
HAL Id: hal-01336673
https://hal.inria.fr/hal-01336673

Submitted on 23 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Out-of-core KNN Awakens: The light side of
computation force on large datasets

Nitin Chiluka, Anne-Marie Kermarrec, Javier Olivares

To cite this version:
Nitin Chiluka, Anne-Marie Kermarrec, Javier Olivares. The Out-of-core KNN Awakens: The light
side of computation force on large datasets. The International Conference on Networked Systems
NETYS, May 2016, Marrakech, Morocco. �hal-01336673�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49365451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01336673
https://hal.archives-ouvertes.fr

The Out-of-core KNN Awakens:

The light side of computation force on large datasets

Nitin Chiluka1, Anne-Marie Kermarrec1, and Javier Olivares1

Inria, Rennes, France
nitin.chiluka@gmail.com, anne-marie.kermarrec@inria.fr,

javier.olivares@inria.fr

Abstract. K-Nearest Neighbors (KNN) is a crucial tool for many appli-
cations, e.g. recommender systems, image classification and web-related
applications. However, KNN is a resource greedy operation particularly
for large datasets. We focus on the challenge of KNN computation over
large datasets on a single commodity PC with limited memory. We pro-
pose a novel approach to compute KNN on large datasets by leverag-
ing both disk and main memory efficiently. The main rationale of our
approach is to minimize random accesses to disk, maximize sequential
accesses to data and efficient usage of only the available memory.
We evaluate our approach on large datasets, in terms of performance and
memory consumption. The evaluation shows that our approach requires
only 7% of the time needed by an in-memory baseline to compute a KNN
graph.

Keywords: K-nearest neighbors, out-of-core computation, graph pro-
cessing

1 Introduction

K-Nearest Neighbors (KNN) is a widely-used algorithm for many applications
such as recommender systems [3–5]; information retrieval [8, 21, 13] in support-
ing similarity and proximity on stored data; and image classification [20, 2, 17]:
finding similar images among a set of them. Generally, KNN is used for finding
similar entities in a large set of candidates, by computing similarity between
entities’ profiles.

Although the algorithm has been well studied, the computation of KNN
on large datasets remains a challenge. Large-scale KNN processing is computa-
tionally expensive, requiring a large amount of memory for efficient in-memory
computation. The memory requirements of the current datasets (spanning even
trillions of edges) is enormous, beyond terabytes. Such memory requirements are
often unaffordable. In such scenario, one can think of an out-of-core computation
as an option. Recent works [11, 14, 16, 19, 22] have shown that such approaches
perform well on data that cannot be completely stored in memory.

Our first motivation for this work is derived from the fact that process-
ing KNN efficiently on large datasets calls for in-memory solutions, this sort of

2

approach intends to store all data into memory for performing better in compar-
ison to disk-based approaches. To do so, current datasets demand large memory,
whose cost is not always affordable. Access to powerful machines is often limited,
either by lack of resources for all users’ needs, or by their complete absence.

The second motivation is that KNN computation has to be often performed
offline, because it consumes significant resources. KNN algorithms usually co-
habit on a given machine with other applications. Consequently, it is very seldom
that it can enjoy the usage of the entire set of machine’s resources, be it memory
or CPU. For instance, HyRec [5], a hybrid recommender system, implements a
KNN strategy to search similar users. HyRec devotes only a small fraction of its
runtime and system resources for KNN computation. The rest is dedicated to
recommendation tasks or system maintenance.

Finally, our last motivation comes from the fact that current graph frame-
works [11, 14, 19] can efficiently compute well-known graph algorithms, process-
ing large datasets in a short time. Those systems rely on the static nature of the
data, i.e., data remaining the same for the entire period of computation. Un-
fortunately, to the best of our knowledge, they do not efficiently support some
KNN fundamental operations such as neighborhood modification or neighbors’
neighbors accesses. Typically they do not support any operation that modifies
the graph itself [14, 19]. KNN’s goal is precisely to change the graph topology.

Summarizing, our work is motivated by the fact that: (i) KNN is computa-
tionally expensive, (ii) KNN has to be mainly performed offline, and (iii) Current
graph processing frameworks do not support efficiently operations required for
KNN computation.

We present Pons, an out-of-core algorithm for computing KNN on large
datasets that do not completely fit in memory, leveraging efficiently both disk
and the available memory. The main rationale of our approach is to minimize
random accesses to disk, and to favor, as much as possible, sequential reading
of large blocks of data from disk. Our main contributions of the paper are as
follows:

– We propose Pons, an out-of-core approach for computing KNN on large
datasets, using at most the available memory, and not the total amount
required for a fully in-memory approach.

– Pons is designed to solve the non-trivial challenge of finding neighbors’ neigh-
bors of each entity during the KNN computation.

– Our experiments performed on large-scale datasets show that Pons computes
KNN in only around 7% of the time required by an in-memory computation.

– Pons shows to be also capable of computing online, using only a limited frac-
tion of the system’s memory, freeing up resources for other tasks if needed.

2 Preliminaries

Given N entities with their profiles in a D-dimensional space, the K-Nearest
Neighbors (KNN) algorithm aims to find the K-closest neighbors for each entity.
The distance between any two entities is computed based on a given metric (as

3

cosine similarity or Jaccard coefficient) that compares their profiles. A classic
application of KNN includes finding the K-most similar users for any given user
in a system such as IMDb, where a user’s profile comprises of her preferences of
various movies.

For computing the exact KNN it can be employed a brute-force approach,
which has a time complexity of O(N2) profile comparisons being very inefficient
for a large N . To address this concern, approximate KNN algorithms (KNN now
onwards) adopt an iterative approach. At the first iteration (t = 0), each entity v
chooses uniformly at random a set of K entities as its neighbors. Each subsequent
iteration t proceeds as follows: each entity v selectsK-closest neighbors among its
candidate set, comprising its K current neighbors, its K2 neighbors’ neighbors,
and K random entities [5]. At the end of iteration t, each entity’s new K-closest
neighbors are used in the computation for the next iteration t+1. The algorithm
ends when the average distance between each entity and its neighbors does not
change considerably over several iterations.

The KNN state at each iteration t can be modeled by a directed graph
G(t) = (V,E(t)), where V is a set of N(= |V |) entities and E(t) represents edges
between each entity and its neighbors. A directed edge (u, v) ∈ E(t) denotes
(i) v is u’s out-neighbor and (ii) u is v’s in-neighbor. Let Bv denote the set of
out-neighbors of the entity v. Furthermore, each entity v has exactly K(= |Bv|)
out-neighbors, while having any number (including 0 to N − 1) of in-neighbors.
Also, we note that the total number of out-edges and in-edges in G(t) is NK.

Let F represent the set of profiles of all entities, and Fv denote the profile of
entity v. In many scenarios in the fields of recommender systems and information
retrieval, the profiles of entities are typically sparse. For instance, in IMDb, the
number of movies an average user rates is significantly less than the total number
of movies, D, present in its database. In such a scenario, a user v’s profile can
be represented by a sparse vector Fv in a D-dimensional space (|Fv| << D). For
the sake of simplicity, we consider each entity v’s profile length to be utmost P
(≥ |Fv|). In image classification and clustering systems, however, each entity v’s
profile (e.g., feature vector) is typically of high dimension in the sense that v’s
profile length is approximately |Fv| ≈ D. With the above notation, we formally
define the average distance (AD) for all entities and their respective neighbors
at iteration t as:

AD(t) =

∑
u∈V

∑
v∈Bu

Dist(Fu, Fv)

NK
(1)

Dist(Fu, Fv) measures the distance between the profiles of u and v. The KNN
computation is considered converged when the difference between the average
distances across iterations is minimal: |AD(t+1) −AD(t)| < ε, for a small ε.

2.1 In-memory Approach

A simple, yet efficient, way to implement KNN is using an in-memory approach,
where all the data structures required during the entire period of computation
are stored in memory. Algorithm 1 shows the pseudo-code for an in-memory im-

plementation. Initially, the graph G
(0)
(mem) and profiles F are loaded into memory

4

from disk (lines 2-3). At each iteration t, each vertex v selectsK-closest neighbors
from its candidate set Cv comprising its neighbors (Bv), its neighbors’ neighbors
(
⋃

u∈Bv
Bu), and a set of K random vertices (Rnd(K)). Closest neighbors of all

vertices put together results in the graph G
(t+1)
(mem), i.e., KNN graph of the next

iteration.
In each iteration, every vertex performs uptoO(2K+K2) profile comparisons.

If a distance metric such as cosine similarity or Euclidean distance is used for
profile comparisons, the overall time complexity for each iteration is O(NP (2K+
K2)). We note that the impact of heap updates (line 14) on overall time is little,
since we are often interested in small values of K(≈ 10 − 20) [5]. In terms of
space complexity, this approach requires O(N(2K + P)) memory. Each of the

KNN graphs of the current and the next iterations (G
(t)
(mem), G

(t+1)
(mem)) consume

O(NK) memory, while the profiles consume O(NP) memory. Although highly
efficient, such an approach is feasible only when all data structures consume less
than the memory limit of the machine.

Algorithm 1: In-memory KNN

Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v ∈ G finds its KNN.

1 begin

2 G
(0)

(mem) ← Read initial graph from File(G)

3 F(mem) ← Read all profiles from File(F)
4 foreach Iteration t until convergence do

5 G
(t+1)

(mem) ← φ

6 foreach Vertex v ∈ G(t)

(mem) do

7 Read Bv from G
(t)

(mem)

8 Cv ← Bv ∪ (
⋃

u∈Bv
Bu) ∪Rnd(K)

9 Initialize heap TopK
10 Read Fv from F(mem)

11 foreach Candidate w ∈ Cv do
12 Read Fw from F(mem)

13 distV alue← Dist(Fv, Fw)
14 UpdateHeap(TopK, w, distV alue)

15 Insert(G
(t+1)

(mem), v, TopK)

3 Pons

The challenge of KNN computation can be essentially viewed as a trade-off
between computational efficiency and memory consumption. Although efficient,
an in-memory approach (Sec. 2.1) consumes a significant amount of memory. In
this section, we propose Pons1, an out-of-core approach which aims to address
this trade-off.
1 The term ‘pons’ is Latin for ‘bridge’.

5

3.1 Overview

Pons is primarily designed to efficiently compute the KNN algorithm on a large
set of vertices’ profiles in a stand-alone memory-constrained machine. More
specifically, given a large set of vertices’ profiles and an upper bound of main-
memory Xlimit, that can be allocated for the KNN computation, Pons leverages
this limited main memory as well as the machine’s disk to perform KNN com-
putation in an efficient manner.

The performance of Pons relies on its ability to divide all the data –KNN
graph and vertices’ profiles– into smaller segments such that the subsequent
access to these data segments during the computation is highly efficient, while
adhering to the limited memory constraint. Pons is designed following two fun-
damental principles: (i) write once, read multiple times, since KNN computation
requires multiple lookups of various vertices’ neighbors and profiles, and (ii)
make maximum usage of the data loaded into memory, since disk operations are
very expensive in terms of efficiency.

Fig. 1. Pons executes 5 phases: (1) Partitioning, (2) In-Edge Partition Files, (3) Out-
Edge Partition Files, (4) Profile Partition Files, and (5) Distance Computation

We now present a brief overview of our approach, as illustrated in Algo-
rithm 2, and Figure 1. Pons takes two input files containing vertices, their
random out-neighbors, and their profiles. It performs the KNN computation
iteratively as follows. The goal of each iteration I is to compute K-closest neigh-
bors for each vertex. To do so, iteration I executes 5 phases (Alg. 2, lines 2-8).
First phase divides the vertices into M partitions such that a single partition is
assigned up to dN/Me vertices. This phase parses the global out-edge file con-
taining vertices and their out-neighbors and generates a K-out-neighborhood file
for each partition.

We note here that the choice of the number of partitions (M) depends on
factors such as the memory limit (Xlimit), the number of nodes (N), the num-
ber of neighbors K, the vertices’ profile length (P), and other auxiliary data
structures that are instantiated. Pons is designed such that utmost (i) a heap
of O(dN/MeK) size with respect to a partition i, (ii) profiles of two partitions

6

Algorithm 2: Pons

Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v ∈ G finds its KNN.

1 begin
2 foreach Iteration I do
3 1. Partioning(GlobalOutEdges)
4 2. Create In-edge Partition Files
5 3. Create Out-edge Partition Files
6 4. Write Profile Partition Files
7 5. Compute Distances
8 Update(GlobalOutEdges)

i and j consuming O(dN/MeP) memory, (iii) other auxiliary data structures
can be accommodated into memory all at the same time, while adhering to the
memory limit (Xlimit).

Based on the partitions created, phases 2, 3, and 4 generate various files
corresponding to each partition. In the phase 5, these files enable efficient (i)
finding of neighbors’ neighbors of each vertex, and (ii) distance computation of
the profiles of neighbors’ neighbors with that of the vertex. The second phase
uses each partition i’s K-out-neighborhood file to generate i’s in-edge partition
files. Each partition i’s in-edge files represent a set of vertices (which could
belong to any partition) and their in-neighbors which belong to partition i. The
third phase parses the global out-edge file to generate each partition j’s out-edge
partition files. Each partition j’s out-edge files represent a set of vertices (which
could belong to any partition) and their out-neighbors which belong to partition
j. The fourth phase parses the global profile file to generate each partition’s
profile file.

The fifth phase aims to generate an output of a set of new K-closest neighbors
for each vertex for the next iteration I+1. We recall that the next iteration’s new
K-closest neighbors is selected from a candidate set of vertices which includes
neighbors, neighbors’ neighbors, and a set of random vertices. While accessing
each vertex’s neighbors in the global out-edge file or generating a set of random
vertices is straightforward, finding each vertex’s neighbors’ neighbors efficiently
is non-trivial.

We now describe the main intuition behind Pons’ mechanism for finding a
vertex’s neighbors’ neighbors. By comparing i’s in-edge partition file with j’s
out-edge partition file, Pons identifies the common ‘bridge’ vertices between
these partitions i and j. A bridge vertex b indicates that there exists a source
vertex s belonging to partition i having an out-edge (s, b) to the bridge vertex b,
and there exists a destination vertex d belonging to partition j having an in-edge
(b, d) from the bridge vertex b. Here b is in essence a bridge between s and d,
thus enabling s to find its neighbor b’s neighbor d. Using this approach for each
pair of partitions i and j, the distance of a vertex and each of its neighbors’
neighbors can be computed.

7

As Pons is designed to accommodate the profiles of only two partitions at a
time in memory, Pons adopts the following approach for each partition i. First,
it loads into memory i’s profile as well as the bridge vertices of i’s in-edge par-
tition file. Next, an empty heap is allocated for each vertex which is assigned to
partition i. A vertex s’ heap is used to accommodate utmost K-closest neigh-
bors. For each partition j, the common bridge vertices with i are identified and
subsequently all the relevant pairs (s, d) are generated with s and d belonging
to i and j respectively, as discussed above. For each generated pair (s, d), the
distance between the source vertex s and the destination vertex d are computed,
and then the heap corresponding to the source vertex s is updated with the
distance score and the destination vertex d. Once all the partitions j = [1,M]
are processed, the heaps of each vertex s belonging to partition i would effec-
tively have the new K-closest neighbors, which are written to the next iteration’s
global out-edge file. Once all the partitions i = [1,M] are processed, Pons moves
on to the next iteration I + 1.

An illustrative example. Figure 2(a) shows an example graph containing
N = 6 nodes and M = 3 partitions. Let vertices A and T be assigned to partition
1 (red), U and C to partition 2 (blue), and W and I to partition 3 (green).
Figure 2(b) shows various in-edge and out-edge partition files corresponding to
their respective partitions. For instance, in the 1.in.nbrs file, U andW (denoted
by dotted circles) can be considered as bridge vertices with A (bold red), which
belongs to partition 1, as the in-neighbor for both of them.

To generate A’s neighbors’ neighbors, 1.in.nbrs is compared with each par-
tition j’s out-edge file j.out.nbrs. For instance, if 1.in.nbrs is compared with
3.out.nbrs, 2 common bridge vertices U and W are found. This implies that
U and W can facilitate in finding A’s neighbors’ neighbors which belong to par-
tition 3. As shown in Figure 2(c), vertex A finds its neighbors’ neighbor I, via
bridge vertices U and W .

(a) Example graph (b) Partition files (c) Neighbors’ neigh-
bors

Fig. 2. [Best viewed in color.] (a) A’s out-neighbors and A’s neighbors’ neighbors. (b)
In-edge partition files and out-edge partition files. (c) A’s neighbors’ neighbors found
using bridge vertices

8

4 KNN Iteration

At iteration t, Pons takes two input files: global out-edge file containing the KNN
graph G(t), and global profile file containing the set of vertices’ profiles. Global
out-edge file stores contiguously each vertex id v along with its K initial out-
neighbors’ ids. Vertex ids range from 0 to N − 1. The global profile file stores
contiguously each vertex id and all the P items of its profile. These files are in
binary format which helps in better I/O performance (particularly for random
lookups) as well as saves storage space.

4.1 Phase 1: Partitioning

The memory constraint of the system limits the loading of the whole graph as
well as the profiles into memory. To address this issue, we divide these data
structures into M partitions, each corresponding to roughly dN/Me distinct
vertices, such that the profiles of utmost two partitions (O(dN/MeP)) and a K-
neighborhood heap of one partition (O(dN/MeK)) can be accommodated into
memory at any instance.

When a vertex v is assigned to a partition j, the vertex v and its out-neighbors
Bv are written to j’s K-out-neighborhood file j.knn that contains all vertices
assigned to the partition j and their respective out-neighbors.

4.2 Phase 2: In-Edge Partition Files

This phase takes each partition i’s K-out-neighborhood file i.knn as input and
generates two output files representing bridge vertices and their in-neighbors. For
a vertex v assigned to partition i, each of its out-neighbors w ∈ Bv is regarded
as a ‘bridge vertex’ to its in-neighbor v in this phase. We note here that a bridge
vertex w ∈ Bv could belong to any partition.

The first file i.in.deg stores a list of (i) all bridge vertices b, which could
belong to any partition, and (ii) the number of b’s in-neighbors that belong to
partition i. This list is sorted by the id of each bridge vertex b. The second
file i.in.nbrs stores the ids of the in-neighbors of each bridge vertex b stored
contiguously according to the bridge vertices’ sorted ids in the i.in.deg file.

4.3 Phase 3: Out-Edge Partition Files

This phase takes the global out-edge file as input and generates two output files
per partition representing bridge vertices and their out-neighbors, similar to the
previous phase. For each partition j, the first file j.out.deg stores a list of (i)
all bridge vertices b, which could belong to any partition, and (ii) the number of
b’s out-neighbors that belong to partition j. This list is sorted by the id of each
bridge vertex b. The second file j.out.nbrs stores the ids of the out-neighbors of
each bridge vertex b stored contiguously according to the bridge vertices’ sorted
ids in the j.out.deg file. These files are used in the Phase 5 (in Sec. 4.5) for the
KNN computation.

9

4.4 Phase 4: Profile Partition Files

This phase takes the global profile file and generates M profile partition files
as output. Each vertex v’s profile is read from the global profile file, and then
written to the profile partition file corresponding to the partition that it was
assigned. Each profile partition file j.prof consumes upto O(dN/MeP) memory
or disk space. Each profile partition file subsequently allows the fast loading of
the profiles in the Phase 5, as it facilitates sequential reading of the entire file
without any random disk operations.

4.5 Phase 5: Distance Computation

This phase uses each partition’s in-edge, out-edge, and partition profile files to
compute the distances between each vertex and a collection of its neighbors,
neighbors’ neighbors, and random vertices, generating the set of new K-closest
neighbors for the next iteration.

Algorithm 3 shows the pseudo-code for this phase. Distance computation
is performed at the granularity of a partition, processing sequentially each one
from 1 to M (line 2-25). Once a partition i is completely processed, each vertex
v ∈Wi assigned to i has a set of new K-closest neighbors.

The processing of partition i primarily employs four in-memory data struc-
tures: InProf , InBrid, HeapTopK, and tuple T . InProf stores the profiles
of vertices (Wi) in partition i read from the i.prof file (line 3). InBrid stores
the bridge vertices and their corresponding number of in-neighbors in partition
i read from the i.in.deg file (line 4). HeapTopK is a heap, which is initially
empty (line 5), stores the scores and ids of the K-closest neighbors for each
vertex v ∈Wi, and tuple T stores neighbors, neighbors’ neighbors, and random
neighbors’ tuples for distance computation.

For computing the new KNN for each vertex s ∈ Wi, partitions are parsed
one at a time (lines 6-25) as follows. For a partition j, its profile file j.prof

and its out-edge bridge file j.out.deg are read into two in-memory data struc-
tures OutProf and OutBrid, respectively (lines 7- 8). Similar to i’s in-memory
data structures, OutProf stores the profiles of vertices (Wj) in partition j,
and OutBrid stores the bridge vertices and their corresponding number of out-
neighbors in partition j. By identifying a set of common bridge vertices between
InBrid and OutBrid, we generate in parallel, all ordered tuples of neighbors’
neighbors as follows:

(s, d)| s ∈Wi, d ∈Wj , (s, b) ∈ E(t), (b, d) ∈ E(t), b ∈ (InBrid ∩OutBrid) (2)

Each ordered tuple (s, d) represents a source vertex s ∈ Wi and a destination
vertex d ∈ Wj , with an out-edge (s, b) from s and an-inedge (b, d) to a bridge
vertex b that is common to both InBrid and OutBrid. We also generate in
parallel, all ordered tuples of each vertex s ∈ Wi and its immediate neighbors
(w|w ∈ Bv ∩Wj) which belong to the partition j. A distance metric such as
cosine similarity or euclidean distance is then used to compute the distance
score (Dist(Fs, Fd)) between each ordered tuple’s source vertex s and destination
vertex d. The top-K heap (HeapTopK[s]) of the source vertex s is updated with
d’s id and the computed distance score (Dist(Fs, Fd)).

10

Algorithm 3: NNComputation(): Neighbors’ neighbors computation

Data: In-edge partition files, Out-edge partition files, Profiles
Result: New K-nearest neighbors for each vertex

1 begin
2 foreach (In-edge) Partition i do
3 Read InProf from File(i.prof)
4 Read InBrid from File(i.in.deg)
5 HeapTopK[Wi]← φ
6 foreach (Out-edge) Partition j do
7 Read OutProf from File(j.prof)
8 Read OutBrid← from File(j.out.deg)
9 Initialize tuple T ← φ

10 CndBrid← (InBrid ∩OutBrid) ∪ (Wi ∩OutBrid)
11 foreach Bridge b ∈ CndBrid do
12 in parallel
13 Src← ReadInNeig(i.in.nbrs, b)
14 Dst← ReadOutNeig(j.out.nbrs, b)
15 AddTuples(T ,Src×Dst)
16 foreach (s, d) ∈ T do
17 in parallel
18 dist← Dist(Fs, Fd)
19 UpdateHeap(HeapTopK[s], d, dist)

20 foreach s ∈Wi do
21 in parallel
22 Dst← Rnd(K) ∈Wj

23 Compute tuples s×Dst
24 Update HeapTopK[s] as above

25 File(G(t+1)).Write(HeapTopK)

5 Experimental Setup
We perform our experiments on a Apple MacBook Pro laptop, Intel Core i7
processor (Cache 2: 256 KB, Cache 3: 6 MB) of 4 cores, 16 GB of RAM (DDR3,
1600 MHz) and a 500 GB (6 Gb/s) SSD.
Datasets. We evaluate Pons on both sparse- and dense- dimensional datasets.
For sparse datasets, we use Friendster [15] and Twitter data2. Both in Friendster
and Twitter, vertices represent users, and profiles are their lists of friends in the
social network. For dense datasets, we use a large computer vision dataset (ANN-
SIFT-100M) [12] which has vectors of 128 dimensions each. Vertices represent
high-dimensional vectors and their profiles represent SIFT descriptors. The SIFT
descriptors are typically high dimensional feature vectors used in identifying
objects in computer vision.
Performance. We measure the performance of Pons in terms of execution time
and memory consumption. Execution time is the (wall clock) time required for

2 Twitter dataset: http://konect.uni-koblenz.de/networks/twitter mpi

11

Table 1. Datasets

Dataset Vertices P K VI[Gb]

ANN-SIFT 30M (30M) 30M 128 10 19.35

ANN-SIFT 50M (50M) 50M 128 10 30.88

Friendster (FRI) 38M 124 10 23.26

Twitter (TWI) 44M 80 10 19.43

completing a defined number of KNN iterations. Memory consumption is mea-
sured by the maximum memory footprint observed during the execution of the
algorithm. Thus, we use maximum resident set size (RSS) and virtual memory
size (VI).

6 Evaluation

We evaluate the performance of Pons on large datasets that do not fit in memory.
We compare our results with a fully in-memory implementation of the KNN
algorithm (INM). We show that our solution is able to compute KNN on large
datasets using only the available memory, regardless of the size of the data.

6.1 Performance

We evaluate Pons on both sparse and dense datasets. We ran one iteration
of KNN both on Pons and on INM. We divide the vertex set on M partitions
(detailed in Table 2), respecting the maximum available memory of the machine.
For this experiment both approaches run on 8 threads.
Execution Time. In Table 2 we present the percentage of execution time
consumed by Pons compared to INM’s execution time for various datasets.
Pons performs the computation in only a small percentage of the time required
by INM for the same computation. For instance, Pons computes KNN on the
Twitter dataset in 8.27% of the time used by INM. Similar values are observed
on other datasets. These results are explained by the capacity of Pons to use
only the available memory of the machine, regardless of the size of the dataset.
On the other hand, an in-memory implementation of KNN needs to store the
whole dataset in memory for achieving good performance. As the data does not
fit in memory, the process often incurs swapping, performing poorly compared
to Pons.

Table 2. Relative performance comparing Pons and INM, and memory footprint

Exec. Time RSS[GB] Virtual[GB]

Dataset M Pons/INM % Pons INM Pons INM

FRI 5 6.95 11.23 12.79 16.86 23.26

TWI 4 8.27 13.04 13.78 15.55 19.43

50M 9 4.34 12.77 13.16 15.48 30.88

Memory Consumption. As we show in Table 2, our approach allocates at
most the available memory of the machine. However, INM runs out of memory,
requiring more than 23 GB in the case of Friendster. As a result, an in-memory
KNN computation might not be able to efficiently accomplish the task.

12

6.2 Multithreading Performance

We evaluate the performance of Pons and INM, in terms of execution time, on
different number of threads. The memory consumption is not presented because
the memory footprint is almost not impacted by the number of threads, only
few small data structures are created for supporting the parallel processing.

Figure 3 shows the execution time of one KNN iteration on both approaches.
The results confirm the capability of Pons to leverage multithreading to obtain
better performance. Although the values do not show perfect scalability, results
clearly show that Pons’s performance increases with the number of threads.
The fact that is not a linear increase is due to that some phases do not run in
parallel, mainly due to the nature of the computation, requiring multiple areas
of coordination that would affect the overall performance.

6.3 Performance for different memory availability

One of the motivation of this work is to find an efficient way of computing KNN
online, specifically considering contexts where not all resources are available for
this task. KNN computation is often just one of the layers of a larger system,
therefore online computation might only afford a fraction of the resources. In
this regard, we evaluate Pons’ capacity of performing well when only a fraction
of the memory is available for the computation. Figure 4 shows the percentage
of execution time taken by Pons compared to INM, for computing KNN running
on a memory-constrained machine.

1E+3	

1E+4	

1E+5	

1E+6	

1	 2	 4	 8	

Ti
m
e	
[S
]	

Threads	

FRI	 (Pons)	

FRI	 (INM)	

30M	 (Pons)	

30M	 (INM)	

Fig. 3. Impact of multithreading

0	

20	

40	

60	

80	

100	

20%	 50%	 80%	

Ex
ec
.	 T
im

e	
w
rt
	 IN

M
	 [%

]	

Frac5on	 of	 available	 memory	

Pons	 (TWI)	

Pons	 (50M)	

Fig. 4. Impact of the available memory

If only 20% of the memory is allocated to KNN, Pons requires only 12% of
the execution time taken by INM on a dense dataset. In the case of a sparse
dataset, Pons computes KNN in only 20% of the time taken by INM, when the
memory is constrained to 20% of the total. On the other hand, when 80% of
the memory is available for KNN, Pons requires only 4%, and 8% of the INM
execution time, on dense and sparse data set, respectively. These results show
the ability of Pons of leveraging only a fraction of the memory for computing
KNN, regardless of the size of data. Therefore, Pons lends itself to perform

13

online KNN computation using only available resources, leaving the rest free for
other processes.

6.4 Evaluating the number of partitions

Pons’ capability to compute KNN efficiently only using the available memory
relies on the appropriate choice of the number of partitions M . Larger values
of M decrease the memory footprint, diminishing likewise algorithm’s perfor-
mance, this is due to the increase in the number of IO operations. On the other
hand, smaller values of M increase the memory footprint, but also decrease per-
formance caused by the usage of virtual memory and consequently expensive
swapping operations. An appropriate value of M allows Pons to achieve better
performance.
Execution Time. We evaluate the performance of Pons for different number
of partitions. Figures 5 and 6 show the runtime for the optimal value, and two
suboptimal values of M . The smaller suboptimal value of M causes larger run-
times due to the fact that the machine runs out of memory, allocating virtual
memory for completing the task. Although runtime increases, it remains lower
than INM runtime (roughly 7% of INM runtime). Larger suboptimal value of M
affects performance as well, by allocating less memory than it is available, thus
misspending resources in cases of full availability.

1000	
2000	
3000	
4000	
5000	
6000	

3	 9	 12	

Ti
m
e	
[S
]	

Number	 of	 Par11ons	

50M	 (Pons)	

Fig. 5. Runtime: The impact of M

1000	

2000	

3000	

4000	

2	 4	 8	

Ti
m
e	
[S
]	

Number	 of	 Par11ons	

TWI	 (Pons)	

Fig. 6. Runtime: The impact of M

Memory Consumption. Figure 7 and 8 show the memory footprint for the
optimal value of M , and two suboptimal values. In both cases, smaller values of
M increase RSS, reaching the maximum available, unfortunately, virtual mem-
ory footprint increase as well, affecting the performance. The optimal value of
M increases RSS to almost 16 GB, but virtual memory consumption remains
low, allowing much of the task being performed in memory. On the other hand,
a larger value of M decreases both RSS and the virtual memory footprint, per-
forming suboptimally. Although, larger values of M affect performance, this fact
allows our algorithm to perform KNN computation on machines that do not
have all resources available for this task, regardless the size of the data.

7 Related Work

The problem of finding K-nearest neighbors has been well studied over last years.
Multiple techniques have been proposed to perform this computation efficiently:

14

0	
5	

10	
15	
20	
25	
30	

3	 9	 12	

M
em

or
y	
[G
B]
	

Number	 of	 Par22ons	

50M	 (RSS)	

50M	 (VI)	

Fig. 7. The impact of M

0	
5	
10	
15	
20	
25	
30	

2	 4	 8	

M
em

or
y	
[G
B]
	

Number	 of	 Par22ons	

TWI	 (RSS)	

TWI	 (VI)	 	

Fig. 8. The impact of M

branch and bound algorithms [10]; trees [1, 18]; divide and conquer methods [6];
graph-based algorithms [9]. However, only a few have performed KNN compu-
tation in memory-constrained environments [7].

Recently, many studies [14, 19, 11] have explored ‘out-of-core’ mechanisms to
process large graphs on a single commodity PC. Kyrola et al. in [14] propose
GraphChi, a disk-based system to compute graph algorithms on large datasets.
They present a sliding window computation method for processing a large graph
from disk. This system is highly efficient on graphs that remain static during
the entire computation. Unfortunately, it does not show same efficiency when
the graph changes over time, as the case of KNN computation. X-Stream [19]
proposes a edge-centric graph processing system on a single shared-memory ma-
chine. Graph algorithms are performed leveraging streaming partitions, and pro-
cessing sequentially edges and vertices from disk. TurboGraph [11] consists of a
pin-and-slide, a parallel execution model for computing on large-scale graphs
using a single machine. Pin-and-slide model divides the set of vertices in a list
of pages, where each vertex could have several pages.

8 Conclusion

We proposed Pons, an out-of-core algorithm for computing KNN on large datasets,
leveraging efficiently both disk and the available memory. Pons’ performance re-
lies on its ability to partition a KNN graph and profiles into smaller chunks such
that the subsequent accesses to these data segments during the computation is
highly efficient, while adhering to the limited memory constraint.

We demonstrated that Pons is able to compute KNN on large datasets, using
only the memory available. Pons outperforms an in-memory baseline, comput-
ing KNN on roughly 7% of the in-memory’s time, using efficiently the available
memory. Our evaluation showed Pons’ capability for computing KNN on ma-
chines with memory constraints, being also a good solution for computing KNN
online, devoting few resources to this specific task.

Acknowledgments. This work was partially funded by Conicyt/Beca Doctor-
ado en el Extranjero Folio 72140173 and Google Focused Award Web Alter-Ego.

15

References

1. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML (2006)

2. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image
classification. In: CVPR (2008)

3. Boutet, A., Frey, D., Guerraoui, R., Jegou, A., Kermarrec, A.M.: Whatsup: A
decentralized instant news recommender. In: IPDPS (2013)

4. Boutet, A., Frey, D., Guerraoui, R., Jegou, A., Kermarrec, A.M.: Privacy-
preserving distributed collaborative filtering. In: Noubir, G., Raynal, M. (eds.)
Networked Systems, LNCS, vol. 8593, pp. 169–184. Springer (2014)

5. Boutet, A., Frey, D., Guerraoui, R., Kermarrec, A.M., Patra, R.: Hyrec: Leveraging
browsers for scalable recommenders. In: Middleware (2014)

6. Chen, J., Fang, H.r., Saad, Y.: Fast approximate knn graph construction for high
dimensional data via recursive lanczos bisection. J. Mach. Learn. Res. 10, 1989–
2012 (2009)

7. Chiluka, N., Kermarrec, A.M., Olivares, J.: Scaling knn computation over large
graphs on a pc. In: Middleware (2014)

8. Debatty, T., Michiardi, P., Thonnard, O., Mees, W.: Building k-nn graphs from
large text data. In: Big Data (2014)

9. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: WWW (2011)

10. Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. Computers, IEEE Transactions on C-24(7), 750–753 (1975)

11. Han, W.S., Lee, S., Park, K., Lee, J.H., Kim, M.S., Kim, J., Yu, H.: Turbograph: a
fast parallel graph engine handling billion-scale graphs in a single pc. In: SIGKDD
(2013)

12. Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors:
re-rank with source coding. In: ICASSP (2011)

13. Katayama, N., Satoh, S.: The sr-tree: An index structure for high-dimensional
nearest neighbor queries. In: SIGMOD. vol. 26, pp. 369–380. ACM (1997)

14. Kyrola, A., Blelloch, G.E., Guestrin, C.: Graphchi: Large-scale graph computation
on just a pc. In: OSDI (2012)

15. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (2014)

16. Lin, Z., Kahng, M., Sabrin, K., Chau, D., Lee, H., Kang, U.: Mmap: Fast billion-
scale graph computation on a pc via memory mapping. In: Big Data (2014)

17. McRoberts, R.E., Nelson, M.D., Wendt, D.G.: Stratified estimation of forest area
using satellite imagery, inventory data, and the k-nearest neighbors technique.
Remote Sensing of Environment 82(2), 457–468 (2002)

18. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD
(1995)

19. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: Edge-centric graph processing
using streaming partitions. In: SOSP (2013)

20. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: CVPR (2010)

21. Wong, W.K., Cheung, D.W.l., Kao, B., Mamoulis, N.: Secure knn computation on
encrypted databases. In: SIGMOD (2009)

22. Zhu, X., Han, W., Chen, W.: Gridgraph: Large-scale graph processing on a single
machine using 2-level hierarchical partitioning. In: USENIX ATC (2015)

