
HAL Id: hal-01216075
https://hal.inria.fr/hal-01216075v2

Submitted on 28 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Output error minimizing back and forth nudging
method for initial state recovery

Atte Aalto

To cite this version:
Atte Aalto. Output error minimizing back and forth nudging method for initial state recovery. Systems
and Control Letters, Elsevier, 2016, 94, pp.111-117. �10.1016/j.sysconle.2016.06.002�. �hal-01216075v2�

https://hal.inria.fr/hal-01216075v2
https://hal.archives-ouvertes.fr


OUTPUT ERROR MINIMIZING BACK AND FORTH

NUDGING METHOD FOR INITIAL STATE RECOVERY*

ATTE AALTO

Inria, Université Paris–Saclay, Palaiseau, France; MΞDISIM team

Abstract. We show that for linear dynamical systems with skew-adjoint
generators, the initial state estimate given by the back and forth nudg-
ing method with colocated feedback, converges to the minimizer of the
discrepancy between the measured and simulated outputs — given that
the observer gains are chosen suitably and the system is exactly ob-
servable. If the system’s generator A is essentially skew-adjoint and
dissipative (with not too much dissipation), the colocated feedback has

to be corrected by the operator eAt
e
A∗t in order to obtain such conver-

gence. In some special cases, a feasible approximation for this operator
can be found analytically. The case with wave equation with constant
dissipation will be demonstrated.

Keywords: Back and forth nudging, State estimation, Output error min-

imization, Observers, Variational data assimilation

1. Introduction

This paper deals with the problem of retrieving the initial state of a —
possibly infinite-dimensional — linear dynamical system from the noisy out-
put measurements of the system over a given, finite time interval [0, T ]. A
more or less classical approach is to minimize the quadratic discrepancy
between the measured and modeled outputs over all possible initial states.
This approach is often called variational data assimilation — for details and
references, see [13] by Le Dimet et al. and [19] by Teng et al. In the case
of a linear system, this approach leads to a linear-quadratic optimization
problem, whose solution amounts to computing and inverting the observ-
ability Gramian. This approach is seemingly simple, but when the system’s
dimension is high, the optimization task may be numerically challenging, so
alternative methods are called for.

One alternative is the back and forth nudging (BFN) method, introduced
by Auroux and Blum in [2] and [3]. The method is based on using a Lu-
enberger observer alternately forward and backward in time over and over
again. In these papers the theory is developed for finite-dimensional sys-
tems and it is assumed that the full state is observed. The generalization
to infinite-dimensional systems and more general observation operators is
presented by Ramdani et al in [17]. There it is shown that in the absence
of any noise terms, the BFN method converges exponentially to the true

Email: atte.ej.aalto@gmail.com.
*This is the preprint version of the article published in Systems & Control

Letters, 94, p. 111–117 (2016). The article doi is 10.1016/j.sysconle.2016.06.002

1



2 ATTE AALTO

initial state. They assume that the system is exponentially stabilizable both
to forward and backward directions. The BFN method is presented and
reviewed in Section 2.

Whereas the variational method gives equal weight to all measurements
on the time interval [0, T ], the BFN method emphasizes the measurements,
and hence also measurement noise, closer to the initial time, in particular if
the observer gain is high. The sensitivity to noise is expected to reduce when
the gain is reduced. In Section 3.1, we show that for systems with skew-
adjoint generators, the initial state estimate given by the BFN method with
colocated feedback, converges to the minimizer of the discrepancy between
the measured and simulated outputs — given that the observer gains are
taken to zero with a suitable rate. Systems with essentially skew-adjoint and
dissipative (ESAD) generators, that is, D(A∗) = D(A) and A+A∗ = −Q for
some bounded and small enough Q ≥ 0, are treated in Section 3.2. Then the
colocated feedback has to be corrected by the operator eAteA

∗t in order to
obtain such convergence (without this the BFN method converges to a biased
estimate). In some special cases, this operator, or a feasible approximation
for it, can be found analytically. In section 4, we demonstrate that for
the wave equation with constant dissipation, utt = ∆u− ǫut with Dirichlet
boundary conditions, it holds that eAteA

∗t ≈ e−ǫtI resulting in a simple
discounting factor for the observer gain. We shall also give upper bounds
for the error due to the approximation k(t)I ≈ eAteA

∗t in the observer gain.
These bounds are given in the presented wave equation context, but the
results hold more generally.

In the paper we use notation L(H1,H2) for the space of bounded linear
operators from a Hilbert space H1 to another Hilbert space H2. We also
denote L(H) = L(H,H). When there is no possibility of confusion, the
notation ||·|| is used without indication in which space the norm is computed.

2. Problem setup and the back and forth nudging method

Consider the problem of retrieving the initial state of the system










ż = Az + f + η,

z(0) = z0,

y = Cz + ν

from measurements y(t) for t ∈ [0, T ]. Here A : X → X is the generator of
a dissipative semigroup eAt on the state space X with domain D(A). The
output operator C : X → Y is assumed to be bounded and both X and Y are
assumed to be separable Hilbert spaces. The load term f is assumed to be
known and η and ν are unknown input and output noise terms, respectively.
Of the load and noise terms we only assume that they are smooth enough
so that y ∈ L2(0, T ;Y).

The back and forth nudging method is defined as follows. The dynamics
of the forward observer for j = 1, 2, ... are governed by

(2.1)

{

ż+j (t) = Az+j (t) + f(t) + κjC
∗(y(t)−Cz+j (t)),

z+j (0) = z−j−1(T ), for j ≥ 2.
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For j = 1, the initial state can be any vector in X, since its contribution will
vanish. The backward observer is also defined ”forward in time”

(2.2)

{

ż−j (t) = −Az−j (t)− f(T − t) + κjC
∗(y(T − t)− Cz−j (t)),

z−j (0) = z+j (T ),

that is, z−j (t) is an estimate of z(T − t) and the initial state estimate that

we are interested in is given by z−j (T ). The feedback of the form C∗(y −
Cz) in the observers is called colocated feedback, roughly meaning that the
measurement through C and the control action through C∗ take place in the
same physical location in the computational domain. Classical references on
the colocated feedback are [14] by Liu for skew-adjoint operators and [6]
by Curtain and Weiss studying also ESAD operators. For a study on the
colocated feedback for the wave equation, see [5] by Chapelle et al.

We show for systems with skew-adjoint generators, that if the observer
gains κj in the back and forth nudging iterations (2.1) and (2.2) are selected
in a certain way, then the initial state estimate will converge to the minimizer
of the cost function

(2.3) J(x) :=
1

2

∫ T

0
||y(s)− Cz[x](s)||2 ds

where z[x] is the solution of

(2.4)

{

ż[x] = Az[x] + f,

z[x](0) = x.

Complementary results are obtained for systems with ESAD generators and
for the classical BFN method with constant feedback κj = κ.

In the first results on the BFN method, [2] and [3], the feedback term is
simply a matrix K that can be chosen freely. Obviously it can be chosen so
that both A−K and −A−K have strictly negative eigenvalues. Then if there
are no noises, the BFN algorithm converges exponentially to the true initial
state. The article [17] lays the foundation for the algorithm for infinite-
dimensional systems. There the feedback in the observers is of the form±A−
K±C where C is a given (possibly unbounded) observation operator and the
feedback operator K± can be chosen freely. The main result itself is similar
as that of [2] and [3], namely exponential convergence to the true initial
state if K± can be chosen so that ±A−K±C generate exponentially stable
semigroups, and if the output is not corrupted by noise. Numerical aspects of
the method are considered by Haine and Ramdani in [11]. The BFN method
for systems with skew-adjoint operators with colocated feedback is studied
by Ito et al. in [12] and by Phung and Zhang in [16]. In the latter article the
method is called time reversal focusing and they treat the concrete problem
of retrieving the initial state of the Kirchhoff plate equation from partial
field measurements. Further development of the BFN method includes [10]
by Haine showing a partial convergence result when the exact observability
assumption is not satisfied, and [9] by Fridman extending the result to a class
of semilinear systems. Application to unbounded computational domain is
considered by Fliss et al. in [8], and a variant for systems containing a
diffusive term is suggested by Auroux et al. in [4] where the idea is to
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change the sign of the diffusive term in the backward phase. The effect of
input and output noise on the method has been briefly discussed by Shim
et al. in [18] and by Donovan et al. in [7]. The BFN method or a related
time-reversal approach can also be used for source identification problems,
as in [1] by Ammari et al.

3. Results

We shall start by showing an important lemma. In the most general cases
treated in this paper, we have feedbacks of the form A − κK(r)C∗C for
the forward observer and −A − κK(T − r)C∗C for the backward observer
where K(·) ∈ C(0, T ;L(X)). We remark that when A is ESAD, then also
−A generates a strongly continuous semigroup since it can be viewed as a
bounded perturbation of a skew-adjoint operator A∗

0 = −A−Q/2 (see [15,
Sections 1.10 and 3.1]). For any x ∈ X, it holds that

d

dt

∣

∣

∣

∣e−Atx
∣

∣

∣

∣

2
=
〈

Qe−Atx, e−Atx
〉

≤ ||Q||
∣

∣

∣

∣e−Atx
∣

∣

∣

∣

2

and so by Grönwall’s inequality,
∣

∣

∣

∣e−At
∣

∣

∣

∣ ≤ e||Q/2||t.
Since also K(r)C∗C is bounded, the operators A−κK(r)C∗C and −A−

κK(T−r)C∗C generate strongly continuous time evolution operators U+(t, s)
and U−(t, s), respectively (see [15, Section 5.2]). Define also U±(t) =
U±(t, 0). As will be seen later in the proofs of our main results, after ev-
ery forward and backward iteration, the old error term is multiplied by
U−(T )U+(T ). We now show that if the dissipative term Q is small enough,
and if K(t) ≈ k(t)I for some strictly positive function k(·), then this opera-
tor is strictly contractive.

Lemma 3.1. Assume that the system is exactly observable at time T , that

is,
∫ T
0

∣

∣

∣

∣CeAtx
∣

∣

∣

∣

2
dt ≥ δ ||x||2 for all x ∈ X and some δ > 0. Assume also

D(A∗) = D(A) and A + A∗ = −Q with Q ≥ 0, and that there exists a

function k ∈ C(0, T ) with k1 ≥ k(t) ≥ k0 > 0, so that Q, K(t), and k(t)
satisfy

α :=2k0δ − 2 ||C||2
(

2k1

(

e||Q/2||T− 1

||Q/2|| − T

)

+

∫ T

0
e||Q/2||s ||K(s)− k(s)I|| ds

)

> 0.

Then
∣

∣

∣

∣U−(T )U+(T )
∣

∣

∣

∣

L(X)
≤ 1− ακ+ O(κ2).

In the special case Q = 0, the lemma with K(t) = I suffices. Notice that in
this case the result holds with α = 2δ. In addition, by similar techniques,
it can be shown separately for the forward and backward operators that
∣

∣

∣

∣e(±A−κC∗C)T
∣

∣

∣

∣ ≤ 1− δκ + O(κ2).

Proof. The semigroup perturbation formula (see [15, Section 3.1]) is easily
checked also for time-dependent perturbations, and it gives

U−(T )U+(T ) =

(

e−AT − κ

∫ T

0
e−A(T−s)K(T − s)C∗CU−(s)ds

)

×

×
(

eAT − κ

∫ T

0
eA(T−s)K(s)C∗CU+(s)ds

)

.
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From this equation it is possible to collect the zeroth and first order terms
at κ = 0 to get

U−(T )U+(T )

= I − 2κ

∫ T

0
e−AsK(s)C∗CeAsds+ O(κ2)

= I − 2κ

∫ T

0
k(s)e−AsC∗CeAsds(3.1)

− 2κ

∫ T

0
e−As

(

K(s)− k(s)I
)

C∗CeAsds + O(κ2).

Applying the perturbation formula again for e−As = e(A
∗+Q)s gives

(3.2) e(A
∗+Q)s = eA

∗s +

∫ s

0
eA

∗(s−r)Qe(A
∗+Q)rdr.

Recalling
∣

∣

∣

∣e(A
∗+Q)r

∣

∣

∣

∣ ≤ e||Q/2||r, we get a bound for the second term in (3.2):

(3.3)

∣

∣

∣

∣

∣

∣

∣

∣

∫ s

0
eA

∗(s−r)Qe(A
∗+Q)rdr

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||Q||
∫ s

0

∣

∣

∣

∣e(A
∗+Q)r

∣

∣

∣

∣dr ≤ 2(e||Q/2||s − 1).

The third term in (3.1) can be bounded by 2κ ||C||2
∫ T
0 e||Q/2||s ||K(s)− k(s)I|| ds.

Using this bound and equations (3.1)–(3.3), we have
∣

∣

∣

∣U−(T )U+(T )
∣

∣

∣

∣

L(X)

≤
∣

∣

∣

∣

∣

∣

∣

∣

I − 2k0κ

∫ T

0
eA

∗sC∗CeAsds

∣

∣

∣

∣

∣

∣

∣

∣

+ 4κk1 ||C||2
(

e||Q/2||T − 1

||Q/2|| − T

)

+ 2κ ||C||2
∫ T

0
e||Q/2||s ||K(s)− k(s)I|| ds+ O(κ2)

where the replacement of k(s) by its lower bound k0 is justified by positivity
of the term eA

∗sC∗CeAs. The operator in the first term on the right hand
side is self-adjoint and positive-definite (for κ small enough), so its norm can
be bounded using the observability assumption by

∣

∣

∣

∣

∣

∣

∣

∣

I − 2k0κ

∫ T

0
eA

∗sC∗CeAsds

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1− 2k0δκ

completing the proof. �

3.1. Systems with skew-adjoint generator. We now move on to prove
the first main result of the paper, namely the convergence result in the case
of a system with skew-adjoint generator.

Theorem 3.1. Assume D(A∗) = D(A) and A + A∗ = 0. Assume also

C ∈ L(X,Y) and
∫ T
0

∣

∣

∣

∣CeAtx
∣

∣

∣

∣

2
dt ≥ δ ||x||2 for all x ∈ X and some δ > 0.

Choose the observer gains κj > 0 so that
∑∞

j=1 κj = ∞ and
∑∞

j=1 κ
2
j < ∞.

Then as j → ∞, the initial state estimate z+j (0) converges strongly to the

minimizer of the cost function J defined in (2.3).



6 ATTE AALTO

Proof. Due to the assumed exact observability, the cost function J is strictly
convex and thus a unique minimizer xo exists. The minimizer is character-
ized by ∇J(x)|x=xo = 0 (the Fréchet derivative of J with respect to x),
which is equivalent to

(3.4)

∫ T

0

〈

y(s)− Cz[xo](s), CeAsh
〉

ds = 0, ∀h ∈ X

where z[xo] is defined in (2.4). Denote y − Cz[xo] =: χ and notice that
by (3.4),

(3.5)

∫ T

0
eA

∗sC∗χ(s)ds = 0.

Now we can summarize










ż[xo](t) = Az[xo](t) + f(t),

z[xo](0) = xo,

y(t) = Cz[xo](t) + χ(t).

Denote then ε+j (t) := z[xo](t)− z+j (t) and ε−j (t) := z[xo](T − t)− z−j (t) . By
(2.1) and (2.2), they satisfy
{

ε̇+j (t) = (A− κjC
∗C)ε+j (t)− κjC

∗χ(t), ε+j (0) = ε−j−1(T ),

ε̇−j (t) = (−A− κjC
∗C)ε−j (t)− κjC

∗χ(T − t), ε−j (0) = ε+j (T ).

The solution for the first equation is given by

(3.6) ε+j (t) = e(A−κjC∗C)tε−j−1(T )− κj

∫ t

0
e(A−κjC∗C)(t−s)C∗χ(s)ds.

The second term itself is a solution to

ε̇(t) = (A− κjC
∗C)ε(t)− κjC

∗χ(t), ε(0) = 0,

and it can be decomposed into

(3.7) ε(t) = −κj

∫ t

0
eA(t−s)C∗χ(s)ds− κj

∫ t

0
eA(t−s)C∗Cε(s)ds.

The first term is zero at t = T by (3.5) and −A = A∗. For the second term,
it can be seen directly from (3.6), that ||ε(t)|| ≤ κj ||C||

√
t ||χ||L2(0,T ). Then

from (3.7), we get

(3.8) ||ε(T )|| ≤ 2

3
κ2j ||C||3 T 3/2 ||χ||L2(0,T ) .

The exactly same steps can be taken with ε−j . Then, by Lemma 3.1 with

K(s) = I,
∣

∣

∣

∣ε−j (T )
∣

∣

∣

∣ ≤
(

1− 2δκj
)
∣

∣

∣

∣ε−j−1(T )
∣

∣

∣

∣+ O(1)κ2j

where the O(1)-term refers to the asymptotic behavior as κj → 0 and it

contains 4
3 ||C||3 T 3/2 ||χ||L2(0,T ) from (3.8) and the contribution of the O(κ2j )-

term from Lemma 3.1. Finally,

∣

∣

∣

∣ε−j (T )
∣

∣

∣

∣ ≤
j
∏

i=1

(

1− 2δκi
)
∣

∣

∣

∣ε+1 (0)
∣

∣

∣

∣+ O(1)

j
∑

i=1

κ2i

j
∏

k=i+1

(

1− 2δκk
)
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from which the convergence can be deduced using the assumptions on κj ’s
and

j
∏

k=i+1

(

1− 2δκk
)

= exp

(

j
∑

k=i+1

ln
(

1− 2δκk
)

)

≤ exp

(

−2δ

j
∑

k=i+1

κk

)

which converges to zero for any i as j → ∞. �

3.2. Systems with ESAD generator. In the case the generator satisfies
A + A∗ = −Q for Q ≥ 0 and Q 6= 0 is small enough, we get the following
result.

Theorem 3.2. Assume D(A) = D(A∗) and A+A∗ = −Q for Q ≥ 0 where

Q is a bounded operator small enough to satisfy

e−||Q/2||T δ − 3 ||C||2
(

e||Q/2||T − 1

||Q/2|| − T

)

> 0,

and
∫ T
0

∣

∣

∣

∣CeAtx
∣

∣

∣

∣

2
dt ≥ δ ||x||2. Replace the feedback operator κjC

∗ in the

forward observer (2.1) by κjP (t)C∗ where P (t) = eAteA
∗t, and by κjP (T −

t)C∗ in the backward observer (2.2). Assume again
∑∞

j=1 κj = ∞ and
∑∞

j=1 κ
2
j < ∞. Then the initial state estimate given by the back and forth

nudging method converges strongly to the minimizer of the cost function J .

Proof. Let us first show that the assumption on Q justifies the application
of Lemma 3.1 with k(t) = e−||Q/2||t so that k0 = e−||Q/2||T and k1 = 1.
Application of the semigroup perturbation formula to A∗ = −A−Q gives

eAteA
∗t = I −

∫ t

0
eAsQeA

∗sds

from which it is possible to deduce e−||Q||tI ≤ eAteA
∗t ≤ I. Thus

∣

∣

∣

∣eAteA
∗t − e−||Q/2||tI

∣

∣

∣

∣ ≤ 1− e−||Q/2||t. Using this, we get
∫ T

0
e||Q/2||s∣

∣

∣

∣eAseA
∗s − e−||Q/2||tI

∣

∣

∣

∣ds ≤ e||Q/2||T − 1

||Q/2|| − T

assuring that α in Lemma 3.1 is strictly positive.
The key steps in the proof are exactly the same as in the proof of Theo-

rem 3.1, but (3.7) is modified a little to

ε(t) =− κj

∫ t

0
eA(t−s)eAseA

∗sC∗χ(s)ds− κj

∫ t

0
eA(t−s)eAseA

∗sC∗Cε(s)ds

=− κje
At

∫ t

0
eA

∗sC∗χ(s)ds − κje
At

∫ t

0
eA

∗sC∗Cε(s)ds

from which we proceed as before. �

Notice that without the correction P (t) in the feedback term, the initial
state estimate from the BFN method converges to xbias satisfying

∫ T

0
e−AsC∗(y(s)− Cz[xbias](s)

)

ds = 0

instead of (3.5) which characterizes the optimum xo. Here z[xbias] is defined
in (2.4).
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The benefit of using the BFN method lies in the computational lightness of
the utilized Luenberger-type observer. Therefore it is usually not desirable
to numerically compute the full operator P (t) = eAteA

∗t required in the
previous theorem. Luckily, in some special cases this operator can be at
least approximated analytically. The case with wave equation with constant
dissipation term will be demonstrated in Section 4.

We remark that the assumed bound on ||Q|| in Theorem 3.2 can be quite
restrictive. However, it should be viewed as a sufficient condition for the
theorem, but the algorithm may convergence even if this condition is not
satisfied.

3.3. The classical BFN approach. In the classical back and forth nudg-
ing method with colocated feedback the gain is kept constant, that is, κj = κ.
We show that in such case the BFN estimate converges to the minimizer of
the cost function J but with z[x] defined by

(3.9)

{

ż[x] = Az[x] + f + κC∗(y − Cz[x]),

z[x](0) = x.

We remark that for example in the presence of modeling errors, it may
happen that the measurement y cannot be even closely reproduced by the
open loop system (2.4) with any initial state x. In such case the minimizer
of J given by (2.3) with (2.4) cannot be expected to be very good. Also,
if Q does not satisfy the assumptions of Theorem 3.2, then it may not be
possible to take κ → 0.

We shall show this only in the skew-adjoint case, but a similar variant
for ESAD systems is possible. In addition, we again make the exact observ-
ability assumption, but this theorem can be straightforwardly generalized
to the non-observable case as is done in [10]. In that case the convergence
is not exponential and of course the minimizer is not necessarily unique.

Theorem 3.3. Assume D(A∗) = D(A) and A + A∗ = 0. Assume also
∫ T
0

∣

∣

∣

∣CeAtx
∣

∣

∣

∣

2
dt ≥ δ ||x||2 for all x ∈ X and some δ > 0. Then the initial

state estimate from the BFN method with constant observer gain κ converges

exponentially to the minimizer of J given in (2.3) with z[x] defined in (3.9).

Proof. Denote again the minimizer by xo and the corresponding solution of
(3.9) by z[xo]. Denote again y−Cz[xo] =: χ. The minimizer is characterized
by

(3.10)

∫ T

0
e(A

∗−κC∗C)sC∗χ(s)ds = 0.

Denote ε+j (t) = z[xo](t) − z+j (t) and ε−j (t) = z[xo](T − t) − z−j (t). They
satisfy










ε̇+j (t) = (A− κC∗C)ε+j (t),

ε̇−j (t) = (−A+ κC∗C)z[xo](T − t)− (−A− κC∗C)z−j (t)− 2κC∗y(T − t)

= (−A− κC∗C)ε−j (t)− 2κC∗χ(T − t).
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Now ε+j (T ) = e(A−κC∗C)T ε+j (0) and

ε−j (T ) = e(−A−κC∗C)T ε−j (0) +
∫ T

0
e(−A−κC∗C)(T−s)C∗χ(T − s)ds

where the second term is zero by (3.10) since −A = A∗. By [14, Theorem 2.3

(c)] or [6, Theorem 1.1], it holds that
∣

∣

∣

∣e(±A−κC∗C)T
∣

∣

∣

∣ ≤ γ with some γ < 1

and hence
∣

∣

∣

∣ε−j (T )
∣

∣

∣

∣ ≤ γ2j
∣

∣

∣

∣ε+1 (0)
∣

∣

∣

∣. �

4. Wave equation with dissipation

Consider the wave equation with constant dissipation

(4.1)







utt(x, t) = ∆u(x, t)− ǫut(x, t), x ∈ Ω, t ∈ R
+,

u(x, t) = 0, x ∈ ∂Ω,
u(x, 0) = u0(x), ut(x, 0) = v0(x)

where Ω ⊂ R
n is a sufficiently smooth domain and ǫ ≥ 0. As usual, (4.1) is

written as a first order system using v = ut,

(4.2)
d

dt

[

u
v

]

=

[

0 I
∆ −ǫI

] [

u
v

]

,

which is denoted ż = Az. The state space is X = H1
0 (Ω)×L2(Ω) where the

first component is equipped with the norm ||u||2H1

0
(Ω) :=

∫

Ω ||∇u||2 dx. In this

space, it holds that A+A∗ = −
[

0 0
0 2ǫI

]

.

Now let {−λj}∞j=1 ⊂ R
− be the sequence of eigenvalues of the Laplacian

in Ω with Dirichlet boundary conditions in ascending order (by their ab-
solute values) and denote by {ej(x)}∞j=1 the corresponding L2-normalized

eigenfunctions. Assume that the dissipation satisfies ǫ2 < 4λ1. By the
separation of variables principle, the system’s eigenfrequencies are given by

ωj :=
√

λj − ǫ2

4 , and the solution to the initial value problem (4.1) is given

by

u(x, t) = e−
ǫ
2
t

∞
∑

j=1

[

αj

(

cos(ωjt) +
ǫ

2ωj
sin(ωjt)

)

+
βj
ωj

sin(ωjt)

]

ej(x)

where the coefficients αj and βj are the Fourier coefficients of u0 and v0,
respectively. From this solution we can construct the semigroup eAt in the

basis
{[

ej(x)
0

]}∞

j=1

⋃

{[

0
ej(x)

]}∞

j=1
as

eAt = e−
ǫ
2
t





cos(ωjt) +
ǫ

2ωj
sin(ωjt)

1
ωj
sin(ωjt)

−λj

ωj
sin(ωjt) cos(ωjt)− ǫ

2ωj
sin(ωjt)





where the elements are interpreted as infinite diagonal matrices, j = 1, 2, ....
Note that the inner product in X in this basis is given by

(4.3)

〈[

α
β

]

,

[

a
b

]〉

X

=

∞
∑

j=1

(

λjαjaj + βjbj
)

,
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and so we have

eAteA
∗t

= e−ǫt







cos2(ωjt) +
ǫ
ωj
sin(ωjt)cos(ωjt) +

λj+ǫ2/4
λj−ǫ2/4

sin2(ωjt) − ǫ
ω2

j

sin2(ωjt)

−λjǫ

ω2

j

sin2(ωjt) cos2(ωjt)− ǫ
ωj
sin(ωjt)cos(ωjt) +

λj+ǫ2/4
λj−ǫ2/4

sin2(ωjt)







= e−ǫtI + ǫe−ǫt







1
ωj
sin(ωjt)cos(ωjt) +

ǫ/2
λj−ǫ2/4

sin2(ωjt) − 1
ω2

j

sin2(ωjt)

− λj

ω2

j

sin2(ωjt) − 1
ωj
sin(ωjt)cos(ωjt) +

ǫ/2
λj−ǫ2/4

sin2(ωjt)






.

In the following error estimates, we need a bound for the L(X)-norm of
eAteA

∗t − e−ǫtI. Because of the blockwise structure of the matrix operator
above, and taking into account (4.3), an estimate is obtained by finding a
uniform (that is, holding for all j = 1, 2, ...) bound for the R

2×2 matrix
norms of the blocks









1
ωj
sin(ωjt)cos(ωjt) +

2ǫ
ω2

j

sin2(ωjt) −
√

λj

ω2

j

sin2(ωjt)

−
√

λj

ω2

j

sin2(ωjt) − 1
ωj
sin(ωjt)cos(ωjt) +

2ǫ
ω2

j

sin2(ωjt)









which, in turn, can be bounded from above by the Frobenius norm, yielding

(4.4)
∣

∣

∣

∣

∣

∣
eAteA

∗t − e−ǫtI
∣

∣

∣

∣

∣

∣
≤ ǫe−ǫt 2

√
λ1

λ1 − ǫ2/4
.

The error stemming from using K(t) = e−ǫt instead of K(t) = eA
∗teAt in

the observer gain can be bounded from above:

Theorem 4.1. Assume C ∈ L(X,Y) is such that the system is exactly ob-

servable at time T . Assume also that ǫ is small enough so that the assump-

tion of Lemma 3.1 is satisfied, and that
∑∞

j=1 κj = ∞ and
∑∞

j=1 κ
2
j < ∞.

Then as j → ∞, the back and forth observer with feedback κje
−ǫtC∗

converges to an estimate x̃, for which it holds that

||xo − x̃|| ≤ ǫ ||C||
√
T

δ

2
√
λ1

λ1 − ǫ2/4
||χ̃||L2(0,T )

where χ̃ = y − Cz[x̃] and z[x̃] is defined in (2.4).

Proof. By repeating the proof of Theorem 3.1 with the feedback term mul-
tiplied by k(t) = e−ǫt, it can be seen that the BFN method converges to x̃,
which is characterized by

∫ T

0
e−Ask(s)C∗χ̃(s)ds = 0.

Inserting here k(s)I = P (s)−
(

P (s)− k(s)I
)

and recalling P (s) = eAseA
∗s,

we get
∫ T

0
eA

∗sC∗χ̃(s)ds −
∫ T

0
e−As

(

P (s)− k(s)I
)

C∗χ̃(s)ds = 0.
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Now combining this, equation (3.5) characterizing the optimum xo, and
χ̃(t)− χ(t) = CeAt(xo − x̃), yields

(4.5)

∫ T

0
eA

∗sC∗CeAs(xo − x̃)ds =

∫ T

0
e−As

(

P (s)− k(s)I
)

C∗χ̃(s)ds.

Finally, using the observability assumption, Cauchy–Schwartz inequality,
the bound (4.4), and the bound

∣

∣

∣

∣e−As
∣

∣

∣

∣ ≤ e||Q/2||s = eǫs, we have the result.
�

The bound (4.4) for ||P (s)− k(s)I|| is based on the operator’s biggest
component, corresponding to the system’s lowest eigenmode. However, the
lowest modes are typically better observable, and hence the inverse of the

observability Gramian
∫ T
0 eA

∗sC∗CeAsds in (4.5) is likely to suppress these
modes more efficiently than with coefficient 1/δ which is based on the poorly
identifiable modes. Therefore the error is likely to be considerably smaller
than what is obtained in the previous theorem.

The error estimate of Theorem 4.1 depends on ||χ̃||L2(0,T ) which makes

it effectively an a posteriori estimate. We present another error estimate,
which is based on a direct computation utilizing equation (3.7). For this we
need to set κj = κ/j for some κ > 0.

Theorem 4.2. Assume C ∈ L(X,Y) is such that the system is exactly

observable at time T and that ǫ is small enough so that the assumption of

Lemma 3.1 is satisfied. The back and forth observer with feedback κ
j e

−ǫtC∗

converges to an estimate x̃, for which it holds that

||xo − x̃|| ≤ 2ǫ ||C||
√
T

α

2
√
λ1

λ1 − ǫ2/4
||χ||L2(0,T )

where α is given in Lemma 3.1 and χ = y − Cz[xo].

Proof. Consider the error decomposition (3.7) with feedback term κjk(t)C
∗ =

κ
j e

−ǫtC∗ at time t = T . The contribution of the second term in the decom-

position is vanishing when j → ∞ as seen in the proof of Theorem 3.1, so
let us concentrate on the first term, which can be opened up by substituting
k(s)I = P (s)−

(

P (s)− k(s)I
)

:

κ

j

∫ T

0
eA(T−s)k(s)C∗χ(s)ds

=
κ

j
eAT

∫ T

0
eA

∗sC∗χ(s)ds +
κ

j

∫ T

0
eA(T−s)(k(s)I − P (s))C∗χ(s)ds

where the first term is zero by (3.5). An upper bound for the norm of the

second term is given by ǫκ
j

2
√
λ1

λ1−ǫ2/4
||C||

√
T ||χ||L2(0,T ) =:Mκ/j, as in the proof

of Theorem 4.1. The total contribution of these terms after j iterations is
bounded by

(4.6) 2M

j
∑

i=1

κ

i

j
∏

k=i+1

(

1− ακ

k

)

.
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The product can be bounded as in the proof of Theorem 3.1,

j
∏

k=i+1

(

1− ακ

k

)

≤ exp

(

−ακ

j
∑

k=i+1

1

k

)

≤ exp
(

ακ(ln i− ln j)
)

=

(

i

j

)ακ

where the second inequality is obtained by comparing the sum with the
integral of 1/x. Similarly, the sum in (4.6) can be bounded by the integral
of xακ−1

j
∑

i=1

κ

jακ
iακ−1 ≤ κ

jακ

∫ j+1

0
xακ−1dx =

1

α

(

j + 1

j

)ακ

.

As j → ∞, all other terms in ε−j (T ) tend to zero and so the result follows. �
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