
HAL Id: hal-01332318
https://hal.archives-ouvertes.fr/hal-01332318

Submitted on 25 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Flexible adaptation loop for component-based soa
applications

Cristian Ruz, Françoise Baude, Bastien Sauvan

To cite this version:
Cristian Ruz, Françoise Baude, Bastien Sauvan. Flexible adaptation loop for component-based soa
applications. Seven International Conference on Autonomic and Autonomous Systems, IARIA, May
2011, Venice, Italy. �hal-01332318�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49364874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01332318
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Flexible Adaptation Loop for Component-based SOA Applications

Cristian Ruz, Françoise Baude, Bastien Sauvan
INRIA Sophia Antipolis Méditerranée

CNRS, I3S, Université de Nice Sophia Antipolis
France

{cruz,fbaude,bsauvan}@inria.fr

Abstract—The Service Oriented Architecture (SOA) model
fosters dynamic interactions of heteregeneous and loosely-
coupled service providers and consumers. Specifications like
the Service Component Architecture (SCA) have been used to
tackle the complexity of developing such dynamic applications;
however, concerns like runtime management and adaptation
are often left as platform specific matters. At the same time,
runtime QoS requirements stated in Service Level Agreements
(SLA) may also evolve at runtime, and not only the appli-
cation needs to adapt to them, but also the monitoring and
management tasks. This work presents a component based
framework that provides flexible monitoring and management
tasks and allows to introduce adaptivity to component-based
SOA applications. The framework implements each phase of
the autonomic control loop as a separate component, and allows
multiple implementations on each phase, giving enough run-
time flexibility to support evolving non functional requirements
on the application. We present an illustrative scenario that
is dynamically augmented with components to tackle non-
functional concerns and support adaptation as it is needed.
We use an SCA compliant platform that allows distribution
and architectural reconfiguration of components.

Keywords-Monitoring; Management; SLA Monitoring; Recon-
figuration; Component-based Software Engineering.

I. INTRODUCTION

According to the principles of Service Oriented Archi-
tecture (SOA), applications built using this model com-
prise loosely-coupled services that may come from different
heterogeneous providers. At the same time, a provided
service may be composed of, and consume other services,
in a situation where service providers are also consumers.
Moreover, SOA principles like abstraction, loosely coupling
and reusability foster dynamicity, and applications should be
able to dynamically replace a service in a composition, or
adapt the composition to meet certain imposed requirements.

Requirements over service based applications usually in-
clude metrics about Quality of Service (QoS) like avail-
ability, latency, response time, price, energy consumption,
and others, and are expressed as Service Level Objectives
(SLO) terms in a contract between the service consumer
and the provider, called Service Level Agreement (SLA).
However, SLAs are also subject to evolution due to different
providers, environmental changes, failures, unavailabilities,
or other situations that cannot be foreseen at design time.
The complexity of managing changes under such dynamic

requirements is a major task that pushes the need for flexible
and self-adaptable approaches for service composition. Self-
adaptability requires monitoring and management features
that are transversal to most (all) of the involved heteroge-
neous services, and may need to be implemented in different
ways for each one.

Several approaches have been proposed for tackling the
complexity, dynamicity, heterogeneity and loosely-coupling
of SOA-based compositions. Notably, the Service Compo-
nent Architecture (SCA) is a technologically agnostic spec-
ification that brings features from Component-Based Soft-
ware Engineering (CBSE) like abstraction and composability
to ease the construction of complex SOA applications. Non-
functional concerns can be attached using the SCA Policy
Framework. However, concrete monitoring and management
tasks are usually left out of the specifications and must be
handled by SCA platform implementations, mainly because
SCA is design-time and not runtime focused.

Our thesis is that a component-based approach can ease
the implementation of flexible adaptations in component-
based service-oriented applications. Our proposed solution
implements the different phases of the widely used MAPE
(Monitor, Analyze, Plan, and Execute) autonomic control
loop as separate components that can interact and support
multiple sets of monitoring sources, conditions, strategies
and distributed actions.

The rest of the paper is organized as follows. Section II
presents an example situation that motivates our work and
provides a general overview of our contribution. Section
III describes the design of our framework from a techno-
logically independent point of view. Section IV presents
our implementation over a concrete middleware. Section V
describes related work and differentiations with our solution.
Finally, Section VI concludes the paper.

II. MOTIVATING EXAMPLE AND OVERVIEW OF OUR
CONTRIBUTION

Consider a tourism office who has composed a smart
service to assist visitors who request information from the
city and provides suggestions of activities and touristic
planning. The application uses a local database of touristic
events and a set of attraction providers who sell tickets to
parks, tours, etc. A weather service guides the proposition

of activities, and a mapping service creates a map with
directions. A payment service may be needed in some cases.
Once all information is gathered, a local engine composes
a PDF document and optionally prints it. The composed
design of the application is show in Figure 1.

Customer

Events
DB

SLA C

attractions

Weather
Service

Bank
Service

Attraction 1

Attraction 2

Attraction 3
Manager

Composer Map
Service

Printer

SLA 1

SLA 2

SLA 3

SLA W

reqs.

Tourism Service

payment

weather

mapping

composition

local

Figure 1. Scenario. SCA description of the application for tourism
planning.

Such a composition involves some contracts for service
provisioning established in SLAs. For example, the Tourism
Service should propose a plan within 30 sec.; the Weather
Service charges a fee for each forecast; the Mapping Service
is free but has no guarantees on response time or availability;
the Banking Service ensures 99% of availability.

The runtime compliance to the SLAs may determine later
decisions of the service. For instance, some of the Attraction
Services may take too much time to deliver an answer, or
the Mapping Service may not be available or have a poor
performance at some moment. Situations like those may
require that a runtime decision be taken to avoid violating
the SLA with the customer. For instance, taking actions like
the removal or replacement of a slow provider; or changing
some parameter on the composer to ignore the map while
composing the document. To be able to make such kind
of decisions, a precise and efficient runtime monitoring and
SLA compliance system is required.

The monitoring requirements may be different for each
service; for example, in the case of the printer it is important
to measure the amount of paper or ink; in the case of
the composer it is important to know the time it takes
to create a document; some of the external services may
provide their own monitoring metrics and, as they are not
locally hosted and only accesible through a predefined API,
it may not be possible to add specific monitoring on their
side. This situation imposes a requirement for supporting
heterogeneous services and adaptable monitoring

As there are several external providers involved, the
conditions expected from each one of them may change,
and so the monitoring requirements over them. The Weather
Service may decide to modify their charging plans; or some
attractions may offer temporary promotions, which may
influence the strategy to select them.

The composition of the application may also change.

The composer service may decide to provide an alternative
bluetooth service to transmit the composed document to a
smartphone, less costly than the printer service. In that case,
a new component must be added to the composition, and the
monitoring and management infrastructure must be changed
accordingly.

A. Concerns

As it can be seen from the example, concerns about SLA
and QoS can be manifold. A monitoring system may be
interested in indicators like performance, energy consump-
tion, price, robustness, security, availability, etc., and the
set of required values may be different for each monitored
service. Plus, not only the values of these indicators change
at runtime, but also the set of required indicators, as the
monitoring requirements can also evolve. Moreover, due to
the heterogeneous nature of the providers, some of the ser-
vices may require specific protocols to retrieve monitoring
values or to perform modifications on them.

In general, the evolution of the SLA and the required
indicators can not be foreseen at design time, and it is not
feasible to prepare a system where all possible monitorable
conditions are ready to be monitored. Instead, it is desirable
to have a flexible system where only the required set of
monitoring metrics are inserted and the required conditions
checked, but as the application evolves, new metrics and
SLA conditions may be added and others removed minimiz-
ing the intrusion of the monitoring system in the application.

B. Contribution

We argue that a component-based approach can tackle
the dynamic monitoring and management requirements of
a composed service application while also providing self-
adaptivity. We propose a component-based framework to add
flexible monitoring and management concerns to a running
component-based application.

In this proposition we separate the concerns involved in
a classical autonomic control loop (MAPE) and implement
those concerns as separate components. These component
are attached to each managed service, in order to provide
a custom and composable monitoring and management
framework. The framework allows to build distributed mon-
itoring and management architectures that are associated
to the actual functional components in an integrated way.
Our framework leverages the monitoring and management
features of each service to provide a common ground in
which monitoring, SLA checking/analysis, decisions, and
actions can be carried on by different components, and they
can be added or replaced separately.

We believe that the dynamic inclusion and removal of
monitoring and management concerns allows (1) to add only
the needed monitoring operations, minimizing the overhead,
and (2) to better adapt to evolving monitoring needs, without

enforcing a redeployment and redesign of the application,
and increasing separation of concerns.

III. DESIGN OF THE COMPONENT-BASED SOLUTION

Our solution relies on the separation of the phases of the
classical MAPE autonomic control loop. Namely, we envi-
sion separate components for monitoring, analysis, planning,
and execution of actions. These components are attached to
each managed service.

The general structure of our design is shown for an
individual service C in Figure 2. Service C is extended
with one component for each phase of the MAPE loop and
converted into a Managed Service C (dashed lines). The
small interfaces are aggregated by our framework to allow
interaction with other managed components.

C

MonitoringAnalysis

Planning Execution

 metric
requests

execution
actions

monitored data

Managed C

 alarm
 SLOs

 metric requests

 SLOs

 metric
requests

actions

actions

Figure 2. SCA component C with all its attached monitoring and
management components

The Monitoring component collects monitoring data from
service C using the specific means that C may provide. From
the collected monitoring data, the Monitoring component
provides a set of metrics through an interface. The Analysis
component provides an interface for receiving and storing
SLOs and checks them at runtime using the metrics obtained
from the Monitoring component. Whenever an SLO is not
fulfilled, the Analysis component sends an alarm to the
Planning component, which uses a strategy to create an
adaptation plan, as a sequence of actions. The actions are
executed by the Execution component, which includes the
specific means to make them effective over service C,
completing the loop.

Although simple, this component view of the autonomic
control loop has several advantages. First, by separating the
control loop from the component implementation, we obtain
a clear separation of concerns between functional content
and non-functional activities. Second, the component-based
approach allows to have separate implementations for each
phase of the loop; as each phase may require complex
tasks, we abstract from their implementation, that may be
specific for each service, and allow them to interact only
through predefined interfaces, so that each phase may be
implemented by different experts. Third, as each phase can
be implemented independently, we allow to compose each
phase to have possibly multiple components, for example,

multiple sensors, condition evaluators, planning strategies,
and connections to concrete effectors as required, so that the
implementation of each phase can be adapted at runtime.

The framework allows to add and remove at runtime
different components of the loop, which means that, for ex-
ample, a service that does not need monitoring information
extracted, does not need to have a Monitoring component
and may only have an Execution component to modify some
parameter of the service. Later, if needed, it is possible to
add other components of the framework to this service.

In the following, we describe the components considered
in the monitoring and management framework, their function
and some design decisions that have been taken into account.

A. Monitoring
The Monitoring task consists in collecting information

from a service, and computing a set of indicators or metrics
from it. The Monitoring component includes sensors specific
for a service or, alternatively, supports the communication
with sensors provided by the target service according to a
particular protocol. This way, the Monitoring component
is effectively attached to the service, which becomes a
“monitored service”.

In the presence of a high number of services, the comput-
ing and storage of metrics can be a high-demanding task,
specially if it is done in a centralized manner. Consequently,
the monitoring task must be as decentralized and low-
intrusive as possible. Our design considers one Monitoring
component attached to each monitored service, that collects
information from it, and exposes an interface to obtain the
computed metrics. This approach is decentralized and spe-
cialized with respect to the monitored service. On the other
side, some metrics may require additional information from
other services: for example, to compute the cost of running
a composition, the Monitoring component would require to
know the cost of all the services used while serving some
request. To address this situation, the Monitoring component
is capable of connecting to the Monitoring components of
other services. This way, the set of Monitoring components
are inter-connected forming an architecture that reflects
the composition of the monitored services and forming a
“monitoring backbone” as shown in Figure 3. The metrics
computed at each service can flow and can be used by
another component.

B. SLA Analysis
The Analyzer component checks the compliance to a

previously defined SLA. An SLA is defined as a set
of simpler terms called Service Level Objectives (SLOs),
which are represented by conditions that must be veri-
fied at runtime. The conditions may be very simple ones,
f.e., triples 〈metric, comparator , value〉 expressing, for in-
stance, “respTime ≤ 30sec”; or more complex expres-
sions involving other metrics or operations on them like

A

M

DC

M

MMca d

B

b

Component based application

Monitoring components

monitored by

Figure 3. Monitoring layer for an SCA application

“cost(weatherService) < 2 × cost(mappingService)”,
where the metrics used by different services are required.
The Analyzer obtains the values of the metrics it needs from
the Monitoring component, as exemplified in Figure 4, and
thanks to the interconnected Monitoring components, it can
obtain metrics from other services as well.

Weather

MA

Tourism
Service

MA

Attraction1

M

SLO:
cost(TS) < 30

Metric:
cost(TS)=cost(W)+cost(A1)

cost=?

cost(C)=10

cost(B)=18

cost(A1)=28

SLO:
respTime < 2s.

Metrics:
cost(W)=...

respTime(W)=...

Figure 4. SCA Components with Analysis (A) and Monitor (M) com-
ponents. Tourism Service and Weather have different SLAs. Metric cost
is computed in Tourism Service by calling the monitors of Weather and
Attraction1.

As input, the Analyzer receives a set of conditions (SLOs)
to monitor, expressed in a predefined language. The Analyzer
checks the compliance of all the stored SLOs according to
the metrics obtained from the Monitoring component. The
Analyzer checks if the SLA is being fulfilled, and if not,
it sends an alarm notification through a client interface.
The consequences of this alarm are out of the scope of
the Analyzer. The Analyzer may also be configured in a
proactive way to detect not only SLA violations, but also
foreseeable SLA violations, which may be more useful in
some contexts, as it can allow to take preventive actions [1].

By having the SLA Analyzer attached to each service, the
conditions can be checked closely to the monitored service
and benefit of the hierarchical composition. This way, the
services do not need to take care of SLAs in which they are
not involved.

C. Planning

The Planning component contains the strategy defined for
reacting to an alarm notified by the Analyzer component.
The implemented logic can be a very simple strategy like

changing the parameter of a service, or replacing one service
for another service selected from a list; or a more complex
strategy that requires collecting metrics of other components
in order to select a subset of services that maximizes an
objective function.

As input, this component receives a notification from the
Analyzer component indicating that some condition is not
(or may not be) fulfilled. The Planning component executes
an strategy and generates a sequence of actions that aim to
take the application to an objective state. If required, it can
use the Monitoring Component to request certain metrics.
The generated actions, once again, can take a very simple
form (a shellscript) or a more complex one, as a sequence
of actions described in a domain-specific language that can
be interpreted and executed by a set of actuators.

This encapsulation allows the framework to replace at
runtime the strategy to reach the objective, for example from
a cost-optimizing planner to an energy-efficiency planner, or
well taking no action at all.

D. Execution

The Execution component carries on the decided modifi-
cations to the service, or to a set of services, as indicated
by the Planning component.

The execution requires an integrated means to access the
managed service in order to execute the actions upon it. In
a similar way to the Monitoring component, the Execution
component must implement any specific protocol required
by the managed service in order to be able to trigger
adaptations on it.

The set of actions demanded may involve not only the
managed service, but also different service(s). For this
reason, the Execution component is also able to commu-
nicate with the Execution components attached to some
other components and send actions to them as part of the
main reconfiguration action. The set of connected Execution
components forms an “execution backbone” that propagates
the actions from the component where the actions have been
generated to each of the specific components where some
part of the actions must take place, possibly hierarchically
down to their respective inner components. This approach
allows to decentralize the execution of the actions.

One of the challenges in the execution phase is to ensure
that the reconfiguration or adaptations actions will not make
the application enter in an unsafe state. This problem is left
to the execution implementation.

Figure 5 shows a sample situation in which the Analyzer
component of the Tourism Service component finds out that
the cost of the compostion if exceeding a desired threshold.
The Analyzer notifies the Planning component, which ex-
ecutes an strategy oriented to replace the component with
the higher cost by a cheaper one. The Planning component
uses its Monitoring component to get the cost metric of

several components, and decides to replace the component
Attraction1 by the (functionally equivalent) Attraction2. The
action is carried on by the Execution component.

Weather

M

Tourism
Service

MA

Attraction1

M

Alarm:
cost(TS) > 30

Action:
replace(A1,A2)

P

Strategy:
getMetric(cost,W)=?
getMetric(cost,A1)=?
getMetric(cost,A2)=?

output: replace(A1,A2);

E

cost(W)=5
cost(A1)=40
cost(A2)=20

Attraction2

M

Figure 5. SCA Components Tourism Service reacts to an SLA violation
by replacing the component that features the highest cost.

IV. IMPLEMENTATION

This section describes our prototype implementation over
the GCM model. We describe the pieces of the framework
that we have implemented and exemplify how they can
be used to provide self-adaptability in the context of the
scenario described in Section II.

A. Background: SCA compliant GCM/ProActive

The ProActive Grid Middleware [2] is a Java middle-
ware, which aims to achieve seamless programming for
concurrent, parallel and distributed computing, by offering
an uniform active object programming model, where these
objects are remotely accessible via asynchronous method
invocations with futures. Active Objects are instrumented
with MBeans, which provide notifications about events at the
implementation level, like the reception of a request, and the
start and end of a service. The notification of such events to
interested third parties is provided by an asynchronous and
grid enabled JMX connector.

The Grid Component Model (GCM) [3] is a component
model for applications to be run on computing grids, that
extends the Fractal component model [4]. Fractal defines a
component model where components can be hierarchically
organized, reconfigured, and controlled offering functional
server interfaces and requiring client interfaces (as shown
in Figure 6). GCM extends that model providing to the
components the possibility to be remotely located, dis-
tributed, parallel, and deployed in a grid environment, and
adding collective communications (multicast and gathercast
interfaces). In GCM it is possible to have a componentized
membrane [5] that allows the existence of non-functional
(NF) components, also called component controllers that
take care of non-functional concerns. NF components can
be accessed through NF server interfaces, and components
can make requests to NF services using NF client interfaces
(shown respectively on top and bottom of C in Figure 6).

C

MonitoringSLA
Monitor

Monitoring
Service

SLA
Config.Actions

Executor

MonitoringActions

Planning

alarm

Functional
Component

NF
Component

Membrane

Functional
Server
Interface

Functional
Client

Interface

Figure 6. Framework implementation weaved to a primitive GCM
component C

The use of NF components instead of simple object
controllers as in Julia, the Fractal reference implementation,
allows to have a more flexible control of NF concerns
and to develop more complex implementations, as the NF
components can be bound to other NF components within
a regular component application. In this sense, this paper
complements some previous ones about the componentized
membrane [3], [5], [6], particularly addressing the concerns
of self-adaptability in service-oriented contexts.

GCM/ProActive is the reference implementation of GCM,
within the ProActive middleware, where components are
implemented by Active Objects, which can be used to
implement new services, or wrap existent legacy applications
like C/Fortran MPI code, or a BPEL code.

The GCM/ProActive platform provides asynchronous
communications with futures between bound components
through GCM bindings. GCM bindings are used to provide
asynchronous communication between GCM components,
and can also be used to connect to other technologies
and communications protocols, like Web Services, by im-
plementing the compliance to these protocols via specific
controllers in the membrane. These controllers have been
used to allow GCM to act as an SCA compliant platform, in
a similar way as achieved by the SCA FraSCAti [7] platform,
which however bases upon non distributed components
(Fractal/Julia) in contrary to GCM ones.

B. Framework Implementation

The framework is implemented in the GCM/ProActive
middleware as a set of NF components that can be added or
removed at runtime to the membrane of any GCM compo-
nent, which becomes a managed service of the application.
The ability to reconfigure the composition of the membrane
at runtime is provided by the middleware [5].

We have designed a set of predefined components that
implement each one of the elements we have described in
Section III. This is just one of possible implementations, and
particularly this has been designed to provide self-adaptable
capabilities to the composition.

The general implementation view for a single GCM
component is shown in Figure 6 (using the GCM graphical
notation [3]), and resembles the design presented in Figure 2.
The framework is weaved in the primitive GCM component
C by inserting NF components in its membrane. Monitoring
and management features are exposed through the NF server
interfaces “Monitoring Service”, “SLA Config” and “Ac-
tions” (top of Figure 6). NF components can communicate
with the NF components of other GCM components through
the NF client interfaces “Monitoring” and “Actions” (bottom
of Figure 6). The sequence diagram of the self-adaptability
loop is shown in Figure 7.

Metric Monitor Analyzer Planner Executor

update()
update()

check()

execute()

alarm()

Monitor
(external)

getMetric()

computePlan()

Figure 7. Sequence diagram for the autonomic control loop

C. Monitoring
We have designed a set of probes, f.e. for CPU load and

memory use, and incorporated them along with the events
produced by the GCM/ProActive platform [8]. Over them,
we provide a Monitoring component, shown on Figure 8,
which includes (1) an Event Listener that receives events
from a GCM component and provides a common ground to
access them; (2) a Record Store to store records of monitored
data that can be used for later analysis; (3) a Metric Store that
stores objects that we call Metrics, which actually compute
the desired metrics using the records stored, or the events
caught; and (4) a Monitor Manager, which provides the
interface to access the stored metrics, and add/remove them
to/from the Metrics Store.

The Monitor Manager receives a Metric as a Java object
with a compute method, and inserts it in the Metric Store.
The Metric Store provides to the Metrics the connection to
the sources that they may need; namely, the Record Store to
get already sensed information, the Event Listener to receive
sensed information directly, or the Monitoring component of
other external components, allowing access to the distributed
set of monitors (i.e., to the monitoring backbone). For
example, a simple respTime metric to compute the response
time of requests, requires subscription to the Event Listener
for events related to the start and finish times of the service
of a request.

As a more complex example, the Tourism Service needs
to know the decomposition of the time spent while serving a
specific request r0. For this, a metric called requestPath for a
given request r0 can ask the requestPath to the Monitoring
components of all the services involved while serving r0,
which can repeat the process themselves; when no more calls
are found, the composed path is returned with the value of
the respTime metric for each one of the services involved in
the path. Once the information is gathered in the Monitoring
component of the Tourism Service, the complete path is built
and it is possible to identify the time spent in each service.

Monitor
Manager

Record
Store

Event
Listener

Metrics
Storemonitoring-

service
external-
monitors

GCM Events

SLA
Manager

SLO
StoreSLA-

config

monitoring-
service

alarm

SLA Monitor

 Monitoring

Figure 8. Internal Composition of the Monitoring component (right) and
the SLA Monitor component (left)

D. SLA Monitor

The SLA Monitor is implemented as a component that
queries the Monitoring component. The SLA Monitor con-
sists in (1) an SLA Manager, which exposes an interface that
allows to add/remove SLOs expressed in a specific format,
checks the fulfillment of the SLOs, and sends a notification
when some of them are not fulfilled; and (2) an SLO Store,
which maintains the list of SLOs. The composition is shown
in the left side of Figure 8.

In this implementation, an SLO is described as a triple
〈metricN , comparator , value〉, where metricN is the name
of a metric. The SLA Monitor subscribes to the metricN
from the Monitoring component to get the updated values
and check the compliance of the SLO.

For example, the Tourism Service service includes the
SLO: “All requests must be served in less than 30 secs”,
described as 〈respTime, <, 30 〉. The SLA Manager receives
this description and sends a request to the Monitoring
component for subscription to the respTime metric. The
condition is then stored in the SLO Store. Each time an
update on the metric is received, the SLA Manager checks all
the SLOs associated to that metric. In case one of them is not
fulfilled, a notification is sent, through the alarm interface
including the description of the faulting SLO.

E. Planning

The Planning component, shown on the left side of
Figure 9, includes a Strategy Manager that receives an alarm
message and, depending on the content of the alarm, it
triggers one of several bound Planner components. Each one
of the Planner components implements the logic required
to make a decision to restore the state of the application

to comply with a failed SLO. Each Planner component can
access the Monitoring components to retrieve any additional
information they may need about the composition; the output
is expressed as a list of actions in a predefined language.

Strategy
manager

planner1
alarm

. . .

monitoring-
service

actions

planner2

plannerN

 Planning

Reconf.
Engine

external
actions

 Execution

actions Reconf.
Manager

Figure 9. Internal Composition of the Planning and the Execution
components

In our implementation we profit of selective 1-to-N com-
munications provided by GCM to decide which Planner
component to trigger. For example, if the SLO violated is
related to response time, we may trigger a performance-
oriented recomposition; or if a given cost has been surpassed,
we may trigger a cost-saving algorithm. The decision of
what strategy to use is taken in the Strategy Manager
component. However, the possibility of having multiple
strategies might be a source for conflicting decisions; while
we do not provide a method to solve these kind of conflicts,
we assume that the conflict resolution behaviour, if required,
is provided by the Strategy Manager.

We have implemented a simple planning strategy that,
given a particular request, asks to compute the requestPath
for that request, then finds the component most likely res-
ponsible for having broken the SLO, and then creates a plan
that, when executed, will replace that component for another
component from a set of possible candidates. Applied to
the Tourism Service, suppose a request has violated the
SLO 〈respTime, <, 30 〉. The Strategy Manager activates
the Planner component that obtains the requestPath for that
request along with the corresponding response time, selects
the component that has taken the highest time, then obtains a
set of possible replacements for that component and obtains
for each of them the avgRespTime metric. The output is a
plan expressed in a predefined language that aims to replace
the slowest component by the chosen one.

Clearly this strategy does not intend to be general, and
does not guarantee an optimal response in several cases.
Even, in some situations, it may fail to find a replacement
and in that case the output is an empty set of actions.
However, this example describes a planning strategy that can
be added to implement an adaptation for self-optimizing and
that uses monitoring information to create a list of actions.

F. Execution

The Execution component, shown on the right side of
Figure 9, includes a Reconfiguration Engine. This engine
uses a domain specific language called PAGCMScript, an
extension of the FScript [9] language (designed for Fractal
components), which supports GCM specific features like

distributed location, collective communications, and remote
instantiation of components.

The Execution component receives actions from the Plan-
ning component. As many strategies may express actions
using different formats, a component called Reconfiguration
Manager may need to apply a transformation to express the
actions in an appropriate language for the Reconfiguration
Engine. The Reconfiguration Manager may also discriminate
between actions that can be executed by the local compo-
nent, or those that must be delegated to external Execution
components.

In the example, once the “Attraction2” provider has been
selected, it can be unbound from the “Tourism Service”
using a PAGCMScript command like the following, whose
effect can be seen in Figure 5:
unbind($tourism/interface::"attraction2")

G. Generalization

As GCM is an SCA compliant platform, the GCM-based
framework, as shown in Figure 6 can be described in SCA
terms providing a view that can be realized for any SCA
runtime platform like that in Figure 2. The deployment of
the framework may be done by injecting the required SCA
description in the SCA ADL file. However, in order to allow
this modification to occur at runtime, we have provided a
console application that can use the standard non-functional
API of GCM components to insert or remove at runtime the
required components of the framework.

The console, while not being itself a part of the frame-
work, shows that an external application can be built and
connected to the NF interfaces of the running application
and handle at runtime the composition and any subsequent
reconfiguration, if needed, of the monitoring and manage-
ment framework itself.

V. RELATED WORK

Several works exist regarding monitoring and manage-
ment of service-oriented applications. Most of them tackle
separately monitoring infrastructures [10], SLA monitoring
and analysis [11], SLA fulfillment [1], and planning strate-
gies for adaptation [12], [13], [14]. A few others, like us,
propose a complete framework. The work [15] is similar to
ours in that they propose a generic context-aware framework
that separates the steps of the MAPE control loop to provide
self-adaptation; their work allows the implementation of
self-adaptive strategies, though not much is mentioned about
runtime reconfigurability, or the possibility to have multiple
strategies. Also, we do not necessarily consider that all
services require the same level of autonomicity.

CEYLON [16] is a service-oriented framework for in-
tegrating autonomic strategies available as services and use
them to build complex autonomic applications. They provide
the managers that allow to integrate and adapt the com-
position of the autonomic strategies according to evolving

conditions. In CEYLON, autonomicity is a main functional
objective in the development of the application, while in our
case, we aim to provide autonomic QoS-related capabilities
to already existing service based applications. Also, we take
benefit of the business-level components intrinsec distribu-
tion and hierarchy to split the implementation of monitoring
and management requirements across different levels, thus
enforcing scalability.

VI. CONCLUSIONS AND PERSPECTIVES

We have presented a generic component-based frame-
work for supporting monitoring and management tasks of
component-based SOA applications. The component based
approach allows a clear separation of concerns between
the functional content and the management tasks. We have
implemented a prototype that provides a self-adaptation loop
for component-based services, thanks to the composition
of appropriate monitoring, SLA management, planning and
reconfiguration components. This prototype has been devel-
oped in the context of an SCA compliant platform that in-
cludes dynamic reconfiguration and distribution capabilities.

This approach provides a high degree of flexibility as
the skeleton we have provided for the autonomic con-
trol loop can be personnalized to e.g., support different
planning strategies, and leverage heterogeneous monitoring
sources to provide the input data that these strategies may
need (for example, performance, price, energy consumption,
availability). Early evaluation shows a small overhead no
bigger than 4% in the execution of basic reconfiguration
operations (namely, insertion of a new SLO and metrics,
communication between functional and non-functional com-
ponents, and runtime architectural rebindings), with respect
to the performance before attaching the components of the
framework. We expect to provide a set of benchmarks to
clearly establish this overhead. The hierarchical approach
is expected to provide high scalability, though a bigger
experimentation set is still required.

REFERENCES

[1] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dust-
dar, and F. Leymann, “Runtime prediction of service level
agreement violations for composite services,” in Proceedings
of the 2009 international conference on Service-oriented
computing, ser. ICSOC/ServiceWave’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 176–186.

[2] “ProActive Parallel Suite,” accessed on 24-Mar-2011.
[Online]. Available: http://proactive.inria.fr/

[3] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov,
L. Henrio, and C. Pérez, “GCM: a grid extension to Fractal
for autonomous distributed components,” Annals of Telecom-
munications, vol. 64, no. 1-2, pp. 5–24, 2009.

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quma, and J.-
B. Stefani, “The fractal component model and its support in
java,” Software: Practice and Experience, vol. 36, no. 11-12,
pp. 1257–1284, 2006.

[5] F. Baude, L. Henrio, and P. Naoumenko, “Structural recon-
figuration: An autonomic strategy for gcm components,” in
Proceedings of the 2009 Fifth International Conference on
Autonomic and Autonomous Systems. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 123–128.

[6] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto,
P. Pesciullesi, R. Ravazzolo, M. Torquati, M. Vanneschi, and
C. Zoccolo, “A framework for experimenting with structured
parallel programming environment design,” in Parallel Com-
puting - Software Technology, Algorithms, Architectures and
Applications, ser. Advances in Parallel Computing. North-
Holland, 2004, vol. 13, pp. 617 – 624.

[7] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni,
and J.-B. Stefani, “Reconfigurable sca applications with the
frascati platform,” Services Computing, IEEE International
Conference on, vol. 0, pp. 268–275, 2009.

[8] C. Ruz, F. Baude, and B. Sauvan, “Enabling SLA Monitoring
for Component-Based SOA Applications – A Component-
Based Approach,” in Proceedings of the Work in Progress
Session SEAA 2010. Johannes Kepler University Linz, 2010,
pp. 41–42.

[9] P.-C. David, T. Ledoux, M. Lger, and T. Coupaye, “Fpath
and fscript: Language support for navigation and reliable
reconfiguration of fractal architectures,” Annals of Telecom-
munications, vol. 64, pp. 45–63, 2009.

[10] A. Van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers,
S. Frey, and D. Kieselhorst, “Continuous Monitoring of
Software Services: Design and Application of the Kieker
Framework,” p. 26, 2009.

[11] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Comprehensive QoS monitoring of Web services and event-
based SLA violation detection,” in Proceedings of the 4th
International Workshop on Middleware for Service Oriented
Computing, ser. MWSOC ’09. New York, NY, USA: ACM,
2009, pp. 1–6.

[12] G. Canfora, M. Di Penta, R. Esposito, F. Perfetto, and
M. Villani, “Service composition (re)binding driven by appli-
cationspecific qos,” in Service-Oriented Computing ICSOC
2006, ser. Lecture Notes in Computer Science, A. Dan and
W. Lamersdorf, Eds. Springer Berlin / Heidelberg, 2006,
vol. 4294, pp. 141–152.

[13] V. Cardellini and S. Iannucci, “Designing a broker for qos-
driven runtime adaptation of soa applications,” Web Services,
IEEE International Conference on, vol. 0, pp. 504–511, 2010.

[14] C. Ghezzi, A. Motta, V. Panzica, L. Manna, and G. Tam-
burrelli, “QoS Driven Dynamic Binding in-the-many,” QoSA
2010, pp. 68–83, 2010.

[15] F. Andre, E. Daubert, and G. Gauvrit, “Towards a generic
context-aware framework for self-adaptation of service-
oriented architectures,” Intl. Conf. on Internet and Web Ap-
plications and Services, ICIW, vol. 0, pp. 309–314, 2010.

[16] Y. Maurel, A. Diaconescu, and P. Lalanda, “CEYLON: A
Service-Oriented Framework for Building Autonomic Man-
agers,” 7th IEEE Intl. Conf. and Workshops on Engineering
of Autonomic and Autonomous Systems, pp. 3–11, Mar. 2010.

