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—— Abstract

We present sound and complete environmental bisimilarities for a variant of Dybvig et al’s cal-
culus of multi-prompted delimited-control operators with dynamic prompt generation. The reas-
oning principles that we obtain generalize and advance the existing techniques for establishing
program equivalence in calculi with single-prompted delimited control.

The basic theory that we develop is presented using Madiot et al.’s framework that allows for
smooth integration and composition of up-to techniques facilitating bisimulation proofs. We also
generalize the framework in order to express environmental bisimulations that support equival-
ence proofs of evaluation contexts representing continuations. This change leads to a novel and
powerful up-to technique enhancing bisimulation proofs in the presence of control operators.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, F.3.2 Semantics
of Programming Languages

Keywords and phrases delimited continuation, dynamic prompt generation, contextual equival-
ence, environmental bisimulation, up-to technique

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.9

1 Introduction

Control operators for delimited continuations, introduced independently by Felleisen [12]
and by Danvy and Filinski [9], allow the programmer to delimit the current context of
computation and to abstract such a delimited context as a first-class value. It has been
shown that all computational effects are expressible in terms of delimited continuations [13],
and so there exists a large body of work devoted to this canonical control structure, including
our work on a theory of program equivalence for the operators shift and reset [5, 6, 7].

In their paper on type-directed partial evaluation for typed A-calculus with sums, Balat et
al. [2] have demonstrated that Gunter et al’s delimited-control operators set and cupto [15],
that support multiple prompts along with dynamic prompt generation, can have a practical
advantage over single-prompted operators such as shift and reset. Delimited-control operators
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with dynamically-generated prompts are now available in several production programming
languages such as OCaml [19] and Racket [14], and they have been given formal semantic
treatment in the literature. In particular, Dybvig et al. [11] have proposed a calculus
that extends the call-by-value A-calculus with several primitives that allow for: fresh-
prompt generation, delimiting computations with a prompt, abstracting control up to the
corresponding prompt, and composing captured continuations. Dybvig et al’s building blocks
were shown to be able to naturally express most of other existing control operators and as
such they form a general framework for studying delimited continuations. Reasoning about
program equivalence in Dybvig et al’s calculus is considerably more challenging than in
single-prompted calculi: one needs to reconcile control effects with the intricacies introduced
by fresh-prompt generation and local visibility of prompts.

In this article we investigate the behavioral theory of a slightly modified version of Dybvig
et al’s calculus that we call the Ag4-calculus. One of the most natural notions of program
equivalence in languages based on the A-calculus is contextual equivalence: two terms are
contextually equivalent if we cannot distinguish them when evaluated within any context.
The quantification over contexts makes this relation hard to use in practice, so it is common to
characterize it using simpler relations, like coinductively defined bisimilarities. As pointed out
in [21], among the existing notions of bisimilarities, environmental bisimilarity [29] is the most
appropriate candidate to characterize contextual equivalence in a calculus with generated
resources, such as prompts in Agx. Indeed, this bisimilarity features an environment which
accumulates knowledge about the terms we compare. This is crucial in our case to remember
the relationships between the prompts generated by the compared programs. We therefore
define environmental bisimilarities for Agx, as well as up-to techniques, which are used to
simplify the equivalence proof of two given programs. We do so using the recently developed
framework of Madiot et al. [25, 24], where it is simpler to prove that a bisimilarity and its
up-to techniques are sound (i.e., imply contextual equivalence).

After presenting the syntax, semantics, and contextual equivalence of the calculus in
Section 2, in Section 3 we define a sound and complete environmental bisimilarity and its
corresponding up-to techniques. In particular, we define a bisimulation up to context, which
allows to forget about a common context when comparing two terms in a bisimulation proof.
The bisimilarity we define is useful enough to prove, e.g., the folklore theorem about delimited
control [4] expressing that the static delimited-control operators shift and reset [9] can be
simulated by the dynamic control operators control and prompt [12]. The technique, however,
in general requires a cumbersome analysis of terms of the form E[e], where E is a captured
evaluation context and e is any expression (not necessarily a value). We therefore define in
Section 4 a refined bisimilarity, called *-bisimilarity, and a more expressive bisimulation up
to context, which allows to factor out a context built with captured continuations. Proving
the soundness of these two relations requires us to extend Madiot et al’s framework. These
results non-trivially generalize and considerably improve the existing techniques [7]. Finally,
we discuss related work and conclude in Section 5. An accompanying research report [1]
contains the proofs.

2 The Calculus Ag4

The calculus we consider, called Agx, extends the call-by-value A-calculus with four building

blocks for constructing delimited-control operators as first proposed by Dybvig et al. [11]. !

L Dybvig et al’s control operators slightly differ from their counterparts considered in this work, but they
can be straightforwardly macro-expressed in the Agx-calculus.
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Syntax. We assume we have a countably infinite set of term variables, ranged over by z, y,
z, and k, as well as a countably infinite set of prompts, ranged over by p, q. Given an entity

denoted by a meta-variable m, we write m for a (possibly empty) sequence of such entities.

Expressions (e), values (v), and evaluation contexts (E) are defined as follows:
e u= wvleel|Pre|#vel|Goze|vae (expressions)
v u= z|dze|p]|TE” (values)
E == O|Ee|vE|#FE (evaluation contexts)
Values include captured evaluation contexts " E™, representing delimited continuations,

as well as generated prompts p. Expressions include the four building blocks for delimited
control: Px.e is a prompt-generating construct, where x represents a fresh prompt locally
visible in e, #,e is a control delimiter for e, G,x.e is a continuation grabbing or capturing
construct, and v < e is a throw construct.

Evaluation contexts, in addition to the standard call-by-value contexts, include delimited
contexts of the form #,FE, and they are interpreted outside-in. We use the standard notation
Ele] (E[E']) for plugging a context E with an expression e (with a context E’). Evaluation
contexts are a special case of (general) contexts, understood as a term with a hole and ranged
over by C.

The expressions Ax.e, Px.e, and G,x.e bind z; we adopt the standard conventions
concerning a-equivalence. If x does not occur in e, we write A_.e, P_.e, and G, _.e. The set of
free variables of e is written fv(e); a term e is called closed if fv(e) = . We extend these
notions to evaluation contexts. We write #(e) (or #(F)) for the set of all prompts that
occur in e (or F respectively). The set sp(E) of surrounding prompts in E is the set of all
prompts guarding the hole in E, defined as {p|3E1, Es, E = E1[#,E>]}.

Reduction semantics. The reduction semantics of Agx is given by the following rules:

M.e)v — efv/z}
#pv = v COMPATIBILITY
#,EGyx.e] — e{"E7/x} p ¢ sp(E) €] — e fresh(eg, e1, F)
FTE7<ae — FEle] Ele1] — Eles]
Pz.e — e{p/x} p ¢ #(e)

The first rule is the standard f,-reduction. The second rule signals that a computation
has been completed for a given prompt. The third rule abstracts the evaluation context up
to the dynamically nearest control delimiter matching the prompt of the grab operator. In
the fourth rule, an expression is thrown (plugged, really) to the captured context. Note that,
like in Dybvig et al’s calculus, the expression e is not evaluated before the throw operation
takes place. In the last rule, a prompt p is generated under the condition that it is fresh
for e.

The compatibility rule needs a side condition, simply because a prompt that is fresh for e
may not be fresh for a surrounding evaluation context. Given three entities my, mso, mg for
which # is defined, we write fresh(my, ma, m3) for the condition (#(mq)\#(me))N#(m3) = @,
so the side condition states that E must not mention prompts generated in the reduction
step e; — eq. This approach differs from the previous work on bisimulations for resource-
generating constructs [23, 22, 30, 31, 32, 3, 26], where configurations of the operational
semantics contain explicit information about the resources, typically represented by a set.
We find our way of proceeding less invasive to the semantics of the calculus.

9:3
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When reasoning about reductions in the Ag4-calculus, we rely on the notion of permutation
(a bijection on prompts), ranged over by o, which allows to reshuffle the prompts of an
expression to avoid potential collisions (e with prompts permuted by o is written ec). E.g.,
we can use the first item of the following lemma before applying the compatibility rule, to be
sure that any prompt generated by e; — es is not in #(F).

» Lemma 1. Let o be a permutation.
If e — eo then ej0 — es0.
For any entities my, ma, ms, we have fresh(my, ma, ms) iff fresh(myio, mao, mso).

A closed term e either uniquely, up to permutation of prompts, reduces to a term €', or
it is a normal form (i.e., there is no e¢” such that e — ¢”). In the latter case, we distinguish
values, control-stuck terms E[G,k.e] where p & sp(E), and the remaining expressions that
we call errors (e.g., E[pv] or E[Gr..ck.€']). We write e; —* ey if e; reduces to e in many
(possibly 0) steps, and we write e when a term e diverges (i.e., there exists an infinite
sequence of reductions starting with e) or when it reduces (in many steps) to an error.

When writing examples, we use the fixed-point operator fix, let-construct, conditional if

99,9

along with boolean values true and false, and sequencing ”;”, all defined as in the call-by-value
A-calculus. We also use the diverging term §2 %ef (Ar.xz z) (A\r.xz z), and we define an operator
< to test the equality between prompts, as follows:

el z e e et x=ey inlet y=ey in #,((#,0-.false);true)
If e; and e evaluate to different prompts, then the grab operator captures the context up to
the outermost prompt to throw it away, and false is returned; otherwise, true is returned.

Contextual equivalence. We now define formally what it takes for two terms to be con-
sidered equivalent in the Agg-calculus. First, we characterize when two closed expressions
have equivalent observable actions in the calculus, by defining the following relation ~.

» Definition 2. We say that e; and ey have equivalent observable actions, noted e; ~ eg, if
1. eq =% vy iff eg =% vg,
2. e1 =* E1[Gp,x.ei] iff e =* E5[Gp,x.€5], where p1 & sp(E1) and p2 & sp(E2),
3. €1 ;\ iff €9 ?
We can see that errors and divergence are treated as equivalent, which is standard.
Based on ~, we define contextual equivalence as follows.

» Definition 3 (Contextual equivalence). Two closed expressions e; and es are contextually
equivalent, written, e; =g ea, if for all E such that #(E) = &, we have E[e;] ~ Eles).

Contextual equivalence can be extended to open terms in a standard way: if fv(e;) Ufv(es) C
7, then ey =g e if )\7.61 =g /\7.62. We test terms using only promptless contexts,
because the testing context should not use prompts that are private for the tested expressions.
For example, the expressions Af.f p ¢ and Af.f g p should be considered equivalent if
nothing is known from the outside about p and ¢. As common in calculi with resource
generation [31, 30, 29], testing with evaluation contexts (as in =g) is not the same as testing
with all contexts: we have Pz.x =g p, but these terms can be distinguished by

let f=Xx.Oinif f Az.x Z f Ax.x then Q else \z.x,

In the rest of the article, we show how to characterize =g with environmental bisimilarities.?

2 If =¢ is the contextual equivalence testing with all contexts, then we can prove that e; =¢ eg iff
Azx.e1 =g Ax.e2, where x is any variable. We therefore obtain a proof method for =¢ as well.
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3 Environmental Bisimilarity

In this section, we propose a first characterization of =g using an environmental bisimilarity.
We express the bisimilarity in the style of [25], using a so called first-order labeled transition
system (LTS), to factorize the soundness proofs of the bisimilarity and its up-to techniques.
We start by defining the LTS and its corresponding bisimilarity.

3.1 Labeled Transition System and Bisimilarity

In the original formulation of environmental bisimulation [29], two expressions e; and ey are
compared under some environment £, which represents the knowledge of an external observer
about e; and ey. The definition of the bisimulation enforces some conditions on e; and es
as well as on €. In Madiot et al’s framework [25, 24], the conditions on e;, e3, and & are
expressed using a LTS between states of the form (T',e1) (and (A, ez2)), where I' (and A) is a
finite sequence of values corresponding to the first (and second) projection of the environment
E. Note that in (I',e1), e; may be a value, and therefore a state can be simply of the form I
Transitions from states of the form (T',e;) (where e; is not a value) express conditions on eq,
while transitions from states of the form I' explain how we compare environments. In the
rest of the paper we use I'; A to range over finite sequences of values, and we write I';, A;
for the i ' element of the sequence. We use 3, © to range over states.

Figure 1 presents the LTS <, where a ranges over all the labels. We define #(T) as
U; #(I';). The transition 2, uses a relation e = ¢/, defined as follows: if e — ¢/, then
e — €/, and if e is a normal form, then e — e.? To build expressions out of sequences of
values, we use different kinds of multi-hole contexts defined as follows.

C == C,|CC|PzLC]| #cC|GexzC|C,«aC (contexts)
C, == z|XC|TE"| 0O (value contexts)
E == O|EC|CE|#q,E (evaluation contexts)

The holes of a multi-hole context are indexed, except for the special hole [J of an evaluation
context E, which is in evaluation position (that is, filling the other holes of E with values
gives a regular evaluation context E). We write C[I'] (respectively C,[I'] and E[I']) for the
application of a context C (respectively C, and E) to a sequence I" of values, which consists in
replacing [0; with T';; we assume that this application produce an expression (or an evaluation
context in the case of E), i.e., each hole index in the context is smaller or equal than the size
of T, and for each #n,E construct, I'; is a prompt. We write Ele, I'] for the same operation
with evaluation contexts, where we assume that e is put in O (note that e may also be a
value). Notice that prompts are not part of the syntax of C,, therefore a multi-hole context
does not contain any prompt: if C[I'], C,[I'], or E[e, I'| contains a prompt, then it comes from
T" or e. Our multi-hole contexts are promptless because =g also tests with promptless contexts.

We now detail the rules of Figure 1, starting with the transitions that one can find in any
call-by-value A-calculus [25]. An internal action (T, e;) - ¥ corresponds to a reduction step,
except we ensure that any generated prompt is fresh w.r.t. I'. The transition T’ & %

signals that I'; is a A-abstraction, which can be tested by passing it an argument built from I'

. . ©.4,C . . . . .
with the context C,. The transition —= for testing continuations is built the same way,

3 The relation — is not exactly the reflexive closure of —, since an expression which is not a normal
form has to reduce.

9:5
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e1 — es fresh(ea, e1,I") Ty = \z.e
(Tye1) © (T, e2) L 255 (1, e{C,[T)/2}) r=r
I, ="E" Li=p T;=p p & #(T)
r 5 (o, BlC) AN r % (1, p)

pEsp(E)  E[E[Gyr.e],T] = ¢
(T, E[Gpr.c]) = (T,¢)

Figure 1 Labeled Transition System for Agx.

except we use a context C, because any expression can be thrown to a captured context.
Finally, the transition I' < T' means that the state I' is composed only of values; it does
not test anything on I', but this transition is useful for the soundness proofs of Section 3.2.
When we have I' R (A, e) (where R is, e.g., a bisimulation), then (A, e) has to match with
(A, e);* % (A, v) so that (A, ) is related to T'. We can then continue the proofs with two
related sequences of values. Such a transition has been suggested in [24, Remark 5.3.6] to
simplify the proofs for a non-deterministic language, like Ag4.

We now explain the rules involving prompts. When comparing two terms generating
prompts, one can produce p and the other a different ¢, so we remember in I'; A that p
corresponds to g. But an observer can compare prompts using ;, so p has to be related only
to g. We check it with LI gl I', then A has to match, meaning that A; = Ay,
and doing so for all j such that I'; = I'; ensures that all copies of I'; are related only to A;.

The transition ﬂ also signals that I'; is a prompt and should be related to a prompt.

The other transition involving prompts is T’ #, (T, p), which encodes the possibility for an
outside observer to generate fresh prompts to compare terms. If I" is related to A, then A
has to match by generating a prompt ¢, and we remember that p is related to ¢q. For this rule
to be automatically verified, we define the prompt checking rule for a relation R as follows:

TRA  p¢#(I) q¢#(A)
(I',p) R (A, q)

Henceforth, when we construct a bisimulation R by giving a set of rules, we always

(#-check)

include the (#-check) rule so that the #, transition is always verified.

Finally, the transition L, deals with stuck terms. An expression E[Gpx.€] is able to reduce
if the surrounding context is able to provide a delimiter #,. However, it is possible only if p
is available for the outside, and therefore is in I'. If p ¢ sp(E[T']), then E[E[Gpx.€],T'| remains
stuck, and we have E[E[Gyz.¢],T| = E[E[G,x.¢],T']. Otherwise, it can reduce and we have

E[E[Gpz.€],T] = ¢/, where ¢’ is the result after the capture. The rule for 2, may seem
demanding, as it tests stuck terms with all contexts E, but up-to techniques will alleviate
this issue (see Example 8).

*
For weak transitions, we define = as — , = as = if @ = 7 and as =—»= otherwise. We
define bisimulation and bisimilarity using a more general notion of progress. Henceforth, we
let R, S range over relations on states.
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» Definition 4. A relation R progresses to S, written R — S, if R C S and ¥ R O implies
if ¥ = ¥, then there exists ©' such that © = ©’ and ¥/ S @/;
the converse of the above condition on ©.
A bisimulation is a relation R such that R — R, and bisimilarity ~ is the union of all
bisimulations.

3.2 Up-to Techniques, Soundness, and Completeness

Before defining the up-to techniques for Agx, we briefly recall the main definitions and results
we use from [28, 25, 24]; see these works for more details and proofs. We use f, g to range
over functions on relations on states. An up-to technique is a function f such that R — f(R)
implies R C ~. However, this definition can be difficult to use to prove that a given f is
an up-to technique, so we rely on compatibility instead. A function f is monotone if R C S
implies f(R) C f(S). Given a set F' of functions, we also write F' for the function defined as
Uy, er fi (where fU g is defined argument-wise, i.e., (f U g)(R) = f(R) Ug(R)). Given a
function f, f* is defined as |J, o "

» Definition 5. A function f evolves to g, written f~g, if for all R — S, we have
f(R)—g(S). A set F of monotone functions is compatible if for all f € F'| f~ F«.

» Lemma 6. Let F' be a compatible set, and f € F; f is an up-to technique, and f(~) C =~.

Proving that f is in a compatible set F is easier than proving it is an up-to technique, because
we just have to prove that it evolves towards a combination of functions in F. Besides, the
second property of Lemma 6 can be used to prove that ~ is a congruence just by showing
that bisimulation up to context is compatible.

The first technique we define allows to forget about prompt names; in a bisimulation
relating (I',e1) and (A, e2), we remember that I'; = p is related to A; = ¢ by their position i,
not by their names. Consequently, we can apply different permutations to the two states to

rename the prompts without harm, and bisimulation up to permutations* allows us to do so.

Given a relation R, we define perm(R) as o1 perm(R) Oy, assuming ¥ R O and o1, o2
are any permutations.

We then allow to remove or add values from the states with, respectively, bisimulation up
to weakening weak and bisimulation up to strengthening str, defined as follows

(7a1—‘a61) R (ﬁaAaGQ) (Fvel) R (A762)
(T, e1) weak(R) (A, e2) (T, Cy[T],e1) str(R) (A, C,[A], e2)

Bisimulation up to weakening diminishes the testing power of states, since less values means
less arguments to build from for the transitions L’CV>, ﬂ, and 2. This up-to technique
is usual for environmental bisimulations, and is called “up to environment” in [29]. In
contrast, str adds values to the state, but without affecting the testing power, since the added
values are built from the ones already in I', A.

Finally, we define the well-known bisimulation up to context, which allows to factor out a
common context when comparing terms. As usual for environmental bisimulations [29], we

define two kinds of bisimulation up to context, depending whether we operate on values or

4 Madiot defines a bisimulation “up to permutation” in [24] which reorders values in a state. Our
bisimulation up to permutations operates on prompts.

9:7
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any expressions. For values, we can factor out any common context C, but for expressions
that are not values, we can factor out only an evaluation context E, since factoring out any
context in that case would lead to an unsound up-to technique [24]. We define up to context
for values ctx and for any expression ectx as follows:

I'RA (Fyer) R (A, e2)
(T, C[T]) ctx(R) (A, C[A]) (T, Ele1,T]) ectx(R) (A, E[ez, Al)

» Lemma 7. The set {perm, weak, str, ctx, ectx} is compatible.

The function ectx is particularly helpful in dealing with stuck terms, as we can see below.

» Example 8. Let oef

(T, Gpz.€1) and © & (A, Gyx.eq) (for some eq, €2), sothat X R ©. Ifp
and g are not in I', A, then the two expressions remain stuck, as we have X E (T, E[Gpx.e1,17)
and similarly for ©. We have directly (I',E[Gpz.€1,T]) ectx(R) (A,E[Gyx.e2,A]). Oth-
erwise, the capture can be triggered with a context E of the form E,[#p,Es|, giving
S & (T, Eyfer{"Eo[[)/2},T]) and © 5 (A, Eq[ea{ Eo[A]/2}, A]). Thanks to ectx, we
can forget about E; which does not play any role, and continue the bisimulation proof by
focusing only on (I',e; {"E2[I"]"/2}) and (A, e2{"Ez[A]7/x}).

Because bisimulation up to context is compatible, Lemma 6 ensures that ~ is a congruence
w.r.t. all contexts for values, and w.r.t. evaluation contexts for all expressions. As a corollary,
we can deduce that =~ is sound w.r.t. =g; we can also prove that it is complete w.r.t. =g,
leading to the following full characterization result.

» Theorem 9. e =g ey iff (0,e1) = (0, e3).

For completeness, we prove that {(T',e1), (A, ez2) | VE,Ele1, ] ~ E[es, A]} is a bisimulation
up to permutation; the proof is in [1, Appendix A.1].

3.3 Example

As an example, we show a folklore theorem about delimited control [4], stating that the static
operators shift and reset can be simulated by the dynamic operators control and prompt. In
fact, what we prove is a more general and stronger result than the original theorem, since we
demonstrate that this simulation still holds when multiple prompts are around.

» Example 10 (Folklore theorem). We encode shift, reset, control, and prompt as follows

ef

shift, NGyt f Ny 4tk ) control, & A£G k#,f(\yk<y)
def def

reset, = #,00" prompt, = T#,0"

def

Let shift’,, def Af.control, (Al.f (Az.prompt, <1 2)); we prove that the pair (shift,, reset,)
(encoded as Af. fshift,reset, ) is bisimilar to (shift’,, prompt, ) (encoded as A f. fshift’, prompt,, ).
Proof. We iteratively build a relation R closed under (#-check) such that R is a bisimulation
up to context, starting with (p, shift,) R (p, shift’,). The transition LIS easy to check.

For ﬂn we obtain states of the form (p,shift,,e1), (p,shift’,,es) that we add to R,
where e; and e; are the terms below

'RA
(T, Gk #,CU [T (Ay-#pk <)) R (A, Gpk#,(M.C [A] (Az.prompt, <l 2)) (Ay.k <y))
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. . 2,2,C . .
We use an inductive, more general rule, because we want —— to be still verified after we

extend (p, shift,) and (p,shift’,). The terms e; and e; are stuck, so we test them with LN

If E does not trigger the capture, we obtain E[e;, '] and E[es, A], and we can use ectx to
conclude. Otherwise, E = E'[#0,E”] (where #0, does not surround O in E”), and we get

E'[#,C,[['] (A\y.#, " E"[[]"<y),T] and E'[#,C,[A] (/\z.promptp A (A\y."E"[A] T qy) 2), A]

We want to use ctx to remove the common context E'[#0, C, O;], which means that we have
to add the following states in the definition of R (again, inductively):

'R A
(T, My #,"E"[T]"<y) R (A, Az.prompt, < (Ay."E"[A] " <y) 2)

Testing these functions with LSO gives on both sides states where #g,E”[C,] can be
removed with ctx. Because (@, Af.f shift, reset,) weak(ctx(R)) (&, Af.f shift’, prompt,), it
is enough to conclude. Indeed, R is a bisimulation up to context, so R C &, which implies
weak(ctx(R)) C weak(ctx(x)) (because weak and ctx are monotone), and weak(ctx(=2)) C =~
(by Lemma 6). Note that this reasoning works for any combination of monotone up-to
techniques and any bisimulation (up-to). <

What makes the proof of Example 10 quite simple is that we relate (p,shift,) and
(p, shift’,), meaning that p can be used by an outside observer. But the control operators
(shift,, reset,) and (shift’,, prompt,) should be the only terms available for the outside, since
p is used only to implement them. If we try to prove equivalent these two pairs directly, i.e.,
while keeping p private, then testing reset, and prompt, with BELCEN requires a cumbersome
analysis of the behaviors of #,C[I'] and #,C[A]. In the next section, we define a new kind
of bisimilarity with a powerful up-to technique to make such proofs more tractable.

4  The x-Bisimilarity

4.1 Motivation

Testing continuations. In Section 3, a continuation I'; = "E™ is tested with T’ BELLEN
(T, E[C[T']]). We then have to study the behavior of F[C[I']], which depends primarily on
how C[T'] reduces; e.g., if C[T'] diverges, then E does not play any role. Consequently, the

s ©.74,C . . . .
transition —= does not really test the continuation directly, since we have to reduce C[I']
first. To really exhibit the behavior of the continuation, we change the transition so that it

uses a value context instead of a general one. We then have I’ Y (T, E[C,[I'])), and the
behavior of the term we obtain depends primarily on E. However, this is not equivalent to
testing with C, since C[I'] may interact in other ways with E if C[T] is a stuck term. If E is
of the form E'[#,E"], and p is in I, then C may capture E”, since p can be used to build
an expression of the form G,x.e. To take into account this possibility, we introduce a new
transition T ——7, (T,"E'1,TE"™), which decomposes I'; = E'[#,E"] into "E'" and "E"7,
provided I'; = p. The stuck term C[I'] may also capture E entirely, as part of a bigger
context of the form E;[E[Ez]]. To take this into account, we introduce a way to build such
contexts using captured continuations. This is also useful to make bisimulation up to context
more expressive, as we explain in the next paragraph.

9:9
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A more expressive bisimulation up to context. As we already pointed out in [7], bisimu-
lation up to context is not very helpful in the presence of control operators. For example,
suppose we prove the g axiom of [18], i.e., (Ax.E[z]) e is equivalent to Ele] if « ¢ fv(E)
and sp(E) = 0. If e is a stuck term G,y.e1, we have to compare e1{"E1[(Az.E[z]) O]"/y}
and e;{"E1[E]"/y} for some Fj. If e; is of the form y < (y <esz), then we get respectively
Ey[(Az.E[z]) E1[(Az.E[x]) e2]] and Ei[E[E1[Elez]]]]. We can see that the two resulting
expressions have the same shape, and yet we can only remove the outermost occurrence of
F4 with ectx. The problem is that bisimulation up to context can factor out only a common
context. We want an up-to technique able to identify related contexts, i.e., contexts built out
of related continuations. To do so, we modify the multi-hole contexts to include a construct
*;[C] with a special hole *;, which can be filled only with "E™ to produce a context F[C].
As a result, if I' = ("(Az.E[z]) O7) and A = ("E™), then Eq[(Azx.E[z]) E1[(Azx.E[z]) O] and
EL[E[E7[E[O]]]] can be written E[I'], E[A] with E = Ej [x1[E1[*1[0]]]]. We can then focus
only on testing I" and A.

However, such a bisimulation up to related context would be unsound if not restricted in
some way. Indeed, let "E;7, TE5™ be any continuations, and let ' = (TE; ™), A = (TE2").
Then the transitions I' ——2 (T, E4[C,[I]]) and A SERELN (A, E5|C,[A]]) produce states
of the form (T',C[I]), (A,C[A]) with C = x;[C,]. If bisimulation up to related context
was sound in that case, it would mean that "E;" and " Es' would be bisimilar for all E;
and E,, which, of course, is wrong.? To prevent this, we distinguish passive transitions
(such as ﬂﬂ from the other ones (called active), so that only selected up-to techniques
(referred to as strong) can be used after a passive transition. In contrast, any up-to technique
(including this new bisimulation up to related context) can be used after an active transition.
To formalize this idea, we have to extend Madiot et al’s framework to allow such distinctions
between transitions and between up-to techniques.

4.2 Labeled Transition System and Bisimilarity

First, we explain how we alter the LTS of Section 3.1 to implement the changes we sketched
in Section 4.1. We extend the grammar of multi-hole contexts C (resp. E) by adding the
production *;[C] (resp. *;[E]), where the hole %; can be filled only with a continuation (the
grammar of value contexts C, is unchanged). When we write (x;[C])[T'], we assume T'; is a
continuation "E7, and the result of the operation is E[C[I']] (and similarly for E).

We also change the way we deal with captured contexts, by using the following rules:

Iy ="g" Ly ="E[#,E,]" Ij=p  p¢sp(ks)
r =2 (T, B[C,[T) P (0,7 B, B

The transition ——“= is the same as in Section 3, except that it tests with an argument
built with a value context C, instead of a regular context C. We also introduce the transition
Mﬁ which decomposes a captured context "E;[#,E2]" into sub-contexts "E;", "TEs ™,
provided that p is in I'. This transition is necessary to take into account the possibility for
an external observer to capture a part of a context, scenario which can no longer be tested

. m.74,Cy . . . . .
with —=%  as explained in Section 4.1, and as illustrated with the next example.

5 The problem is similar if we test continuations using contexts C (as in Section 3) instead of C,.
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» Example 11. Let T' = (p, #,07), A = (¢,"07); then T ——25% (I, #,C,[1]) = (I, C,[I)
and A ——2% (A,C,[A]). Without the SERUEN transition, I' and A would be bisimilar,
which would not be sound (they are distinguished by the context Og < G, z.82).

The other rules are not modified, but their meaning is still affected by the change in the

15,Cy

s A . .
contexts grammars: the transitions —— and E, can now test with more arguments. This
is a consequence of the fact that an observer can build a bigger continuation from a captured
context. For instance, if I' = (p,"E7, Az.x < v), then with the LTS of Section 3, we have

r,2,E (G, x.x] #0, Es
90,241, #0282 N804 (1 R [B[E,[T]), T, Ex [E[Es[T]], T]" < ). Tn the new LTS,
the first transition is no longer possible, but we can still test the A-abstraction with the same
23l p e, (B[R], T]7 a0).

argument using I

As explained in Section 4.1, we want to prevent the use of some up-to techniques (like
the bisimulation up to related context we introduce in Section 4.3) after some transitions,
especially L85 To do so, we distinguish the passive transitions M, Y from the
other ones, called active. In a LTS, a visible action — (where o # 7) usually corresponds
to an interaction with an external observer. The transition — does not fit that principle;

©i,Cy

similarly, ——— does not correspond exactly to an observer interacting with a continuation,

since we throw a value, and not any expression. In contrast, G corresponds to function
application, L, to context capture, & to continuation decomposition, and M to
testing prompts equality. This is how we roughly distinguish the former transitions as passive,
and the latter ones as active. We then change the definition of progress, to allow a relation

R to progress towards different relations after passive and active transitions.

» Definition 12. A relation R diacritically progresses to S, 7 written R ~—» S, 7T, if R C S,
R CT,and ¥ R © implies that

if ¥ % ¥ and % is passive, then there exists ©’ such that © = 0 and ¥/ S ©’;

if ¥ % ¥ and = is active, then there exists ©' such that © = 0’ and ¥/ T ©/;

the converse of the above conditions on O.
A x-bisimulation is a relation R such that R —» R, R, and *-bisimilarity % is the union of
all x-bisimulations.

Note that with the same LTS, »— and ~» entail the same notions of bisimulation and
bisimilarity (but we use a different LTS in this section).

4.3 Up-to Techniques, Soundness, and Completeness

We now discriminate up-to techniques, so that regular up-to techniques cannot be used after
passive transitions, while strong ones can. An up-to technique (resp. strong up-to technique)
is a function f such that R ~» R, f(R) (resp. R — f(R), f(R)) implies R C ~. We also
adapt the notions of evolution and compatibility.

» Definition 13. A function f evolves to g, h, written f~-g,h, if for all R — R, T, we
have f(R) — g(R), h(T).

A function f strongly evolves to g, h, written f~sg,h, if for all R =~ S, 7T, we have
f(R) = g(8), h(T).

Strong evolution is very general, as it uses any relation R, while regular evolution is more
restricted, as it relies on relations R such that R —» R,T. But the definition of diacritical

9:11
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compatibility below still allows to use any combinations of strong up-to techniques after a
passive transition, even for functions which are not themselves strong. In contrast, regular
functions can only be used once after a passive transition of an other regular function.

» Definition 14. A set F' of monotone functions is diacritically compatible if there exists
S C F such that

for all f € S, we have f~+sS¥, F*;

for all f € F, we have f~» SY0FoS5¥ F¥.
If S and Ss are subsets of F' which verify the conditions of the definition, then S; U .Ss also
does, so there exists the largest subset of F' which satisfies the conditions, written strong(F’).
This (possibly empty) subset of F' corresponds to the strong up-to techniques of F.

» Lemma 15. Let F' be a compatible set.
If R —» strong(F)“(R), F¥(R), then F¥(R) is a bisimulation.
If f € F, then f is an up-to technique. If f € strong(F'), then f is a strong up-to
technique.
For all f € F, we have f(~)C =.

We now use this framework to define up-to techniques for the *-bisimulation. The
definitions of perm and weak are unchanged. We define bisimulation up to related contexts
for values rctx and for any term rectx as follows:

I'RA (F,el)R(A,eg)

(I, Co[T], CIT)) retx(R) (A, Cy[A], C[A]) (T, Coll], Efer, T]) rectx(R) (A, Cy[A], Elea, A])

The definitions look similar to the ones of ctx and ectx, but the grammar of multi-hole
contexts now include ;. Besides, we inline strengthening in the definitions of rctx and
rectx, allowing I'; A to be extended. This is necessary because, e.g., str and rectx cannot be
composed after a passive transition (they are both not strong), so rectx have to include str
directly. Note that the behavior of str can be recovered from rectx by taking E = [.

» Lemma 16. F & {perm, weak, rctx, rectx} is compatible, with strong(F) = {perm, weak}.

As a result, these functions are up-to techniques, and weak and perm can be used after a
passive transition. Because of the last item of Lemma 15, X is also a congruence w.r.t.
evaluation contexts, which means that % is sound w.r.t. = . We can also prove it is complete
the same way as for Theorem 9, leading again to full characterization.

» Theorem 17. e =g e iff (0, e1) ~ (@, e2).

4.4 Examples

We illustrate the use of §7 rctx, and rectx with two examples that would be much harder to
prove with the techniques of Section 3.

» Example 18 (5q axiom). We prove (Az.E[z]) e ~ Ele] if # ¢ fv(E) and sp(E) = 0.
Define R starting with ("(Az.E[z]) O7) R ("E™), and closing it under the (#-check) and the
following rule:

I'RA
(T, (Az.Ez]) C[T]) R (A, E[C[A]])
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Then (0, (Az.E|x]) e) weak(rctx(R)) (0, Ele]) and R is a bisimulation up to context, since
the sequence I' == (T, (\z.E[z]) C,[T]) = (T, E[C,[T]) fits A =25 (A, E[C,[A]]) =
(A, E[C,[A]]), where the final states are in rctx. Notice we use rctx after —, and not after

t 7(CV

. AN s
the passive ——— transition.

» Example 19 (Exceptions). A possible way of extending a calculus with exception handling
is to add a construct try, e with v, which evaluates e with a function raising an exception
stored under the variable r. When e calls the function in r with some argument v’, even inside
another try block, then the computation of e is aborted and replaced by vv’. We can implement
this behavior directly in Agx; more precisely, we write try, e with v as handle (Ar.e) v, where
handle is a function expressed in the calculus. One possible implementation of handle in Agx
is very natural and heavily relies on fresh-prompt generation:

handle & Af APzt f (\2.Goh 2)
The idea is to raise an exception by aborting the current continuation up to the corresponding
prompt. The same function can be implemented using any comparable-resource generation
and only one prompt p:

handle, & AfARPx.(#,let r= f raise, , in AA_r)z h

raise; » T fix 7(2).Gp- Ay Ah.if x Zythen hzelserz

Here the idea is to keep a freshly generated name = and a handler function i with the prompt
corresponding to each call of handle,. The exception-raising function raise, , iteratively
aborts the current delimited continuation up to the nearest call of handle, and checks the
name stored there in order to find the corresponding handler. Note that this implementation
also uses prompt generation, since it is the only comparable resource that can be dynamically
generated in Mgy, but the implementation can be easily translated to, e.g., a calculus with
single-prompted delimited-control operators and first-order store.

Proof. We prove that both versions of handle are bisimilar. As in Example 10 we iteratively

build a relation R closed under the (#-check) rule, so that R is a bisimulation up to context.

We start with (handle) R (handle,); to match the EIEN transition, we extend R as follows:

'rRA
(T, A Px.#,Co [T (A2.Gyh 2)) R (A, AR Px.(#,let r=C,[A] raise, 5 in A ) z h)

An+1,C .
We obtain two functions which are in turn tested with Lﬂ and we obtain the states

(T, #,,Cy[T] (A2.Gp,~.C[T] 2)) and (A, (#plet r =C,[A] raise,, p, in A_A_.1") pa C,[A]).

Instead of adding them to R directly, we decompose them into corresponding parts using up
to context (with C = x,41[Cy Oy 42]), and we add these subterms to R:

'RA p1 ¢ #(F) b2 ¢ #(A)
(T, "4, 07, X2.G,, ~.C[T] 2) R (A, (#plet r=0in A7) p2 C[A] 7, raisey, p, )

(%)

. R L
Testing the two captured contexts with T g easy, because they both evaluate to the

: : o Ant2,0,
thrown value. We now consider Az.G,,_.C,[I'] z and raise, ;,; after the transition ———

we get the two control stuck terms

Gp,-C,T)C,[I'] and G, Ay.Ah.if po Z 4 then h C,[A] else raise,, ,, C,[A]
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Adding such terms to the relation will not be enough. The first one can be unstuck only using
the corresponding context "#,, 07, but the second one can be unstuck using any context
added by rule (), even for a different ps. In such a case, it will consume a part of the context
and evaluate to itself. To be more general we add the following rule:

I'RA  E[G,,-.C,[I']C,[I],I] is control-stuck
(T, E[G,,_.C,[T] Cy[[],T]) R (A, Gy Ay.Ah.if psy = y then h C,[A] else raise, ,, Cy[A])

The newly introduced stuck terms are tested with ]E—,>; if B’ does not have *; surrounding [J,
they are still stuck, and we can use up to evaluation context to conclude. Assume E’' =
E [*;[Ez]] where Ey has not %; around 0. If ¢ points to the evaluation context added by
(x) for the same po, then they both evaluate to terms of the same shape, so we use up to
context with C = E;[C], C,]. Otherwise, we know the second program compares two different
prompts, so it evaluates to Eq[G,-. Ay Ah.if po s y then h C,[A] else raise, ,, C,[A], A] and
we use rectx with the last rule. <

5 Related Work and Conclusion

Related work. In previous works [5, 6, 7], we defined several bisimilarities for a calculus
(called A\s) with the (less expressive) delimited-control operators shift and reset. The
bisimilarity of Section 3 and the corresponding up-to techniques are close to the ones
of [7, Section 3], except that in [7], we do not compare stuck terms using all evaluation
contexts. However, there is no equivalent of bisimulation up to related contexts in [7], which
makes the proof of the 8q axiom very difficult in that paper. The proof in Example 18 is as
easy as the proof of the g axiom in [6], but the bisimilarity of [6] is not complete, unlike .
As a matter of fact, following the developments of Section 4, we believe it is possible to
define environmental bisimulations up to related contexts for the As-calculus.

Environmental bisimilarity has been defined in several calculi with dynamic resource
generation, like stores and references [23, 22, 30], information hiding constructs [31, 32|, or
name creation [3, 26]. In these works, an expression is paired with its generated resources,
and behavioral equivalences are defined on these pairs. Our approach is different since we do
not carry sets of generated prompts when manipulating expressions (e.g., in the semantic
rules of Section 2); instead, we rely on side-conditions and permutations to avoid collisions
between prompts. This is possible because all we need to know is if a prompt is known to an
outside observer or not, and the correspondences between the public prompts of two related
expressions; this can be done through the environment of the bisimilarity. This approach
cannot be adapted to more complex generated resources, which are represented by a mapping
(e.g., for stores or existential types), but we believe it can be used for name creation in
m-calculus [26].

A line of work on program equivalence for which relating evaluation contexts is crucial,
as in our work, are logical relations based on the notion of biorthogonality [27]. In particular,
this concept has been successfully used to develop techniques for establishing program
equivalence in ML-like languages with call/cc [10], and for proving the coherence of control-
effect subtyping [8]. Hur et al. combine logical relations and behavioral equivalences in the
definition of parametric bisimulation [16], where terms are reduced to normal forms that
are then decomposed into subterms related by logical relations. This framework has been
extended to abortive control in [17], where stuttering is used to allow terms not to reduce for
a finite amount of time when comparing them in a bisimulation proof. This is reminiscent
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of our distinction between active and passive transitions, as passive transitions can be seen
as “not reducing”, but there is still some testing involved in these transitions. Besides, the
concern is different, since the active/passive distinction prevents the use of up-to techniques,
while stuttering has been proposed to improve plain parametric bisimulations.

Conclusion and future work. We have developed a behavioral theory for Dybvig et al.s
calculus of multi-prompted delimited control, where the enabling technology for proving
program equivalence are environmental bisimulations, presented in Madiot’s style. The
obtained results generalize our previous work in that they account for multiple prompts
and local visibility of dynamically generated prompts. Moreover, the results of Section 4
considerably enhance reasoning about captured contexts by treating them as first-class
objects at the level of bisimulation proofs (thanks to the construct x;) and not only at the
level of terms. The resulting notion of bisimulation up to related contexts improves on the
existing bisimulation up to context in presence of control operators, as we can see when
comparing Example 18 to the proof of the same result in [7]. We believe bisimulation up to
related contexts could be useful for constructs akin to control operators, like passivation in
m-calculus [26]. The soundness of this up-to technique has been proved in an extension of
Madiot’s framework; we plan to investigate further this extension, to see how useful it could
be in defining up-to techniques for other languages. Finally, it may be possible to apply the
tools developed in this paper to [20], where a single-prompted calculus is translated into a
multi-prompted one, but no operational correspondence is given to guarantee the soundness
of the translation.
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