorphisms on the unit segment
[0, 1], and where ‖λ‖ is the quantity:

‖λ‖ = sup
s6=t

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ .
In diffusion approximation, standard results prove the weak convergence of a Markov

chain to a difussion process in D([0, T ],Rd). A stochastic process Ms converges
weakly to a diffusion process Y in D([0, T ],Rd) as s tends to 0 if and only if

lim
s→0

P(Ms ∈ B) = P(Y ∈ B) (5)

for any Borel set B such that P(Y ∈ ∂B) = 0.
Let us state the convergence result when Y is the Solution of the Stochastic Dif-

ferential Equation 1. For this case, b = 1
β∇ log f and a = Id. Consider a family of

Markov chains (Mx0,s) defined on discrete state spaces Ss ⊂ Ω, transition kernels Ks

and initial states Mx0,s
0 ∈ Ss. For x ∈ Ss and γ > 0, let

10



• as(x) = 1
s

∑
y∈Ss K

s(x, y)(y − x)(y − x)T ;

• bs(x) = 1
s

∑
y∈Ss K

s(x, y)(y − x);

• ∆γ
s = 1

sK
s(x,B(x, γ)c),

where B(x, γ)c is the complementary of the ball of radius γ centered at x.

Proposition 3 (Adapted from Theorem 7.1 in Durrett (1996)). Let U be a compact
subset of Ω. Let also B be a Borel set in D([0, T ],Rd) for some T > 0 such that
P(Y x0 ∈ ∂B) = 0 for all x0 ∈ U . For any ε > 0, there exist parameters ν and γ such
that

sup
x0∈U

|P(Mx0,s
bt/sc ∈ B)− P(Y x0

t ∈ B)| ≤ ε

whenever the following conditions are met:

(i) supx∈Ss ‖a
s − a‖∞ ≤ ν;

(ii) supx∈Ss ‖b
s − b‖∞ ≤ ν;

(iii) supx∈Ss ∆γ
s ≤ ν;

(iv) supx0∈Ss ‖M
x0,s
0 − x0‖∞ ≤ ν.

6.2 Weak-Convergence
In this section, we prove the following result.

Proposition 4. Let Y be the diffusion process solution of the SDE 1. Let h : N→ R+

be a decreasing function such that lim
n→∞

h(n) = 0 and lim
n→∞

h(n)d+2n
logn = ∞. Suppose

our estimator f̂n satisfies, for any compact set U ⊂ Ω and any ε > 0,

lim
n→∞

P(sup
x∈C
|f(x)− f̂n(x)| ≥ h(n)2ε) = 0.

Then, for any T, ε > 0, for any compact set U ⊂ Ω, and for any Borel set B of
D([0, T ],Rd) such that P(Y y ∈ ∂B) = 0 for all y ∈ U , there exists a constant C
depending on d such that for s(n) = Ch2, we have

lim
n→∞

P(sup
x∈U
|P(M

x,h(n)
bt/s(n)c ∈ B)− P(Y xt ∈ B)| ≥ ε) = 0.

The proof relies on Theorem 3 of Ting et al. (2010) along with a proper control of
boundary effects. Let T and ε be strictly positive real numbers, throughout the course
of the proof, the notation Mx,h(n) stands for the continuous time process Mx,h(n)

bt/s(n)c.
We denote by Xn = (X1, ..., Xn) the i.i.d sampling which is also the state space of
Mx,h(n). For α > 0, let Fα = {x ∈ Rd | f(x) ≥ α} be the α superlevel-set
of f and Bα = {w ∈ D([0, T ],Rd) | ∀t, w(t) ∈ Fα} be trajectories staying in
Fα up to time T . Since Y does not explode in finite time, there exists α such that,
for any x ∈ U , P(Y x ∈ Bα) ≥ 1 − ε/4. To obtain a good approximation of the

11



trajectories of Y staying in Fα using Mx,h(n), we only need to check assumptions
(i)-(iv) of Proposition 3 on Fα. Fα is closed as f is continuous and it is also bounded
as lim‖x‖2→∞ f(x) = 0, it is therefore compact. Applying Theorem 3 from Ting et al.
(2010) on the points of the compact set Fα, we have, with probability 1,

(i) lim
n→∞

P(supy∈Xn∩Fα ‖a
s − Id‖∞ ≤ ν) = 0,

(ii) lim
n→∞

P(supy∈Xn∩Fα ‖b
s − ∇fβf ‖∞ ≤ ν) = 0,

(iii) supy∈Xn∩Fα ∆h
s = 0,

(iv) lim
n→∞

P(‖Mx,h(n)
0 − x‖∞ ≤ ν) = 0.

Thus, the assumptions (i)-(iv) of Proposition 3 are verified on Fα.
Since f is continuous, Bα is an open set. Therefore, there exists n0 > 0 such that

for any n > n0,

sup
x∈U

P(Mx,h(n) ∈ Bα) ≥ sup
x∈U

P(Y x ∈ Bα)− ε/4 ≥ 1− ε/2.

Therefore, for any Borel set B,

sup
x∈U
|P(Mx,h(n) ∈ B)− P(Mx,h(n) ∈ B ∩Bα)| ≤ ε/2.

Thus, we only need to approximate trajectories that do not leave Fα to obtain a good
approximation of P(Mx,h(n) ∈ B). So we can apply Corollary 3 on these trajectories
with an accuracy of ε/2 to obtain,

sup
x∈U
|P(Mx,h(n) ∈ B)− P(Y x ∈ B)| ≤ ε.

Every step of the proof hold almost surely as n tends to infinity, thus the proof of
Proposition 4 is complete.

6.3 Proof of Theorem 1
Let β and τ be strictly positive real numbers and let U ⊂ Ω be a compact set. Let
C1, . . . , CK be the cluster cores used by the algorithm and computed with the density
estimator f̂ . These cluster cores are approximations of the sets C̃1, . . . , C̃K obtained
using the same computation with the true density f . Since, by assumptions, f is C1-
continuous on Ω and ‖∇f‖ is non-zero on the boundary of the C̃, we have

(i) The C̃i are compact sets of Rd that are well-separated (i.e. C̃j ∩ C̃j = ∅ for all
i 6= j).

(ii) For each i, the boundary of C̃i is smooth.
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By our assumptions on the convergence of f̂ along with Theorem 10.1 of Chazal et al.
(2013),

∀δ > 0, lim
n→∞

P(C̃−δi ⊂ Ci ⊂ C̃δi ) = 1, (6)

where C̃δi = ∪x∈C̃iB(x, δ) and C̃−δi = C̃i \ ∪x/∈C̃iB(x, δ).
Without loss of generality, we can assume that Ω has a single connected component.

Let ε be a strictly positive real and consider x ∈ Ω, we let

• µ+
i,δ(x) be the probability that Y x hits C̃δi before any other C̃−δj ,

• µ−i,δ(x) be the probability that Y x hits C̃−δi before any other C̃δj .

Let us show that, for any i, a trajectory entering C̃δi has a high probability to enter C̃i if
δ is small enough. Since the C̃i are closed and disjoint there exists δ0 > 0 such that the
C̃δ0i are disjoints. Moreover, since the C̃i have smooth boundaries, there exists δ+i > 0

such that if d(x, C̃i) ≤ δ+i then, the probability for Y x to hit C̃i before exiting C̃δ0i is at
least 1− ε/8.

Similarly, if a trajectory enters C̃i, then it enters C̃−δi with high probability. More
precisely there exists δ−i such that if a trajectory hits C̃i, then it hits C̃−δi with probability
at least 1− ε/8.

Let δ = min(δ+j , δ
−
j ), by combining our results and using the strong Markov prop-

erty of Y x we obtain that:

• µ+
i,δ(x)− µi(x) ≤ ε/4,

• µi(x)− µ−i,δ(x) ≤ ε/4.

The next step is to show that the approximation of µ+
i,δ provided by the Markov

chain is correct. For T > 0, let

B = {w ∈ D([0,∞],Rd | ∃τ such that w(τ) ∈ C̃δi
and ∀t < τ we have w(t) ∈ Ω \ ∪j C̃−δj },

BT = {w ∈ D([0, T ],Rd | ∃τ such that w(τ) ∈ C̃δi
and ∀t < τ we have w(t) ∈ Ω \ ∪j C̃−δj }.

We define the stopping time

τ(Y ) = inf
t
Y ∈ C̃δi ∪j∈{1,...,K},j 6=i C̃−δj .

Since Ci ⊂ Ω and Ω has a single connected component, we have that P(τ(Y xt ) <
∞) = 1, in particular that means that there exists T0 such that for any T ≥ T0,
P(τ(Y x) ≤ T ) ≥ 1− ε/6. Using Proposition 4, we have that, almost surely

P(P(τ(Mx,h(n)) ≤ T ) ≥ P(τ(Y x) ≤ T ))− ε/6 ≥ 1− 1

3
ε
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Hence, we have

P(Mx,h(n) ∈ B \BT ) + P(Y x ∈ B \BT )

≤ P(τ(Mx,h(n)) > T ) + P(τ(Y x) > T ) ≤ ε/2

Since P(Y x ∈ ∂BT ) = P(Y x ∈ ∂B) = 0, we can apply Proposition 4 on the set
BT , and obtain

‖P(Mx,h(n) ∈ BT )− P(Y x ∈ BT )‖∞,U ≤ ε/4

Combined with our previous result, we obtain:

‖P(Mx,h(n) ∈ B)− P(Y x ∈ B)‖∞,U ≤ 3ε/4

Using our assumption on Ĉi,n, we have P(Mx,h(n) ∈ B) ≥ µ̂i,h,n. Therefore,
using our previous bound between µ and µ+:

µ̂i,h,n(x)− µi(x) ≤ ε.

Similarly,
µi(x)− µ̂i,h,n(x) ≤ ε,

concluding the proof.

7 Conclusion
We have provided a fuzzy clustering algorithm based on the mode-seeking framework
relying on the approximation of a diffusion process through the use of a random walk.
Despite the convergence issues of random-walk-based quantities for large data high-
lighted by Luxburg et al. (2010), we have shown that our algorithm does converge to
meaningful values. Our thereotical result is backed up by encouraging experiments.
The main question still open regarding our algorithm is the choice of the temperature
parameter β, while we have shown that the evolution of a quantification of the fuzzi-
ness of the clustering through the clustering entropy can give some hint about a correct
choice for this parameter, it is not clear whether this can be done in all cases and for
more complicated datasets.
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