
HAL Id: hal-01337093
https://hal.inria.fr/hal-01337093

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0
International License

Automatic Code Generation for Iterative
Multi-dimensional Stencil Computations

Mariem Saied, Jens Gustedt, Gilles Muller

To cite this version:
Mariem Saied, Jens Gustedt, Gilles Muller. Automatic Code Generation for Iterative Multi-
dimensional Stencil Computations. High Performance Computing, Data, and Analitics, Dec 2016,
Hydarabat, India. �hal-01337093�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49365085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01337093
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
89

28
--

FR
+E

N
G

RESEARCH
REPORT
N° 8928
June 2016

Project-Team Camus

Automatic Code
Generation for Iterative
Multi-dimensional Stencil
Computations

Mariem Saied Jens Gustedt Gilles Muller

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Automatic Code Generation for Iterative
Multi-dimensional Stencil Computations

Mariem Saied∗† Jens Gustedt∗† Gilles Muller‡§

Project-Team Camus

Research Report n° 8928 — June 2016 — 23 pages

Abstract: We present a source-to-source auto-generating framework that enables a large
programmer community to easily and safely implement parallel stencil codes within the framework
of Ordered Read-Write Locks (ORWL). It meets the specific needs of the application at a high
level of abstraction. ORWL is an inter-task synchronization model for iterative data-oriented
parallel and distributed algorithms that uses strict FIFO ordering for the access to all resources.
It guarantees equity, liveness and efficiency for a wide range of applications. The main hurdle for
using ORWL lies in its initialization phase, where the programmer has to specify the access scheme
between tasks and resources and the initial positions of the tasks in the FIFOs. We provide a user-
friendly interface based on a Domain-Specific Language (DSL) that captures domain semantics and
automatically generates ORWL parallel high-performance stencil code. We conducted experiments
that proved the validity of our approach, as well as the efficiency and scalability of the generated
code.

Key-words: stencil computations, ordered read-write locks, domain-specific language, experi-
ments

∗ INRIA, Nancy – Grand Est, France
† ICube – CNRS, Université de Strasbourg, France
‡ INRIA – Paris, France
§ LIP6 – Sorbonne Universités, CNRS, UPMC, France

Génération automatique de programmes pour
des calcul multi-dimensionnels de type stencil

Résumé : Nous présentons un outil de génération automatique source-à source
de code qui permet à une grande communauté de programmeurs d’implémenter
des codes stencils dans le cadre des verous ordonnés de lecture-écriture (ORWL),
et ceci de façon facile et sûre. L’outil proposé remplit les besoins spécifiques pour
permettre un niveau d’abstraction élevé. ORWL est un modèle de synchronisa-
tion entre tâches pour des calculs itératifs qui sont centrés sur les données. Il
utilise un ordonnocement strict imposé par des files d’attentes qui sont associées
à toutes les resources. Ainsi, il garantit l’égalité, la vivacité et l’efficacité pour
une large catégorie d’applications. L’obstacle majeur pour l’utilisation d’ORWL
est sa phase d’initialisation, où le programmeur doit spécifier le schéma d’accès
entre tâches et resources, ainsi que les positions initiales des tâches dans les
files d’attente. Nous fournissons une interface conviviale, basée sur un langage
dédié (DSL) qui capte la sémantique spécifique au domaine et génère du code
stencil parallèle de haute performance. Nous avons effectué des expériences qui
prouvent la validité de notre approche, ainsi que l’efficacité et l’extensibilité du
code généré.

Mots-clés : calcul type stencil, verous ordonnés lecture-écriture, languages
dédiés, expérimentations

Automatic Code Generation for Iterative Stencil Computations 3

1 Introduction

Stencil kernels appear in a wide range of scientific and engineering applications
ranging from numerical solvers and PDE solvers (Partial Differential Equations)
to computational physics [1,2,3], as well as image processing [4,5]. The compu-
tational pattern for stencils consists of iterative sweeps over a data grid, where
each grid element is updated as a function of its neighbouring elements. Stencil
computations are often parallelized through a decomposition of the data grid
into several blocks or tiles, such that the computation of a specific block requires
updated information from neighbouring blocks. Conceptually, this enforces the
use of so-called shadow regions that surround each block with its updated neigh-
borhood information. These are very difficult to handle since they often need
complex case analysis for communication statements and index calculations.
Usually, the burden of the creation and management of the shadow regions lays
on the application programmer. Apart from that, the programmer is responsible
for handling overlapped computations and communications over block resources.
Therefore, he needs the support of a powerful inter-task synchronization mech-
anism such as ORWL.

ORWL, see [6], is an inter-task synchronization paradigm for iterative data-
oriented parallel and distributed algorithms. It favors algorithmic control and
data consistency by introducing a FIFO-based lock mechanism that handles
data-dependencies between tasks and data resources. One of the originalities
of ORWL is the proactive announcement of the resources that a task requires
for a future computation. ORWL can be used in shared memory, distributed
(network) or mixed contexts.

As stencil kernels are well structured and computation-intensive, they present
very interesting applications of ORWL. Altough the modeling power of ORWL
largely exceeds the stencils, in this work we concentrate on these.

However, currently the main hurdle for using ORWL lies in its demanding
initialization phase where the programmer has to specify the access scheme
between tasks and resources and the initial positions of the tasks in the FIFOs.
The latter are decisive for the liveness of the application, and thus should be
attributed with a lot of care. Once this tedious but necessary step is done
correctly, all subsequent iterations are guaranteed to be deadlock-free and fair.

In order to enhance development productivity when writing ORWL appli-
cations, we aim to alleviate this burden and automate the initialization phase,
including the attribution of initial handle positions in the FIFOs. Our ap-
proach is to add a layer, based on an implicitly parallel domain-specific language
(DSL), [7] on top of ORWL.

On one hand, DSLs offer appropriate domain-specific notations, constructs
and abstractions, improve the expressiveness and thus the productivity in the
particular domain they are designed for, compared with general-purpose pro-
gramming languages (GPL). On the other hand, DSLs achieve code efficiency
thanks to the incorporated domain-specific knowledge. DSLs usually provide
acceptable performance and can sometimes reach the performance levels that
are attained by hand-coded implementations. Thereby, they allow to balance

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 4

programmability and performance.
Not surpisingly, in recent years, DSLs have been widely used in paral-

lel programming to spare the user the details and the complexity related to
parallel programming. In particular, numerous research efforts have adopted
DSL solutions to optimize stencil computations. Some of them, suggest auto-
tuning frameworks for multicore architectures [8] and GPU accelerators within
DSLs [9,10]. Others suggest DSL-based stencil compiler transformations to gen-
erate efficient code for GPUs and multicore processors [11]. The Pochoir stencil
compiler [12], for example, uses cache-oblivious parallelograms for parallel exe-
cution on shared-memory systems to produce high-perfomance code for stencils.
With this work, we propose a DSL-based solution to make stencil implemen-
tations within the ORWL framework simpler and more user-friendly. By that,
we bridge the gap between productivity and high performance. We aim to al-
low scientific domain experts or average programmers to develop ORWL stencil
codes that meet their specific application needs without becoming experts in
parallel programming in general nor in ORWL in particular. In this paper, we
present Dido, a DSL for developing parallel stencil computations within ORWL.
Dido is implicitely parallel, expressive, productive and highly-efficient. It meets
the specific needs of the application at a high level of abstraction. It combines
performance and correctess, without requiring much effort from the program-
mer. The goal of Dido is to bridge the gap between productivity and high
performance, often considered as mutually exclusive.

Our main contributions are:

• We provide a user-friendly interface based on a Domain-Specific Language
(DSL) that captures high level stencil abstractions and automatically gen-
erates ORWL parallel high-performance stencil code.

• We present a pattern for ORWL that we call ComUP, that is relevant
for all ORWL implementations not only for stencil computations. It en-
sures expressiveness, deadlock-freeness and better performance for ORWL
programs.

• We show that the DSL achieves a huge progress in terms of programmer
productivity without sacrificing the performance. We expose the com-
plexity of the generated code and the amount of complex details the DSL
spares the user.

• We present experiments that prove the efficiency and scalability of the
generated code that outperforms hand-crafted code.

The remainder of this paper is organized as follows. In Section 2, we present
the Ordered Read-Write Locks model. An overview of the stencil computations
we consider in this work is presented in Section 3. Section 5 provides a full
specification of our DSL Section 5. In Section 6 and Section 7, we highlight
respectively the programmer productivity and performance benefits achieved
by our framework. We summarize our work and future directions in Section 8.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 5

Listing 1 – A simple critical section operating on one resource through an
orwl_handle.

/* announce the access */

orwl_write_request (&loc , &handle);

/* some operation without the resource */

/* then , block until acces granted */

orwl_acquire (& handle);

/* some critical operation with locked resource */

/* then , free the resource */

orwl_release (& handle);

2 ORWL Overview

ORWL (Ordered Read-Write Locks) is an inter-task synchronization paradigm
for resource-oriented parallel and distributed algorithms. It provides synchro-
nization methods that allow an implicit deadlock-free and equitable control of
protected resources. Here, a resource can be an abstraction of data, hardware or
software on which tasks interact. ORWL provides a way to control the execution
order of tasks based on their data dependencies. It is based on the following
features:

1. An access queue (FIFO) for each such lock.

2. An explicit association of a lock with each resource.

3. A distinction between locking for writing (exclusive) and locking for read-
ing (inclusive).

4. A three-step lock operation by a sequence of request (queue insertion),
acquire (blocking until first in queue) and then release.

5. A distinction between locks (opaque objects) and lock handles (user in-
terfaces acting on the locks).

The logic behind ORWL is that a task anticipates and proactively announces
the resources it is going to require for future computation. Through a lock han-
dle, it requests a slot in the queue of the resource (see Listing 1). Only when the
resource becomes necessary for the process to continue, the process attempts to
acquire and is blocked until access to the resource is granted. Such a mecha-
nism enables the run time system to anticipate the access, e.g. by doing a data
prefetch, at a reduced cost. In particular, it allows to hide access latency that
could be caused be slow communication links. A task is said to be active and
can be executed only when all the locks it has requested have been acquired.
An implementation of the ordered read-write lock paradigm using standard lan-
guages and interfaces (C and POSIX), has been presented in [13], together with
its basic use patterns. It can be used in shared, distributed or mixed contexts.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 6

Listing 2 – A critical section operating on one resource, accessed iteratively,
through an orwl_handle2.

/* bind the pair of handles to the resource */

orwl_write_request2 (&loc , &handle2);

/* some operation without the resource */

/* then , block until acces granted */

orwl_acquire2 (& handle2);

/* some critical operation with locked resource */

/* free resource + new request for next iteration */

orwl_release2 (& handle2);

Experiments have shown that ORWL is a powerful synchronization tool that
guarantess liveness, equity and efficiency for a wide range of applications. It
also presents a valid choice for out-of-core computation [14].

2.1 Iterative tasks

The pro-active locking enables a thread or a process to define several handles
on the same lock, and thereby to newly request a lock by means of one handle
while still actively holding a lock via another handle. Thereby, iterative tasks
may insert their request for the next iteration in the FIFO while still holding
a lock for the current one. This is a big advantage for iterative computations
that access data in a cyclic pattern, and the library provides specific tools that
implement this pro-active iteration scheme.

The type orwl_handle2 presents a pair of orwl_handle that are bound to the
same resource and used in alternation. At the start of each iteration, one of the
two handles is bound to the resource to grant the access for the current iteration,
while the other is inactive. At the end of the iteration, before releasing the lock,
a new request for the next iteration is automatically posted through the inactive
handle. This guarantees the reservation of the resource for the next iteration
at the same initial FIFO ordering, before releasing the lock to grant access to
other tasks operating on the same resource.

2.2 Initialization Phase

In this iterative setting, ORWL can guarantee the crucial properties of liveness
and equity for all tasks, although this comes not without effort. It has been
shown, see [6], that the initial FIFO positions of the locking requests are decisive.
They must be attributed with a lot of care in order to avoid cyclic dependencies
that may lead to a deadlock. In consequence, the initialization phase where
the programmer specifies the initial access order of the tasks to the resources is
tedious to implement and error prone. On the other hand, once this key step
is done correctly, all subsequent iterations are guaranteed to be deadlock-free
and fair. One of our main motivations is to alleviate this programming task and

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 7

to automate the initialization phase, including the attribution of initial FIFO
positions.

2.3 A programming paradigm with a local view

An ORWL program is specified as a local description of a set of equivalent tasks
that compose the application and that are to be executed concurrently. Each
task has a set of resources it “owns” and it executes its specific program code. A
task can refer to one of its own resources (local) or those of other tasks (remote).
The tasks interact through communication and synchronization operations via
the locks they subsequently hold for these resources. This includes all operations
executed on the locally owned resources. The tasks are realized by threads
(local execution) and processes (remote execution) and the operations on the
resources are implemented in shared memory, when possible, or through network
communications on the socket level.

3 Stencil Computations

Stencil computations constitute a widely used computational pattern that per-
forms iterative global sweeps over a multidimensional regular grid, realizing
nearest neighbor computations. At each iteration, each element is updated fol-
lowing a function of a subset of its neighboring elements from previous iterations.
In this work, we consider stencil computations performing iterative point-wise
updates over an n-dimensional grid, according to a function involving the fol-
lowing computation:

Rϕ[i1][i2]...[in] =

µ∑
ν=1

(∑
k

Ck[i1][i2]...[in] ×Aϕ−ν [i1 ± hνk,1][i2 ± hνk,2]...[in ± hνk,n]

+
∑
m

αm ×Aϕ−ν [i1 ± `νm,1][i2 ± `νm,2]...[in ± `νm,n]

)
Here, ϕ is the current iteration. The center element and its neighbouring

elements from previous iterations Aϕ−ν , ν = 1, . . . , µ, are weighted by coefficient
grids Ck and scalar constants αm. The new element Aϕ is then deduced from
intermediate value Rϕ by any set of statements.

We refer to A as the main data, that is the grid that undergoes the computa-
tion. We presume that there is only one such main data, but that there can be
multiple coefficient grids that we call auxiliary data. The auxiliary data are con-
strained to have the same topology and size as the main data. They must also
be accessed at the same position [i1][i2]...[in] as the center element. Unlike the
coefficient grids, the main grid A can be accessed at any position. hνk,d and hνl,d
present offsets separating the accessed neighboring elements from the central
element. We call the maximum of these offsets the halo of the computation

halo = max
ν,k,d,m

{hνk,d, `νm,d}.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 8

It has to be noted however, that the formula above is valid only for inner com-
putations of elements that are not on the boundaries of the main data. In
Section 5, we evoke the different measures we have taken to handle boundary
conditions.

3.1 Stencils within ORWL

An intuitive method to parallelize stencil computations is to decompose the main
data into a set of blocks. While the computation in each block that is sufficiently
far from the edges is independent from other blocks, the computation near the
edges and corners depends on a subset of neighboring blocks, that are computed
by different tasks. Thus, communication is needed to exchange updated values
between blocks after each iteration. Thus, a specific mechanism must ensure the
synchronization of overlapping computations and communications that access a
protected resource. Here, our inter-task synchronization model ORWL could be
very helpful. Stencil modeling, within ORWL, implies the definition of a number
of data locations, where an ORWL is associated with each data location. One
possible solution is to define several shadow locations in addition to the main
location that consists of the block itself. They are buffers where, at the end of
each iteration, the newly computed data of block edges is saved, representing a
push scheme. The shadow locations are then available to neighbouring tasks for
reading. The number of ORWl data locations depends on the neighbourhood
type of the stencil computation and whether the neighborhood is composed of
all the elements surrounding the central element, including diagonal elements,
or composed of only the elements in direction of the axis. Figure 1 shows an
example of a simple decomposition of a 2D matrix into four blocks: Each task
consists of one compute and 8 update operations acting on 9 locations that are
the main location and 8 shadow locations. The compute operation reads the data
it requires through handles from the shadow locations of the remote neighboring
blocks. Then, it executes the computation kernel and writes the results to the
main location. The update operations, one for each shadow location, are used
to export the data of the edges and corners to the neighboring tasks.

Each task has only one exclusive write access on one single location and each
data location is only required by one exclusive write access and therefore one
task only. This is called the canonical form that we use in order to guarantee
the use of all ORWL proofs.

3.2 Motivations

As mentioned in Section 2, to take full advantage of ORWL properties, the
programmer has to go through a tedious but necessary initialization phase.
They have to carefully specify the access scheme between tasks and resources
and to assign the initial positions of lock handles in the FIFOs of the resources.
Mistakes at this level may lead to deadlocks. Our principal motivation for
developing our DSL is to alleviate this burden by automating the generation
of this initialization phase in a fail-safe manner. Furthermore, without the aid

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 9

R/W E0

SE0S0

W1
MT1
R/W

SW1 S0

R/W
MT3

S0 S1

NE0S0 NW3 S0N2 N3

E2 W3

R

W

R R

R R R

RR

R RR

R

W

W

W W

W

R

W

W

W

W W

W

R

MT2
R/W

MT0

R

R R

Figure 1 – An example of a 2D stencil ORWL modeling with a decomposition
into four blocks

of the DSL, the programmer is responsible for handling the updates of the
halo regions. They have to define the ORWL data locations explicitly, allocate
their associated buffers and write the update operations. These programming
tasks are by far longer and more involved than the computational kernel they
serve. Additionally, it is very likely that the programmer makes mistakes when
writing the indices in the complex update operations that have to be specified
by using the halo margin offsets in each direction of the problem grid. The more
dimensions the main data has, the more complex the indices become and the
higher is the risk of making mistakes. With our DSL, we spare the programmer
from writing complex indices and error-prone parts, by fully generating them.
Apart from that, it is difficult for non-experienced developers to achieve good
parallel performance results, be it by using ORWL or any other programming
framework. Our DSL also allows us to incorporate our ORWL domain-specific
knowledge in a code generation framework that helps the user achieve high
performance as well as productivity benefits.

3.3 Benchmarks

In this paper, we choose the following stencil computations as bench- marks.

• a 2-dimensional 5-point Jacobi.

• a 3-dimensional 7-point Jacobi.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 10

Listing 3 – Livermore Kernel 23.

for (i = 1; i < N-1; ++i) {

for (j = 1; j < M-1; ++j) {

q = data[i-1][j] * zb[i][j]

+ data[i][j-1] * zv[i][j]

+ data[i][j+1] * zu[i][j]

+ data[i+1][j] * zr[i][j]

+ zz[i][j] - data [i][j];

data [i][j] += 0.175 * q ;

}

}

• Game of life: a 2D 9-point stencil.

• Livermore Kernel 23.

The Livermore Kernel 23, a classic benchmark taken from LINPACK, has al-
ways been considered as a refernce benchmark for ORWL. As shown in Listing 3,
it is a 5-point Stencil. Each element is updated by the element at the same po-
sition from the previous iteration and 4 neighbors offset by 1 on each direction.
This stencil algorithm is cache-unfriendly. It has the partcicularity that data
grows quickly in memory, as it requires a set of five coefficient grids (zb, zv, zu,
zr and zz) in addition to the main data grid, which makes the overall memory
footprint bigger.

4 An ORWL pattern for stencil applications

The aim of this work is to automate the generation of multidimensional stencil
code within the ORWL platform. To this end, deep knowledge of the domain
semantics was needed. We had first to analyze ORWL stencil implementations
and extract the contraints they must meet in order to define a generalized use
pattern that fulfills the deadlock-freeness and liveness proprieties for ORWL
stencils. The pattern was extracted from 2D and 3D implementations and
generalized for multidimensional stencils.

4.1 The CompUp form

To enhance the expressiveness of our tool and make code generation easier, we
agreed to express ORWL programs in a form that we named CompUp. Here, we
cast an ORWL program in the form of three types of operations: local update,
global update and compute.

1. The compute operation performs the computation. It reads the data that
is imported by global update operations and saved on local buffers. Then,
it executes the computation kernel and writes the results on the main
location.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 11

2. The local update operation ensures the data transfer between different
resources of the same task. It reads the updated data from the main
location and stores it in buffers to make it available for neighboring tasks.

3. The global update operation ensures the external communication between
the current task and other tasks. It reads the data in the neighboring
tasks’ buffers, updated by their own local update operations, and write it
on local buffers, making it available for the compute operation.

In order to meet the canonical form constraints, careful efforts have been made
to associate one single operation to each location, and thus one exclusive write
access to each location.

We add additional constraints on the initial positions that the previously
enumerated operations take in the data location FIFOs. First, each operation
should have the same initial position over all the resources it needs. Second, we
impose that these initial positions of priorities follow the order above. Namely,
the compute operation has priority over the others. Then, the local update
comes second to save the computed results on local buffers. The last priority is
assigned to the global update operation. It has been proven that by adding these
constraints to the CompUp form, the subsequent computation is guranteed to
be deadlock-free.

In addition to the liveness guarantees that it provides, the CompUp form
enables the automatic attribution of the FIFO initial positions. It has to be
mentioned that the CompUp form is valid for all ORWL implementations not
only for stencil computations i.e graph processing. But, these are not the object
of this paper.

4.2 Overlapped data partitioning

Instead of standard block partitioning, (cf. section 3), we extend the blocks to
include the halo region elements. Each block is then enlarged by twice the halo
offset on each dimension. The overlapped data partitioning greatly simplifies
the compute operation code and more precisely the computation of the fron-
tier elements of each block. On one hand, it spares the analysis and specific
treatment details that would have been, otherwise, necessary for their compu-
tation. On the other hand, it helps avoid the complex indexing relative to the
halo region updates. The computation part in the compute operation is then
reduced to one treatment case to be applied on all the block elements, including
the edges. This considerably simplifies the code, making it clearer and easier to
understand, to write and thus to generate. Preliminary experiments has shown
that the overlapped data partitioning has no negative impact on performance.

4.3 Example

In this part, we combine the CompUp form with the overlapped data partition-
ing in a 2D stencil example. Each task consists of one compute operation, 8
local update operations and 8 global update operations acting on 17 locations:

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 12

MainPlus

NSP

SWP

SS

NS

SE SWR

W

R

local_update

global_update

SS

SW

NS

SS

SSP

SE

SEP

W

 compute

R/W
R

 R

global update

local_update

global_update

global_update

local_update

W

R

W

R W

W

R

W

local_update

R

R

R

W

W

R

R

Figure 2 – Local Update - Global Update – Compute modeling in a 2D stencil
example

• The main location as shown in Fig. 2 is extended and includes the halo
region elements.

• 8 of the 16 auxiliary locations (NS, SS, SE, SW) present locations where
the data of the current block edges is exported, saved and made available
to neighbouring tasks for reading.

• The remaining 8 auxiliary locations (NSP, SSP, SEP, SWP) are needed
to store updated data that is imported from neighbours.

As shown in Fig. 2, there are three types of operations:

• Compute: It has read/write access to the main location and read access
to the auxiliary locations (NSP, SSP, SEP, SWP). At each iteration, it
updates first the halo margin elements on the main location. Then, it
executes the computation kernel.

• Local Update: copies updated data from main location and store it in local
buffers. The updated data is then made available for neighboring tasks
and ready to be read without interrupting the main block computation. It
has read access to the main location and write access to the corresponding
auxiliary location.

• Global Update: reads the data from the auxiliary locations of the neigh-
bouring tasks and writes it on local buffers.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 13

5 Dido: a DSL for ORWL stencils

Our DSL is intended to generate ORWL code following the pattern we have
described above (cf. Section 4). Therefore, additional parameters have to be
provided by the user, specifying the topology and size of their specific problem
instance. Our framework enables the description of those parameters in a concise
and intuitive syntax. The user provides specifications written in the introduced
language. These are parsed in order to extract stencil features that are used, in
a second step, to generate the corresponding ORWL code. The DSL enables a
natural description of the parallel computation, where the compute kernel itself
is specified in the form of a conventional (sequential) C function. The name of
a header file that contains this function is specified within the DSL. This choice
is made on purpose. It allows to handle all types of stencil computations, makes
it possible to combine different types of statements that may be needed by the
user, and allows to reuse legacy code, easily. Listing 4 shows a specification of a
2D stencil computation within the DSL. The main data (see Line 1) is specified
by its name (here za), dimension (2D), and names for the problem axes (x and
y). The auxiliary data, for their part, are specified by their names. According
to a naming convention, these names will be used for the generation of the
ORWL location and task identifiers. The convention has been chosen carefully
in order to guarantee the readability and expressiveness of the generated code.
The user has to provide a header file (here "type.h") that contains all types,
data structures and scalar contstants that are necessary for the application on
the level of the C code (see Line 9). This header file will then be included
in the generated C code of the ORWL program. They also have to specify
the data type of the main data elements (see Line 14). It can be either a
basic type (float, double, char, etc.) or an aggregate data type that has to be
defined in the specified type header file. Additionally, to be able to handle high
order stencils, the halo of the computation has to be specified (see Line 10),
as well as the number of previous iterations involved in the computation (see
Line 11). The latter is needed, because in the computate kernel the user may
reuse data elements from previous iterations. There is also one crucial element
to be specified, which is whether the computation involves other elements or
not. Furthermore, to match the needs of real applications, we provide different
ways to specify the boundary conditions. They can either be a constant value
for borders (as in the example, Line 12) or define a specific function to compute
element values on the edges.

In order to save compile time and efforts, the DSL is divided into two parts:
The first part encompasses structural parameters of the application. Those
parameters define the problem and enable the generation of the most complex
parts of the ORWL code. This includes the data locations, the operations,
the handle initializations and the initial positions in the FIFOs and the critical
sections. The compilation time of the ORWL code generated by this part of
the DSL could be moderately long. The second part consists of the execution
parameters for a particular problem instance. Here, the user should specify a
header file (here "init.h") that contains initialization functions for the main and

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 14

Listing 4 – ORWL 2D Stencil specification within the suggested DSL.

1 Main_Data = {

2 za (2D) in (x,y);

3 }

4 Aux_Data = {

5 zr; zb; zu; zv; zz;

6 }

7 Application = {

8 kernel = "kernel.h";

9 types = "types.h";

10 halo = 1;

11 iteration_halo = 1;

12 border_value = 2;

13 neighbourhood_type = no corners;

14 element_data_type = float;

15 }

16 Execution_Parameters = {

17 iterations_number = 100;

18 data [1000][1000] into [100][100];

19 number_nodes = 25;

20 number_tasks_per_node = 4;

21 init_file = "init.h";

22 }

auxiliary data. A stopping criterion should also be provided. It can be either
an iteration number (cf. Line 17) or a convergence criterion. They also have to
specify the global size of the main data as well as the block sizes (see Line 18)
into which it is partitioned. Finally, they have to specify the number of nodes on
which the computation is deployed as well as the number of tasks per node (see
Line 19-20). The code resulting from the structural part of the DSL can be used
for different problem instances. The user has the option to generate all the code
from scratch or just the main function depending on the execution parameters
specified in the instantial part. Prior to code generation, the framework verifies
that all the specified parameters within the DSL are coherent. If not, an error
message is displayed. E.g in the example we see that the problem is divided into
10× 10 = 100 blocks, and that this number corresponds to the total number of
tasks, 25× 4 = 100.

Structure of Generated Code

Given a stencil specification that does not exceed a few lines of trivial code,
the DSL generates handreds of lines of ORWL parallel code. It consists of C
code with includes of both P991.and ORWL libraries. Apart from being correct
and error-free, the generated code is well indented and readable thanks to the
well-chosen naming conventions that are used to name the different tasks and
locations.

1https://www.p99.gforge.inria.fr/

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 15

Listing 5 – Main function of ORWL genrated parallel code.

int main(int argc , char **argv) {

orwl_init ();

for (s ize t i = 0; i < orwl_ll; i++) {

task_thread* task = P99_NEW(task_thread);

*task = (task_thread) {

.n = n,

.iterations = iterations ,

.global_y = global_y ,

};

task_thread_operation(task , orwl_locids[i]);

}

return EXIT_SUCCESS;

}

Locations and tasks

The number of data locations and neighbouring tasks depends on the dimension
of the main data and whether it has corners. If the computation includes ele-
ments on corners, then the number of tasks is

∑n
k=1 2k ∗ Cn−kn . Otherwise, the

number of tasks is reduced to 2 ∗ n. Following the CompUp form, the number
of the auxiliary locations is twice the number of tasks, in addition to the main
location.

An ORWL program: a loop over locations

As an immediate result of the canonical form, the main function of an ORWL
program is nothing but a loop over all ORWL locations as shown in Listing 5.
For each location, an operation is automatically generated. That operation is
then instantiated at run time by a separate thread. The type and structure of
the operation, whether it is a global update, local update or compute, depends
on the identifier of the associated location as shown in Listing 6.

Operations

But, all operations have common features. As shown in Listing 7, each operation
consists of several steps:

• Lock objects and handles are initialized.

• Buffer sizes corresponding to locations are initialized.

• Initial requests to the specified locations are inserted for each handle.

• An introductory iteration, that distributes all control and data to the
appropriate operations is executed.

• The proper computations (or data copies) are run in an iteration loop.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 16

Listing 6 – Operation thread instantiation based on associated location ID.

DEFINE_THREAD(task_thread) {

s ize t myloc = orwl_myloc;

orwl_server *const srv = orwl_server_get ();

orwl_locations task1 = ORWL_LOCAL(myloc);

if (task1 == MAIN) {

compute_task(Arg , srv , myloc);

} else {

if (task1 <= LOCATION_x_n) {

update_local_task (Arg , srv , myloc , task1);

} else {

update_global_task (Arg , srv , myloc , task1);

}

}

}

Table 1 – Number of hand-written lines of code vs. number of generated lines
of code

metric Livermore Game of Life 3D Jacobi
hand-written lines 68 86 34

generated lines 711 988 942

These steps are synchronized by an ORWL barrier and a scheduling step. The
latter ensures that the initial FIFO positions of all handles of all operations are
inserted consistently at all locations. Thereafter, the execution order of tasks
based on their data dependencies is fixed globally, and the operations can run
concurrently without the need of a further global synchronization.

6 Programmer Productivity

The DSL was designed to improve the programmer productivity by sparing
them from writing the complex parts of ORWL parallel code. Given a stencil
specification that does not exceed a few lines of straightforward code, bare of
any details needed for parallelization, hundreds of lines of code are generated.
The generated code is guaranteed to be correct and error-free. Table 1 depicts
the number of hand-written lines compared to the number of generated code
lines for the considered benchmarks. The number of lines to be written by the
user, in the case of 3D Jacobi for example, is reduced by 96%. We estimate
this to be a considerable improvement in terms of programmer productivity.
This measurement of a gain in productivity uses a comparison to explicit hand
coding with ORWL. We think that the result would not be much different if
we would compare to coding with other paradigms for parallel computation, as
long as these involve explicit creation of buffer space, data communications or
access locks.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 17

Listing 7 – Structure of an ORWL Local Update operation

/* data size buffers */

/* Lock Initialization Step */

orwl_handle2 here = ORWL_HANDLE2_INITIALIZER;

orwl_handle2 there = ORWL_HANDLE2_INITIALIZER;

orwl_global_barrier_wait(myloc , 1, srv);

s ize t gid = ORWL_LOCATION(ORWL_TASK(myloc), MAIN);

orwl_write_insert (&here , myloc , 1, seed);

orwl_read_insert (&there , gid , 1, seed);

orwl_schedule(myloc , 1, srv);

/* Initialization iteration */

ORWL_SECTION (&here , 1, seed) {

orwl_truncate (&here , sizeof(fline));

ORWL_SECTION (&there , 1, seed) {

line *const *matrixP = orwl_read_map (&there);

fline *frontier = orwl_write_map (&here);

...

}

}

/* Computation iterations */

for (s ize t iter = 0 ; iter <iterations; iter ++){

ORWL_SECTION (&here , 1, seed){

ORWL_SECTION (&there , 1, seed){

line *const* matrixP = orwl_read_map (&there);

fline *frontier = orwl_write_map (&here);

...

}

}

}

orwl_disconnect (&there , 1, seed);

orwl_disconnect (&here , 1, seed);

Not only does the DSL reduces the number of hand-coded lines, but it also
avoids to manually write complex and error-prone parts such as the halo region
update operations. A lot of time and effort is saved by automatically generat-
ing the indexing expressions and communication statements. Table 2 list the
number of complex programming details such as communication statements and
indexing operations that are automatically generated by the DSL. For example,
if the user had to write the ORWL parallel code of a 3D Jacobi without the aid
of the DSL, they would have to handle 13 data locations. To do so, they would
have to initialize 11 handles and write 43 communication statements and 166
indexing operations.

Seeing all these properties, the total development time of a parallel stencil
computation within our framework can be just a few minutes. We estimate
the generated code to be clear and expressive. This is due, on one hand, to the
carefully chosen naming conventions for tasks and locations. On the other hand,
the overlapping data partitioning greatly simplifies the compute operation and
reduces the number of the complex indexing expressions relative to the halo
region updates. As a result, the generated code is comprehensive and could

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 18

Table 2 – Parallel programming details automatically generated and spared for
the user

metric Livermore Game of Life 3D Jacobi
neighbouring tasks 4 8 6

locations 9 17 13
handle initializations 9 13 11

communication statements 29 48 43
indexing expressions 124 167 166

easily be modified, if ever some adjustments or optimizations are needed. For all
those reasons, it seems clear that the DSL achieves a considerable improvement
in terms of programmer productivity.

7 Perfomance Evaluation

We have measured the efficiency of our approach experimentally. In order to
validate our modeling, we investigate the overhead, if any, that it might add to
the computation. The experiments have been conducted on the graphene cluster
of the Grid’5000 experimental testbed2. Each node is composed of 4 cores at
2.53 GHz, 16 GiB of memory, and a Gigabit Ethernet interconnection network.
All the following results are obtained after running 100 iterations of Livermore
Kernel 23. For greater accuracy, we take an average over several runs.

7.1 Average computation time per matrix element

The aim of this experiment is to study the variation of the average execution
time per data element depending on the blocks’ number and size. For the case
of Livermore Kernel 23, we consider problems of 4, 16, 36, 64 and 100 blocks,
where one compute node is reserved for each block. For each configuration, we
increase the global problem size, until we reach the maximum size per block
that fits into the RAM of the target machines. As shown in Figure 3, the
computation time per data element decreases when the problem size increases.
It tends to a lower limit. The times for different block partitions are almost
indistinguishable, especially for large block sizes. This proves that the overhead
for subdividing into more blocks is negligible.

7.2 Computation efficiency

The compute operation may spend some time waiting for frontier data. In
this experiment, we relate the time spent with computation to the time spent
with waiting for some frontier data. Otherwise, the setup is the same as in the
previous experiment. Figure 4 shows that for small problems, almost all the time

2https://www.grid5000.fr/

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 19

 0.1

 1

 10

 2000 4000 6000 8000 10000 12000

co
m

p
u
ta

ti
o
n
 t

im
e
 p

e
r

d
a
ta

 e
le

m
e
n
t

(µ
s)

block size

2*2 blocks
4*4 blocks
6*6 blocks
8*8 blocks

10*10 blocks

Figure 3 – Average computation time for a data element

is spent waiting. However, for larger problems, the time spent on computation
increases and finally reaches about 99% of the total execution time.

7.3 Comparison with handcrafted code

In [13], an implementation of the Livermore Kernel 23, following the modeling
presented in Subsection 3.1, was used in order to evaluate the performance of
the model. The results have shown that the time spent on computation reaches
only 55% of the total execution time. This is because, with that modeling, the
computation on one block excludes computation on all of its neighbors. As a
consequence, the computation converges to a steady state where it alternates
between odd and even numbered anti-diagonals of the block-matrix. Therefore,
overcomittment by several tasks per core was used in order to engage all cores
in the computation and to improve execution times. In our modeling, there is
no specific need for overcommitment, since the computation time now reaches
99% of the total execution time. This is due to the pattern, we have defined
in Section 4. It ensures for tasks a certain independence from their neighbours.
In fact, as soon as the shadow regions are updated in the main data location,
the buffers are released and ready to receive next data updates from neighbours
without interfering with the computation. As soon as the compute operation
needs updated values, those are already available and ready to be read. As a re-
sult, compute operations of neighboring tasks can be executed simultaneously,
which considerabely improves the execution times. The generated version of
Livermore Kernel 23 outperfoms the handcoded code used in [13] with an aver-
age speedup of 11%.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000

p
e
rc

e
n
ta

g
e
 o

f
co

m
p

u
ta

ti
o
n
 t

im
e

block size

2*2 blocks
4*4 blocks
6*6 blocks
8*8 blocks

10*10 blocks

Figure 4 – Percentage of computation time

7.4 Size up

In the following experiments, we study the scalability of the generated code,
by increasing the global problem size, for different stencil structures and neigh-
bourhood dependencies,

7.4.1 2D Jacobi and Game of life

We conducted the same experiment for both 2D Jacobi and Game of life bench-
marks. We place 2 tasks per node on 8, 16, 32, 48 and 64 quad-core nodes. Each
task computes a 10000x10000 element block. Results are shown in Figure 5.

7.4.2 3D Jacobi

This last experiment has been conducted on the grisou cluster of the Grid’5000
experimental testbed. Each node is composed of two CPUs, each having 8
cores at 2.4 GHz, 126 GiB of memory and a Gigabit Ethernet interconnection
network. We place 2 tasks per node on 8, 16, 24, 32, 40 and 48 nodes. Each
task computes a 10003 block. Results are shown in Figure 6.

We can notice from previous experiments that increasing the over-all problem
size does not increase the average computation time per iteration, if we provide
a proportional amount of compute nodes. Thus, the ORWL stencil modeling
we have presented in Section 4 allows us to construct sizable applications. The
DSL does not have any negative impact on the sizability of the generated ORWL
stencil code.

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 21

 0

 20

 40

 60

 80

 100

 120

 140

8 16 32 48 64

G
S

te
n
ci

ls
/s

number of nodes

2D Game of life
2D Jacobi

Figure 5 – Overcommitment and problem size up

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

8 16 24 32 40 48

G
S

te
n
ci

ls
/s

number of nodes

3D Jacobi

Figure 6 – Problem size up: 3D Jacobi

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 22

8 Conclusion & Future Work

We have presented Dido, an implicitly parallel DSL for ORWL stencil code
generation that achieves both productivity and performance benefits. It allows
a large programmer community to implement parallel multidimensional stencil
computations and take advantage, at a low cost, of properties of the ORWL
paradigm. It meets the needs of real applications by suppporting multiple data
types and boundary conditions. The DSL captures high-level stencil abstrac-
tions written by the user in a simple syntax and generates all the complex parts
such as the shadow region updates and the lock handle positions in the FIFOs.
This presents a considerable improvement in terms of programmer productivity.
Additionally, experiments have shown that productivity and performance, often
considered as antagonistic, can be reconciled when using Dido. The generated
code achieves competitive performance that is comparable with hand-crafted
code. This is due to the domain-specific knowledge about ORWL that went
into the defined patterns. It has to be noted that the CompUp form that
we have presented can be used for different ORWL applications not only for
stencil computations. It ensures expressiveness, deadlock-freeness and better
performance of ORWL programs. In the future, we plan to take the execu-
tion architecture into consideration such that architecture-adapted code can be
generated. ORWL runtime can then ensure a better placement of the tasks,
close to the resources. Later, we aim to enhance our first-cut design in order to
cover a wider range of applications. One promising direction are sparse matri-
ces and applications. This type of algorithms is in widespread use by scientific
communities and lacks user-friendly specific tools.

References

[1] A. Taflove and K. R. Umashankar, “The finite-difference time-domain
method for numerical modeling of electromagnetic wave interactions,” Elec-
tromagnetics, vol. 10, no. 1-2, pp. 105–126, 1990.

[2] R. Bleck, C. Rooth, D. Hu, and L. T. Smith, “Salinity-driven thermocline
transients in a wind-and thermohaline-forced isopycnic coordinate model
of the north atlantic,” Journal of Physical Oceanography, vol. 22, no. 12,
pp. 1486–1505, 1992.

[3] A. Nakano, R. K. Kalia, and P. Vashishta, “Multiresolution molecular dy-
namics algorithm for realistic materials modeling on parallel computers,”
Computer Physics Communications, vol. 83, no. 2-3, pp. 197–214, 1994.

[4] J. Cong, M. Huang, and Y. Zou, “Accelerating fluid registration algorithm
on multi-FPGA platforms,” in Field Programmable Logic and Applications
(FPL), 2011 International Conference on. IEEE, 2011, pp. 50–57.

[5] J. Cong and Y. Zou, “Lithographic aerial image simulation with FPGA-
based hardware acceleration,” in Proceedings of the 16th international

RR n° 8928

Automatic Code Generation for Iterative Stencil Computations 23

ACM/SIGDA symposium on Field programmable gate arrays. ACM, 2008,
pp. 67–76.

[6] P.-N. Clauss and J. Gustedt, “Iterative computations with ordered
read-write locks,” Journal of Parallel and Distributed Computing, vol. 70,
no. 5, pp. 496–504, 2010. [Online]. Available: http://hal.inria.fr/inria-
00330024/en

[7] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao, “Manticore: A
heterogeneous parallel language,” in Proceedings of the 2007 workshop on
Declarative aspects of multicore programming. ACM, 2007, pp. 37–44.

[8] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 2008,
p. 4.

[9] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3d stencil
codes on gpu clusters,” in Proceedings of the Tenth International Sympo-
sium on Code Generation and Optimization. ACM, 2012, pp. 155–164.

[10] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance code
generation for stencil computations on gpu architectures,” in Proceedings of
the 26th ACM international conference on Supercomputing. ACM, 2012,
pp. 311–320.

[11] T. Henretty, J. Holewinski, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ra-
manujam, A. Rountev, and P. Sadayappan, “A domain-specific language
and compiler for stencil computations on short-vector simd and gpu archi-
tectures.”

[12] Y. Tang, R. Chowdhury, C.-K. Luk, and C. E. Leiserson, “Coding stencil
computations using the pochoir stencil-specification language,” in Poster
session presented at the 3rd USENIX Workshop on Hot Topics in Paral-
lelism, 2011.

[13] J. Gustedt and E. Jeanvoine, “Relaxed synchronization with ordered read-
write locks,” in Euro-Par 2011: Parallel Processing Workshops, ser. LNCS,
M. Alexander et al., Eds., vol. 7155. Bordeaux, France: Springer, Aug.
2011, pp. 387–397. [Online]. Available: https://hal.inria.fr/hal-00639289

[14] P.-N. Clauss and J. Gustedt, “Experimenting iterative computations with
ordered read-write locks,” in 18th Euromicro International Conference
on Parallel, Distributed and network-based Processing, M. Danelutto,
T. Gross, and J. Bourgeois, Eds. Pisa, Italy: IEEE, 2010, pp. 155–162.
[Online]. Available: http://hal.inria.fr/inria-00436417/en

RR n° 8928

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

