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Abstract7

Infinitary and regular proofs are commonly used in fixed point logics. Being natural intermediate8

devices between semantics and traditional finitary proof systems, they are commonly found in9

completeness arguments, automated deduction, verification, etc. However, their proof theory10

is surprisingly underdeveloped. In particular, very little is known about the computational11

behavior of such proofs through cut elimination. Taking such aspects into account has unlocked12

rich developments at the intersection of proof theory and programming language theory. One13

would hope that extending this to infinitary calculi would lead, e.g., to a better understanding of14

recursion and corecursion in programming languages. Structural proof theory is notably based15

on two fundamental properties of a proof system: cut elimination and focalization. The first16

one is only known to hold for restricted (purely additive) infinitary calculi, thanks to the work17

of Santocanale and Fortier; the second one has never been studied in infinitary systems. In18

this paper, we consider the infinitary proof system µMALL∞ for multiplicative and additive19

linear logic extended with least and greatest fixed points, and prove these two key results. We20

thus establish µMALL∞ as a satisfying computational proof system in itself, rather than just an21

intermediate device in the study of finitary proof systems.22

1 Introduction23

Proof systems based on non-well-founded derivation trees arise naturally in logic, even more24

so in logics featuring fixed points. A prominent example is the long line of work on tableaux25

systems for modal µ-calculi, e.g., [16, 24, 14, 11], which have served as the basis for analysing26

the complexity of the satisfiability problem, as well as devising practical algorithms for solving27

it. One key observation in such a setting, and many others, is that one needs not consider28

arbitrary infinite derivations but can restrict to regular derivation trees (also known as circular29

proofs) which are finitely representable and amenable to algorithmic manipulation. Because30

infinitary systems are easier to work with than the finitary proof systems (or axiomatizations)31

based on Kozen-Park (co)induction schemes, they are often found in completeness arguments32

for such finitary systems [16, 27, 28, 29, 15, 12]. We should note, however, that those33

arguments are far from being limited to translations from (regular) infinitary to finitary34

proofs, since such translations are very complex and only known to work in limited cases.35

There are many other uses of infinite (or regular) derivations, e.g., to study the relationship36

between induction and infinite descent in first-order arithmetic [8], to generate invariants for37

program verification in separation logic [7], or as an intermediate between ludics’ designs38

and proofs in linear logic with fixed points [5]. Last but not least, Santocanale introduced39

circular proofs [22] as a system for representing morphisms in µ-bicomplete categories [21, 23],40

corresponding to simple computations on (co)inductive data.41

Surprisingly, despite the elegance and usefulness of infinitary proof systems, few proof42

theoretical studies are directly targetting these objects. More precisely, we are concerned43

with an analysis of proofs that takes into account their computational behaviour in terms44
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2 Infinitary proof theory : the multiplicative additive case

of cut elimination. In other words, we would hope that the Curry-Howard correspondence45

extends nicely to infinitary proofs. In this line of proof-theoretical study, two main properties46

stand out: cut elimination and focalization; we shall see that they have been barely addressed47

in infinitary proof systems. The idea of cut elimination is as old as sequent calculus, and at48

the heart of the proof-as-program viewpoint, where the process of eliminating cuts (indirect49

reasoning) in proofs is seen as computation. Considering logics with least and greatest50

fixed points, the computational behavior of induction and coinduction is recursion and51

corecursion, two important and complex programming principles that would deserve a logical52

understanding. Note that the many completeness results for infinitary proof systems (e.g.,53

for modal µ-calculi) only imply cut admissibility, but say nothing about the computational54

process of cut elimination. To our knowledge, leaving aside an early and very restrictive result55

of Santocanale [22], cut elimination has only been studied by Fortier and Santocanale [13]56

who considered an infinitary sequent calculus for lattice logic (purely additive linear logic with57

least and greatest fixed points) and showed that certain cut reductions converge to a limit58

cut-free derivation. Their proof involves a mix of combinatorial and topological arguments.59

So far, it has resisted attempts to extend it beyond the purely additive case. The second key60

property, much more recently identified than cut elimination, is focalization. It has appeared61

in the work of [3] on proof search and logic programming in linear logic, and is now recognized62

as one of the deep outcomes of linear logic, putting to the foreground the role of polarity63

in logic. In a way, focalization generalizes the invertibility results that are notably behind64

most deductive systems for classical µ-calculi, by bringing some key observations about65

non-invertible connectives. Besides its deep impact on proof search and logical frameworks,66

focalization resulted in important advances in all aspects of computational proof theory:67

in the game-semantical analysis of logic [17, 19], the understanding of evaluation order of68

programming languages, CPS translations, or semantics of pattern matching [10, 30], the69

space compression in computational complexity [26, 6], etc. Briefly, one can say that while70

proof nets have led to a better understanding of phenomena related to parallelism with71

proof-theoretical methods, polarities and focalization have led to a fine-grained understanding72

of sequentiality in proofs and programs. To the best of our knowledge, while reversibility73

has since long been a key-ingredient in completeness arguments based on infinitary proof74

systems, focalization has simply never been studied in such settings.75

Organization and contributions of the paper. In this paper, we consider the logic µMALL, that76

is multiplicative additive linear logic extended with least and greatest fixed point operators.77

It has been studied in finitary sequent calculus [4]: it notably enjoys cut elimination, and78

focalization has been shown to extend nicely (though not obviously) to it. We give in79

Section 2 a natural infinitary proof system for µMALL, called µMALL∞, which notably80

extends that of Santocanale and Fortier [13]. The system µMALL∞ is also related to µMALL81

in the sense that any µMALL derivation can be turned into a µMALL∞ proof, with cuts.82

We study the focalization of µMALL∞ in Section 3. We find out that, even though fixed83

point polarities are not forced in the finitary sequent calculus for µMALL, they are uniquely84

determined in µMALL∞. Despite some novel aspects due to the infinitary nature of our85

calculus, we are able to re-use the generic focalization graph argument [20] to prove that86

focalized proofs are complete. We then turn to cut elimination in Section 4 and show that87

(fair) cut reductions converge to an infinitary cut free derivation. We could not apply any88

standard cut elimination technique (e.g., induction on formulas and proofs, reducibility89

arguments, topological arguments as in [13]) and propose instead an unusual argument in90

which a coarse truth semantics is used to show that the cut elimination process cannot go91

wrong. We also note here that, even for the regular fragment of µMALL∞, it would be92
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highly non-trivial to obtain cut elimination from the result for µMALL, since it is not known93

whether regular µMALL∞ derivations can be translated to µMALL derivations (even without94

requiring that this translation preserves the computational behaviour of proofs). We conclude95

in Section 5 with directions for future work. Appendices provide technical details, proofs,96

and additional background material.97

2 µMALL and its infinitary proof system µMALL∞
98

In this section we introduce multiplicative additive linear logic extended with least and99

greatest fixed point operators, and an infinitary proof system for it.100

I Definition 1. Given an infinite set of propositional variables V = {X,Y, . . . }, µMALL∞101

pre-formulas are built over the following syntax:102

ϕ,ψ ::= 0 | > | ϕ⊕ ψ | ϕNψ | ⊥ | 1 | ϕOψ | ϕ⊗ψ | µX.ϕ | νX.ϕ | X with X ∈ V.103

The connectives µ and ν bind the variable X in ϕ. From there, bound variables, free variables104

and capture-avoiding substitution are defined in a standard way. The subformula ordering is105

denoted ≤ and fv(•) denotes free variables. Closed pre-formulas are simply called formulas.106

Note that negation is not part of the syntax, so that we do not need any positivity condition107

on fixed point expressions.108

I Definition 2. Negation is the involution on pre-formulas written ϕ⊥ and satisfying109

(ϕOψ)⊥ = ψ⊥⊗ϕ⊥, (ϕ⊕ ψ)⊥ = ψ⊥Nϕ⊥, ⊥⊥ = 1, 0⊥ = >, (νX.ϕ)⊥ = µX.ϕ⊥, X⊥ = X.110

Having X⊥ = X might be surprising, but it is harmless since our proof system will111

only deal with closed pre-formulas. Our definition yields, e.g., (µX.X)⊥ = (νX.X) and112

(µX.1⊕X)⊥ = (νX.XN⊥), as expected [4]. Note that we also have (ϕ[ψ/X])⊥ = ϕ⊥[ψ⊥/X].113

Sequent calculi are sometimes presented with sequents as sets or multisets of formulas, but114

most proof theoretical observations actually hold in a stronger setting where one distinguishes115

between several occurrences of a formula in a sequent, which gives the ability to precisely trace116

the provenance of each occurrence. This more precise viewpoint is necessary, in particular,117

when one views proofs as programs. In this work, due to the nature of our proof system and118

because of the operations that we perform on proofs and formulas, it is also crucial to work119

with occurrences. There are several ways to formally treat occurrences; for the sake of clarity,120

we provide below a concrete presentation of that notion which is well suited for our needs.121

I Definition 3. An address is a word over Σ = {l, r, i}, which stands for left, right and122

inside. We define a duality over Σ∗ as the morphism satisfying l⊥ = r, r⊥ = l and i⊥ = i.123

We say that α′ is a sub-address of α when α is a prefix of α′, written α v α′. We say that124

α and β are disjoint when α and β have no upper bound wrt. v.125

IDefinition 4. A (pre)formula occurrence (denoted by F , G,H) is given by a (pre)formula126

ϕ and an address α, and written ϕα. We say that occurrences are disjoint when their127

addresses are. The occurrences ϕα and ψβ are structurally equivalent, written ϕα ≡ ψβ ,128

if ϕ = ψ. Operations on formulas are extended to occurrences as follows: (ϕα)⊥ = (ϕ⊥)α⊥ ;129

for any ? ∈ {O,⊗,⊕,N}, F ? G = (ϕ ? ψ)α if F = ϕαl and G = ψαr; for any σ ∈ {µ, ν},130

σX.F = (σX.ϕ)α if F = ϕαi; we also allow ourselves to write units as formula occurrences131

without specifying their address, which can be chosen arbitrarily. Finally, substitution of132

occurrences forgets addresses: (ϕα)[ψβ/X] = (ϕ[ψ/X])α.133

I Example. Let F = ϕαl and G = ψαr. We have, on the one hand, (F⊗G)⊥ = ((ϕ⊗ψ)α)⊥ =134

(ψ⊥Oϕ⊥)α⊥ and, on the other hand, G⊥OF⊥ = (ψ⊥)α⊥lO(ϕ⊥)α⊥r = (ψ⊥Oϕ⊥)α⊥ . Thus,135
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` F,Γ ` G,Γ
(N)

` FNG,Γ
` F,G,Γ

(O)
` FOG,Γ

` Fi,Γ
(⊕i)` F1 ⊕ F2,Γ

` F,Γ ` G,∆
(⊗)

` F⊗G,Γ,∆
(>)

` >,Γ
` Γ

(⊥)
` ⊥,Γ (no rule for 0) (1)

` 1

` F [µX.F/X],Γ
(µ)

` µX.F,Γ
` G[νX.G/X],Γ

(ν)
` νX.G,Γ

F ≡ G
(Ax)

` F,G⊥
` Γ, F ` F⊥,∆

(Cut)
` Γ,∆

Figure 1 Rules of the proof system µMALL∞.

(F⊗G)⊥ = G⊥OF⊥. We could have designed our system to obtain (F⊗G)⊥ = F⊥OG⊥136

instead; this choice is inessential for the present work but makes our definitions suitable, in137

principle, for a treatment of non-commutative logic.138

IDefinition 5. The Fischer-Ladner closure of a formula occurrence F , denoted by FL(F ),139

is the least set of formula occurrences such that F ∈ FL(F ) and, whenever G ∈ FL(F ),140

G1, G2 ∈ FL(F ) if G = G1 ? G2 for any ? ∈ {⊕,N,O,⊗};141

B[G/X] ∈ FL(F ) if G = σX.B for σ ∈ {ν, µ}.142

We say that G is a sub-occurrence of F if G ∈ FL(F ). Note that, for any F and α, there143

is at most one ϕ such that ϕα is a sub-occurrence of F .144

We are now ready to introduce our infinitary sequent calculus. Details regarding formula145

occurrences can be ignored at first read, and will only make full sense when one starts146

permuting inferences and eliminating cuts.147

I Definition 6. A sequent, written ` Γ, is a finite set of pairwise disjoint, closed formula148

occurrences. A pre-proof of µMALL∞ is a possibly infinite tree, coinductively generated149

by the rules of Figure 1, subject to the following conditions: any two formulas occurrences150

appearing in different branches must be disjoint except if the branches first differ right after a151

(N) inference; if ϕα and ψα⊥ occur in a pre-proof, they must be the respective sub-occurrences152

of the formula occurrences F and F⊥ introduced by a (Cut) rule.153

The disjointness condition on sequents ensures that two formula occurrences from the154

same sequent will never engender a common sub-occurrence, i.e., we can define traces uniquely.155

The disjointness condition on pre-proofs is there to ensure that the proof transformations156

used in focusing and cut elimination preserve the disjointness condition on sequents. Note157

that these conditions are not restrictive. Clearly, the condition on sequents never prevents158

the (backwards) application of a propositional rule. Moreover, there is an infinite supply of159

disjoint addresses, e.g., { rnl : n > 0 }. One may thus pick addresses from that supply for160

the conclusion sequent of the derivation, and then carry the remaining supply along proof161

branches, splitting it on branching rules, and consuming a new address for cut rules.162 ...
(µ)

` µX.X

...
(ν)

` νX.X, F
(Cut)

` F

Pre-proofs are obviously unsound: the pre-proof schema shown163

on the right allows to derive any formula. In order to obtain proper164

proofs from pre-proofs, we will add a validity condition. This165

condition will reflect the nature of our two fixed point connectives.166

I Definition 7. Let γ = (si)i∈ω be an infinite branch in a pre-proof of µMALL∞. A thread167

t in γ is a sequence of formula occurrences (Fi)i∈ω with Fi ∈ si and Fi v Fi+1. The set of168

formulas that occur infinitely often in (Fi)i∈ω (when forgetting addresses) admits a minimum169
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wrt. the subformula ordering, denoted by min(t). A thread t is valid if min(t) is a ν formula170

and the thread is not eventually constant, i.e., the formulas Fi are always eventually principal.171

I Definition 8. The proofs of µMALL∞ are those pre-proofs in which every infinite branch172

contains a valid thread.173

This validity condition has its roots in parity games and is very natural for infinitary174

proof systems with fixed points. It is somehow independent of the ambiant logic, and only175

deals with fixed points. It is commonly found in deductive systems for modal µ-calculi: see176

[11] for a closely related presentation, which yields a sound and complete sequent calculus177

for linear time µ-calculus. The validity conditions of Santocanale’s circular proofs [22, 13],178

with and without cut, are also instances of the above notion.179

In the rest of the paper, we work mostly with formula occurrences and will often simply180

call them formulas when it is not ambiguous. As usual in sequent calculus, (Ax) on a formula181

F can be expanded into axioms on its immediate subformulas. Repeating this process, one182

obtains an axiom-free and valid proof of the original sequent. In fact, this construction yields183

a regular derivation tree, the simplest kind of finitely representable infinite derivation.184

I Proposition 9. Rule (Ax) is admissible in µMALL∞.185

This basic observation, proved in appendix A, justifies that the (Ax) rule will be ignored
in the rest of the paper. In particular, we consider that axioms are expanded away before
dealing with cut elimination. Our system µMALL∞ is naturally equipped with the cut
elimination rules of MALL, extended with the obvious principal and auxiliary rules for fixed
point connectives (we do not show symmetric cases):

` Γ, F [µX.F/X]
(µ)

` Γ, µX.F

` F⊥[νX.F⊥/X],∆
(ν)

` νX.F⊥,∆
(Cut)

` Γ,∆

` Γ, F [µX.F/X], G
(µ)

` Γ, µX.F,G ` G⊥,∆
(Cut)

` Γ, µX.F,∆
↓ ↓

` Γ, F [µX.F/X] ` F⊥[νX.F⊥/X],∆
(Cut)

` Γ,∆

` Γ, F [µX.F/X], G ` G⊥,∆
(Cut)

` Γ, F [µX.F/X],∆
(µ)

` Γ, µX.F,∆

(Ax)
N ` N ′′

(⊕2)
N ` 1⊕N ′′

(µ)
N ` N ′

Natural numbers may be expressed as ϕnat := µX.1⊕X. Occur-186

rences of that formula will be denoted N , N ′, etc. We give below187

a few examples of proofs/computations on natural numbers, shown188

using two sided sequents for clarity: F1, . . . , Fn ` Γ should be read as189

` Γ, F⊥1 , . . . , F⊥n as usual. The proof πsucc, shown on the right, computes the successor on190

natural numbers: if we cut it against a (necessarily finite) cut-free proof of N we obtain after191

a finite number of cut elimination steps a proof of N ′ which is the right injection (rule (µ)192

followed by (⊕2), which represents the successor) of the original proof of N , relocated at the193

address of N ′′. Consider now the following pre-proof, called πdup:194

(µ),(⊕1),(1)
` N1

(µ),(⊕1),(1)
` N2

(⊥),(⊗)
1 ` N1⊗N2

(?)
N ′ ` N ′1⊗N ′2

πsucc πsucc
(O),(⊗)

N ′1⊗N ′2 ` N1⊗N2
(Cut)

N ′ ` N1⊗N2
(ν),(N)

(?) N ` N1⊗N2

Here, (?) represents the cyclic repetition of the same proof, on a structurally equivalent195

sequent (same formulas, new adresses). The resulting pre-proof has exactly one infinite196
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branch, validated by the thread starting with N . If we cut that proof against an arbitrary197

cut-free proof of N , and perform cut elimination steps, we obtain in finite time a cut-free198

proof of N1⊗N2 which consists of two copies (up-to adresses) of the original proof of N .199

πdup

N ` N1⊗N2

(Ax)
N1 ` N ′

πsucc

N2 ` N ′′
(?)

N ′′, F ` S′
(Cut)

N2, F ` S′

N1, N2, F ` N ′⊗S′

N1⊗N2, F ` N ′⊗S′
(Cut)

N,F ` N ′⊗S′

(?) N,F ` S

Now let ϕstream = νX.ϕnat⊗X200

be the formula representing in-201

finite streams of natural num-202

bers, whose occurrences will be203

denoted by S, S′, etc. Let us204

consider the derivation shown205

on the right, where F is an ar-206

bitrary, useless formula occur-207

rence for illustrative purposes.208

It is a valid proof thanks to the thread on S. By cut elimination, the computational behaviour209

of that proof is to take a natural number n, and some irrelevant f , and compute the stream210

n :: (n+ 1) :: (n+ 2) :: . . .. However, unlike in the two previous examples, the result of the211

computation is not obtained in finite time; instead, we are faced with a productive process212

which will produce any finite prefix of the stream when given enough time. The presence of213

the useless formula F illustrates here that weakening may be admissible in µMALL∞ under214

some circumstances, and that cutting against some formulas (F in this case) will form a215

redex that will be delayed forever. These subtleties will show up in the next two sections,216

devoted to showing our two main results.217

3 Focalization218

Focalization in linear logic. MALL connectives can be split in two classes: positive (⊗,⊕,0,1)219

and negative (O,N,>,⊥) connectives. The distinction can be easily understood in terms220

of proof search: negative inferences (O), (N), (>) and (⊥) are reversible (meaning that221

provability of the conclusion transfers to the premisses) while positive inferences require222

choices (splitting the context in (⊗) or choosing between (⊕1) and (⊕2) rules) resulting in a223

possible of loss of provability. Still, positive inferences satisfy the focalization property [3]:224

in any provable sequent containing no negative formula, some formula can be chosen as a225

focus, hereditarily selecting its positive subformulas as principal formulas until a negative226

subformula is reached. It induces the following complete proof search strategy:227

Sequent Γ contains a negative formula Sequent Γ contains no negative formula
Choose any negative formula (e.g. the Choose some positive formula and decompose
leftmost one) and decompose it using it (and its subformulas) hereditarily until

the only possible negative rule. we get to atoms or negative subformulas.

228

Focalization graphs. Focused proofs are complete for proofs, not only provability: any linear229

proof is equivalent to a focused proof, up to cut-elimination. Indeed, focalization can be230

proved by means of proof transformations [18, 20, 6] preserving the denotation of the proof.231

A flexible, modular method for proving focalization that we shall apply in the next sections232

has been introduced by Miller and the third author [20] and relies on focalization graphs.233

The heart of the focalization graph proof technique relies on the fact the positive inference,234

while not reversible, all permute with each other. As a consequence, if the positive layer of235

some positive formula is completely decomposed within the lowest part of the proof, below236

any negative inference, then it can be taken as a focus. Focalization graphs ensure that it is237

always possible: their acyclicity provides a source which can be taken as a focus.238
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Focusing infinitary proofs. The infinitary nature of our proofs interferes with focalization239

in several ways. First, while in µMALL µ and ν can be set to have an arbitrary polarity,240

we will see that in µMALL∞, ν must be negative. Second, permutation properties of the241

negative inferences, which can be treated locally in µMALL, now require a global treatment242

due to infinite branches. Last, focalization graphs strongly rely on the finiteness of maximal243

positive subtrees of a proof: this invariant must be preserved in µMALL∞.244

For simplicity reasons, we restrict our attention to cut-free proofs in the rest of this245

section. The result holds for proofs with cuts thanks to the usual trick of viewing cuts as ⊗.246

3.1 Polarity of connectives247

Let us first consider the question of polarizing µMALL∞ connectives. Unlike in µMALL, we248

are not free to set the polarity of fixed points formulas: consider the proof π of sequent249

` µX.X, νY.Y which alternates inferences (ν) and (µ). Assigning opposite polarities to250

dual formulas (an invariant necessary to define properly cut-elimination in focused proof251

systems), this sequent contains a negative formula; each polarization of fixed points induces252

one focused pre-proof, either πµ which always unrolls µ or πν which repeatedly unrolls ν.253

Only πν happens to be valid, leaving but one possible choice, νX.F negative and µX.F254

positive, resulting in the following polarization:255

I Definition 10. Negative formulas are formulas of the form νX.F , FOG, FNG, ⊥ and256

>, positive formulas are formulas of the form µX.F , F⊗G, F ⊕G, 1 and 0. A µMALL∞257

sequent containing only positive formulas is said to be positive. Otherwise, it is negative.258

The following proposition will be useful in the following:259

I Proposition 11. An infinite branch of a pre-proof containing only negative (resp. positive)260

rules is always valid (resp. invalid).261

3.2 Reversibility of negative inferences262

(?)
` F, POQ

π

` F, P,Q
(O)

` F, POQ
(N)

` FNF, POQ
(⊕1)

` (FNF )⊕ 0, POQ
(ν)

(?) ` F, POQ

The following example with F = νX.(XNX)⊕ 0 shows that, unlike263

in (MA)LL, negative inferences cannot be permuted down locally: no264

occurrence of a negative inference (O) on POQ can be permuted below265

a (N) since it is never available in the left premise. We thus introduce266

a global proof transformation (which could be realized by means of cut, as is usual).267

Negative rules have a uniform structure:
(` Γ,NN

i )1≤i≤n
(rN)

` Γ, N
. Sub-occurrence famil-

ies of N are thus defined as N (N) = (NN
i )1≤i≤n, its slicing index being sl(N) = #N (N).

N F1OF2 ⊥ F1NF2 > νX.F

N (N) {1 7→ {F1, F2}} {1 7→ ∅} {1 7→ {F1}, 2 7→ {F2}} ∅ {1 7→ {F [νX.F/X]}}

The following two definitions define what the reversibility of a proof π, rev(π), is:268

I Definition 12 (π(i,N)). Let π be a proof of ` Γ of last rule (r) and premises π1, . . . , πn.269

If 1 ≤ i ≤ sl(N), we define π(i,N) coinductively:270

if N does not occur in ` Γ, π(i,N) = π;271

if r is the inference on N , then π(i,N) = πi; (which is legal since in this case n = sl(N));272

if r is not the inference on N , then π(i,N) =
π1(i,N) . . . πn(i,N)

(r)
` Γ,NN

i

.273
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I Definition 13 (rev(π)). Let π be a µMALL∞ proof of ` Γ. rev(π) is a pre-proof non-274

deterministically defined as π if ` Γ is positive and, otherwise, when N ∈ Γ and n = sl(N),275

as rev(π) = rev(π(1, N)) . . . rev(π(n,N))
(rN)

` Γ
.276

rev(π) =
π(1, N)

(O)
` F, POQ

=

(?)
` F, P,Q

π

` F, P,Q
(N)

` FNF, P,Q
(⊕1)

` (FNF )⊕ 0, P,Q
(ν)

(?) ` F, P,Q
(O)

` F, POQ

Figure 2 rev(π)

Reversed proofs formalize the requirement for the whole277

negative layer to be reversed:278

I Definition 14. Reversed pre-proofs are defined to be279

the largest set of pre-proofs such that: (i) every pre-proof of280

a positive sequent is reversed; (ii) a pre-proof of a negative281

sequent is reversed if it ends with a negative inference and282

if each of its premises is reversed.283

I Example 15. rev is illustrated on the proof starting this284

subsection (N = POQ, sl(N) = 1) in Figure 2285

I Theorem 16. Let π be a µMALL∞ proof. rev(π) is a286

reversed proof of the same sequent.287

3.3 Focalization Graph288

In this section, we adapt the focalization graphs introduced289

in [20] to our setting. Considering the permutability prop-290

erties of positive inferences in µMALL∞, finiteness of positive trunks and acyclicity of291

focalization graphs will be sufficient to make the proof technique of [20] applicable. In order292

to illustrate this subsection, an example is fully explained in appendix B.5293

I Definition 17 (Positive trunk, positive border, active formulas). Let π be a µMALL∞ proof294

of S. The positive trunk π+ of π is the tree obtained by cutting (finite or infinite) branches295

of π at the first occurrence of a negative rule. The positive border of π is the collection296

of lowest sequents in π which are conclusions of negative rules. P-active formulas of π are297

those formulas of S which are principal formulas of an inference in π+.298

I Proposition 18. The positive trunk of a µMALL∞ proof is always finite.299

I Definition 19 (Focalization graph). Given a µMALL∞ proof π, we define its focalization300

graph G(π) to be the graph whose vertices are the P-active formulas of π and such that301

there is an edge from F to G iff there is a sequent S ′ in the positive border containing a302

negative sub-occurrence F ′ of F and a positive sub-occurrence G′ of G.303

µMALL∞ positive inferences are those of MALL extended with (µ) which is not branching:304

this ensures both that any two positive inferences permute and that the proof of acyclicity of305

MALL focalization graphs can easily be adapted, from which we conclude that:306

I Proposition 20. Focalization graphs are acyclic.307

Acyclicity of the focalization graph implies in particular that it has a source, that is a308

formula P of the conclusion sequent such that whenever one of its subformulas F appears in309

a border sequent, F is negative. This remark, together with the fact that the trunk is finite310

ensures that the positive layer of P is completely decomposed in the positive trunk.311

I Definition 21 (foc(π, P )). Let π be a µMALL∞ proof of ` Γ, P with P a source of π’s312

focalization graph. One defines foc(π, P ) as the µMALL∞ proof obtained by permuting down313

all the positive inferences on P and its positive subformulas (all occurring in π+).314
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I Proposition 22. Let S be a lowest sequent of foc(π, P ) which is not conclusion of a rule on315

a positive subformula of P . Then S contains exactly one subformula of P , which is negative.316

3.4 Productivity and validity of the focalization process317

Reversibility of the negative inferences and focalization of the positive inferences allow to318

consider the following (non-deterministic) proof transformation process:319

Focalization Process: Let π be a µMALL∞ proof of S. Define Foc(π) as follows:320

Asynchronous phase: If S is negative, transform π into rev(π) which is reversed. At321

least one negative inference has been brought to the root of the proof. Apply (corecursively)322

the synchronous phase to the proofs rooted in the lowest positive sequents of rev(π).323

Synchronous phase: If S is positive, let P ∈ S be a source of the associated focalization324

graph. Transform π into a proof foc(π, P ). At least one positive inference on P has been325

brought to the root of the proof. Apply (corecursively) the asynchronous phase to the326

proofs rooted in the lowest negative sequents of foc(π, P ).327

Each of the above phases produces one non-empty phase, the above process is thus328

productive. It is actually a pre-proof thanks to theorem 16 and by definition of foc(π, P ). It329

remains to show that the resulting pre-proof is actually a proof. The following property is330

easily seen to be preserved by both transformations foc and rev and thus holds for Foc(π):331

I Proposition 23. Let π be a µMALL∞ proof, r a positive rule occurring in π and r′ be a332

negative rule occurring below r in π. If r occurs in Foc(π), then r′ occurs in Foc(π), below r.333

I Lemma 24. For any infinite branch γ of Foc(π) containing an infinite number of positive334

rules, there exists an infinite branch in π containing infinitely many positive rules of γ.335

I Theorem 25. If π is a µMALL∞ proof then Foc(π) is also a µMALL∞ proof.336

Proof sketch, see appendix. An infinite branch γ of Foc(π) may either be obtained by337

reversibility only after a certain point, or by alternating infinitely often synchronous and338

asynchronous phases. In the first case it is valid by proposition 11 while in the latter case,339

lemma 24 ensures the existence of a branch δ of π containing infinitely many positive rules340

of γ, with a valid thread t of minimal formula Fm: every rule r of δ in which Fm is principal341

is below a positive rule occurring in γ. Thus r occurs in γ, which is therefore valid. J342

4 Cut elimination343

In this section, we show that any µMALL∞ proof can be transformed into an equivalent344

cut-free derivation. This is done by applying the cut reduction rules described in Section 2,345

possibly in infinite reductions converging to cut-free proofs. As usual with infinitary reductions346

it is not the case that any reduction sequence converges: for instance, one could reduce347

only deep cuts in a proof, leaving a cut untouched at the root. We avoid this problem by348

considering a form of head reduction where we only reduce cuts at the root.349

Cut reduction rules are of two kinds, principal reductions and auxiliary ones. In the350

infinitary setting, principal cut reductions do not immediately contribute to producing a351

cut-free pre-proof. On the contrary, auxiliary cut reductions are productive in that sense. In352

other words, principal rules are seen as internal computations of the cut elimination process,353

while auxiliary rules are seen as a partial output of that process. Accordingly, the former354

will be called internal rules and the latter external rules.355
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` Γ, F ` F⊥,∆
(Cut)

` Γ,∆ . . .
(mcut)

` Σ
−→ ` Γ, F ` F⊥,∆ . . .

(mcut)
` Σ

` Γ, F
` Γ, F ⊕G

` G⊥,∆ ` F⊥,∆
` G⊥NF⊥,∆ . . .

(mcut)
` Σ

−→ ` Γ, F ` F⊥,∆ . . .
(mcut)

` Σ

s1 . . . sn

` Γ, F ` Γ, G
(N)

` Γ, FNG
(mcut)

` Σ, FNG
−→

s1 . . . sn ` Γ, F
(mcut)

` Σ, F
s1 . . . sn ` Γ, G

(mcut)
` Σ, G

(N)
` Σ, FNG

Figure 3 (Cut)/(mcut) and (⊕1)/(N) internal reductions and (N)/(mcut) external reduction.

s1 . . . sn
(mcut)

sWhen analyzing cut reductions, cut commutations can be troublesome. A356

common way to avoid this technicality [13], which we shall follow, is to introduce357

a multicut rule which merges multiple cuts, avoiding cut commutations.358

I Definition 26. Given two sequents s and s′, we say that they are cut-connected on a359

formula occurrence F when F ∈ s and F⊥ ∈ s′. We say that they are cut-connected when360

they are connected for some F . We define the multicut rule as shown above with conclusion361

s and premisses {si}i, where the set {si}i is connected and acyclic with respect to the362

cut-connection relation, and s is the set of all formula occurrences F that appear in some si363

but such that no sj is cut-connected to sj on F .364

From now on we shall work with µMALL∞m derivations, which are µMALL∞ derivations365

in which the multicut rule may occur, though only at most once per branch. The notions366

of thread and validity are unchanged. In µMALL∞m we only reduce multicuts, in a way that367

is naturally obtained from the cut reductions of µMALL∞. A complete description of the368

rules is given in Definition 49, appendix C.1; only the (Cut)/(mcut) and (⊕1)/(N) internal369

reduction cases and the (N)/(mcut) external reduction case are shown in figure 3. As is370

visible in the last reduction, applying an external rule on a multicut may yield multiple371

multicuts, though always on disjoint subtrees.372

We will be interested in a particular kind of multicut reduction sequences, the fair373

ones, which are such that any redex which is available at some point of the sequence will374

eventually have disappeared from the sequence (being reduced or erased), details are provided375

in appendix C.1. We will establish that these reductions eliminate multicuts:376

I Theorem 27. Fair multicut reductions on µMALL∞m proofs produce µMALL∞ proofs.377

Additionnally, if all cuts in the initial derivation are above multicuts, the resulting378

µMALL∞ derivation must actually be cut-free: indeed, multicut reductions never produce379

a cut. Thus Theorem 27 gives a way to eliminate cuts from any µMALL∞ proof π of ` Γ380

by forming a multicut with conclusion ` Γ and π as unique subderivation, and eliminating381

multicuts (and cuts) from that µMALL∞m proof. The proof of Theorem 27 is in two parts. We382

first prove that fair internal multicut reductions cannot diverge (Proposition 37), hence fair383

multicut reductions are productive, i.e., reductions of µMALL∞m proofs converge to µMALL∞384

pre-proofs. We then establish that the obtained pre-proof is a valid proof (Proposition 38).385

Regarding productivity, assuming that there exists an infinite sequence σ of internal386

cut-reductions from a given proof π of Γ, we obtain a contradiction by extracting from π a387
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proof of the empty sequent in a suitably defined proof-system. More specifically, we observe388

that no formula of Γ is principal in the subtree πσ of π visited by σ. Hence, by erasing every389

formula of Γ from πσ, local correctness of the proof is preserved, resulting in a tree deriving390

the empty sequent. This tree can be viewed as a proof in a new proof-system µMALL∞τ which391

is shown to be sound (Proposition 34) with respect to the traditional boolean semantics of392

the µ-calculus, thus the contradiction. The proof of validity of the produced pre-proof is393

similar: instead of extracting a proof of the empty sequent from π we will extract, for each394

invalid branch of π, a µMALL∞τ proof of a formula containing neither 1, >, nor ν formulas,395

contradicting soundness again.396

4.1 Extracting proofs from reduction paths397

We define now a key notion to analyze the behaviour of multicut-elimination: given a398

multicut reduction starting from π, we extract a (slightly modified) subderivation of π which399

corresponds to the part of the derivation that has been explored by the reduction. More400

precisely, we are interested in reduction paths which are sequences of proofs that end with401

a multicut rule, obtained by tracing one multicut through its evolution, selecting only one402

sibling in the case of (N) and (⊗) external reductions. Given such a reduction path starting403

with π, we consider the subtree of π whose sequents occur in the reduction path as premises404

of some multicut. This subtree is obviously not always a µMALL∞ derivation since some of405

its nodes may have missing premises. We will provide an extension of µMALL∞ where these406

trees can be viewed as proper derivations by first characterizing when this situation arises.407

I Definition 28 (Useless sequents, distinguished formula). Let R be a reduction path starting408

with π. A sequent s = (` Γ, F ) of π is said to be useless with distinguished formula F409

when in one of the following cases:410

1. The sequent eventually occurs as a premise of all multicuts of R and F is the principal411

formula of s in π. (Note that the distinguished formula F of a useless sequent s of sort412

(1) must be a sub-occurrence of a cut formula in π. Otherwise, the fair reduction path413

R would eventually have applied an external rule on s. Moreover, F⊥ never becomes414

principal in the reduction path, otherwise by fairness the internal rule reducing F and415

F⊥ would have been applied.)416

2. At some point in the reduction, the sequent is a premise of (N) on FNF ′ or F ′NF which417

is erased in an internal (N)/(⊕) multicut reduction. (In the (⊕1)/(N) internal reduction418

of figure 3, the sequent ` G⊥,∆ is useless of sort (2).)419

3. The sequent is ignored at some point in the reduction path because it is not present in the420

selected multicut after a branching external reduction on F ?F ′ or F ′ ?F , for ? ∈ {⊗,N}.421

(In the (N)/(mcut) external reduction of figure 3, if one is considering a reduction path422

that follows the multicut having ` Γ, F as a premise, then the sequent ` Γ, G is useless423

of sort (3), and vice versa.)424

4. The sequent is ignored at some point in the reduction path because a (⊗)/(mcut) external425

reduction distributes s to the multicut that is not selected in the path. This case will be426

illustrated next, and is described in full details in appendix C.1.427

Note that, although the external reduction for > erases sequents, we do not need to428

consider such sequents as useless: indeed, we will only need to work with useless sequents in429

infinite reduction paths, and the external reduction associated to > terminates a path.430

I Example. Consider a multicut composed of the last example of Section 2 and an arbitrary431

proof of ` F,∆ where F is principal. In the reduction paths which always select the right432
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premise of an external (⊗)/(mcut) corresponding to the N ′⊗S′ formulas, the sequent ` F,∆433

will always be present and thus useless by case (1). In the reduction paths which eventually434

select a left premise, the sequent N2, F ` S′ is useless of sort (3) with S′ distinguished, and435

` F,∆ is useless of sort (4) with F distinguished.436

In order to obtain a proper pre-proof from the sequents occurring in a reduction path,437

we need to close the derivation on useless sequents. This is done by replacing distinguished438

formulas by > formulas. However, a usual substitution is not appropriate here as we are439

really replacing formula occurrence, which may be distributed in arbitrarily complex ways440

among sub-occurrences.441

I Definition 29. A truncation τ is a partial function from Σ∗ to {>,0} such that:442

For any α ∈ Σ∗, if α ∈ Dom(τ), then α⊥ ∈ Dom(τ) and τ(α) = τ(α⊥)⊥.443

If α ∈ Dom(τ) then for any β ∈ Σ+, α.β /∈ Dom(τ).444

I Definition 30 (Truncation of a reduction path). Let R be a reduction path. The truncation445

τ associated to R is defined by setting τ(α) = > and τ(α⊥) = 0 for every formula occurrence446

ϕα that is distinguished in some useless sequent of R.447

The above definition is justified because F and F⊥ cannot both be distinguished, by448

fairness of R. We can finally obtain the pre-proof associated to a reduction path, in a proof449

system slightly modified to take truncations into account.450

451

` τ(α)αi,∆
(τ)

` F,∆
if α ∈ Dom(τ)

I Definition 31 (Truncated proof system). Given a truncation τ , the
infinitary proof system µMALL∞τ is obtained by taking all the rules of
µMALL∞, with the proviso that they only apply when the address of their
principal formula is not in the domain of τ , with the following extra rule:

452

The adress α.i associated with τ(α) in the rule (τ) forbids loops on a (τ) rule. Indeed if453

α ∈ Dom(τ) then α.i /∈ Dom(τ).454

I Definition 32 (Truncated proof associated to a reduction path). Let R be a fair infinite455

reduction path starting with π and τ be the truncation associated to it. We define TR(R)456

to be the µMALL∞τ proof obtained from π by keeping only sequents that occur as premise of457

some multicut in R, using the same rules as in π whenever possible, and deriving useless458

sequents by rules (τ) and (>).459

This definition is justified by definition of τ and because only useless sequents may be460

selected without their premises (in π) being also selected. Notice that the dual F⊥ of a461

distinguished formula F may only occur in R for distinguished formulas of type (1) and (4); in462

these cases F⊥ is never principal in R by fairness. Thus, there is no difficulty in constructing463

TR(R) with a truncature defined on the address of F⊥. Finally, note that TR(R) is indeed464

a valid µMALL∞τ pre-proof, because its infinite branches are infinite branches of π.465

466

(τ),(>)
` F,∆

Πdup

N ` N1⊗N2

Πax

N1 ` N ′
(τ),(>)

N2, F ` S′

N1, N2, F ` N ′⊗S′

N1⊗N2, F ` N ′⊗S′
(Cut)

N,F ` N ′⊗S′

N,F ` S
(mcut)

N ` S,∆

I Example. Continuing the pre-
vious example, we consider the
path where the left premise of
the tensor is selected immediately.
The associated truncation is such
that τ(S′) = > and τ(F ) = > by
(3) and (4) respectively. The de-
rivation TR(R) is shown below,
where Πax denotes the expansion
of the axiom given by Prop 9.

467
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4.2 Truncated truth semantics468

We fix a truncation τ and define a truth semantics with respect to which µMALL∞τ will be469

sound. The semantics is classical, assigning a boolean value to formula occurrences. For470

convenience, we take B = {0,>} as our boolean lattice, with ∧ and ∨ being the usual meet471

and join operations on it. The following definition provides an interpretation of µMALL472

formulas which consists in the composition of the standard interpretation of µ-calculus473

formulas with the obvious linearity-forgetting translation from µMALL to classical µ-calculus.474

I Definition 33. Let ϕα be a pre-formula occurrence. We call environment any function475

E mapping free variables of ϕ to (total) functions of E := Σ∗ → B. We define [ϕα]E ∈ B, the476

interpretation of ϕα in the environment E , by [ϕα]E = τ(α) if α ∈ Dom(τ), and otherwise:477

[Xα]E = E(X)(α), [>α]E = [1α]E = > and [0α]E = [⊥α]E = 0.478

[(ϕ? ψ)α]E = [ϕα.l]E ∧ [ψα.r]E , for ? ∈ {N,⊗}.479

[(ϕ> ψ)α]E = [ϕα.l]E ∨ [ψα.r]E , for > ∈ {⊕,O}.480

[(µX.ϕ)α]E = lfp(f)(α) and [(νX.ϕ)α]E = gfp(f)(α) where f : E → E is given by481

f : h 7→ β 7→
(
τ(β) if β ∈ Dom(τ) and [ϕβ.i]E::X 7→h otherwise

)
.482

When F is closed, we simply write [F ] for [F ]∅.483

We refer the reader to the appendix for details on the construction of the interpretation.484

We simply state here the main result about it.485

I Proposition 34. If ` Γ is provable in µMALL∞τ , then [F ] = > for some F ∈ Γ.486

We only sketch the soundness proof (see appendix C for details) which proceeds by487

contradiction. Assuming we are given a proof π of a formula F such that [F ] = 0, we exhibit488

a branch β of π containing only formulas interpreted by 0. A validating thread of β unfolds489

infinitely often some formula νX.ϕ. Since the interpretation of νX.ϕ is defined as the gfp of490

a monotonic operator f we have, for each occurrence (νX.ϕ)α in β, an ordinal λ such that491

[(νX.ϕ)α] = fλ(
∨
E)(α), where

∨
E is the supremum of the complete lattice E. We show492

that this ordinal can be forced to decrease along β at each fixed point unfolding, contradicting493

the well-foundedness of the class of ordinals.494

I Definition 35. A truncation τ is compatible with a formula ϕα if α /∈ dom(τ) and, for495

any α v β.d ∈ Dom(τ) where d ∈ {l, r, i}, we have that ϕα admits a sub-occurrence ψβ with496

⊗ or N as the toplevel connective of ψ, d ∈ {l, r}, and α.d′ /∈ Dom(τ) for any d 6= d′.497

In other words, a truncation τ is compatible with a formula F if it truncates only sons of498

⊗ or N nodes in the tree of the formula F and at most one son of each such node.499

I Proposition 36. If F is a formula compatible with τ and containing no ν binders, no >500

and no 1, then [F ] = 0.501

4.3 Proof of cut elimination502

Multicut reduction is shown productive and then to result in a valid cut-free proof.503

I Proposition 37. Any fair reduction sequence produces a µMALL∞ pre-proof.504

Proof. By contradiction, consider a fair infinite sequence of internal multicut reductions.505

This sequence is a fair reduction path R. Let τ and TR(R) be the associated truncations506

and truncated proof. Since no external reduction occurs, it means that conclusion formulas507

of TR(R) are never principal in the proof, thus we can transform it into a proof of the empty508

sequent, which contradicts soundness of µMALL∞τ . J509
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I Proposition 38. Any fair mcut-reduction produces a µMALL∞ proof.510

Proof. Let π be a µMALL∞m proof of conclusion ` Γ, and π′ the cut-free pre-proof obtained511

by Prop. 37, i.e., the limit of the multicut reduction process. Any branch of π′ corresponds512

to a multicut reduction path. For the sake of contradiction, assume that π′ is invalid. It513

must thus have an invalid infinite branch, corresponding to an infinite reduction path R. Let514

τ and θ := TR(R) be the associated truncation and truncated proof in µMALL∞τ .515

We first observe that formulas of Γ cannot have suboccurrences of the form 1α or >α516

that are principal in π′. Indeed, this could only be produced by an external rule (>)/(mcut)517

in the reduction path R, but that would terminate the path, contradicting its infiniteness.518

Next, we claim that all threads starting from formulas in Γ are invalid. Indeed, all rules519

applied to those formulas are transferred (by means of external rules) to the branch produced520

by the reduction path. The existence of a valid thread starting from the conclusion sequent521

in θ would thus imply the existence of a valid thread in our branch of π′.522

By the first observation, we can replace all 1 and > subformulas of Γ by 0 without changing523

the derivation, and obviously without breaking its validity. By the second observation, we524

can further modify Γ by changing all ν combinators into µ combinators. The derivation525

is easily adapted (using rule (µ) instead of (ν)) and it remains valid, since the validity of θ526

could not have been caused by a valid thread starting from the root. We thus obtain a valid527

pre-proof θ′ of ` Γ′ in µMALL∞τ , where Γ′ contains no ν, 1 and >.528

We finally show that τ is compatible with any formula occurrence from Γ. Indeed, if τ(β)529

is defined for some suboccurrence ψβ of a formula ϕα ∈ Γ, then it can only be because of530

a useless sequent of sort (3), i.e., a truncation due to the fact that the reduction path has531

selected only one sibling after a branching external rule. We thus conclude, by Proposition 36,532

that all formulas of Γ are interpreted as 0 in the truncated semantics associated to τ , which533

contradicts the validity of θ′ and Proposition 34. J534

5 Conclusion535

We have established focalization and cut elimination for µMALL∞, the infinitary sequent536

calculus for µMALL. Our cut elimination result extends that of Santocanale and Fortier [13],537

but this extension has required the elaboration of a radically different proof technique.538

An obvious direction for future work is now to go beyond linear logic, and notably539

handle structural rules in infinitary cut elimination. But many interesting questions are540

also left in the linear case. First, it will be natural to relax the hypothesis on fairness in541

the cut-elimination result. Other than cut elimination, the other long standing problem542

regarding µMALL∞ and similar proof systems is whether regular proofs can be translated, in543

general, to finitary proofs. Further, one can ask the same question, requiring in addition544

that the computational content of proofs is preserved in the translation. It may well be that545

regular µMALL∞ contains more computations than µMALL; even more so if one considers546

other classes of finitely representable infinitary proofs. It would be interesting to study how547

this could impact the study of programming languages for (co)recursion, and understanding548

links with other approaches to this question [1, 2]. In this direction, we will be interested549

in studying the computational interpretation of focused cut-elimination, providing a logical550

basis for inductive and coinductive matching in regular and infinitary proof systems.551
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A Appendix relative to Section 2628

In this appendix we provide a proof of Proposition 9, but also supplementary material that629

may be useful to better understand µMALL∞, its validity condition and its relationship to630

µMALL. Most of this material is adapted directly from classical observations about µ-calculi,631

with the exception of the translation from µMALL to µMALL∞: it is unpublished, but we632

view it more as folklore than as a contribution of this paper.633

A.1 Details on the validity condition634

We first provide more details and intuitions about the notion of valid thread. If a thread635

(Fi)i∈ω is eventually constant in terms of formula occurrences, it simply means that it traces636

a formula that is never principal in the branch: this formula plays no role in the proof, and637

there is no reason to declare the thread valid. Otherwise, addresses keep growing along638

the thread: at any point in the thread there is a later point where the address increases.639

Forgetting addresses and considering the set S of formulas that appear infinitely often in the640

thread, we immediately see that any two formulas ϕ,ψ ∈ S are co-accessible, i.e., ψ ∈ FL(ϕ).641

Indeed, if Fi = ϕα, there must be some j > i such that Fj = ψβ . In that case, the thread642

is valid iff the minimum of S wrt. the subformula ordering is a ν-formula. As we shall see,643

this definition makes sense because that minimum is always defined. Moreover, it is always644

a fixed point formula, so what the definition really says is that this minimum fixed point645

must be a greatest fixed point for the thread to be valid. All this is justified by the following646

classical observation about µ-calculi, which we restate next in our setting.647

I Proposition 39. Let t = (Fi)i∈ω be a thread that is not eventually constant. The set S of648

formulas that occur infinitely often in t admits a minimum with respect to the subformula649

ordering, and that minimum is a fixed point formula.650

Proof. We assume that all formulas of t occur infinitely often in t, and that Fi = ψα implies651

Fi+1 = ψ′αa for some a ∈ Σ, i.e., Fi+1 is an immediate descendant of Fi. This is without loss652

of generality, by extracting from t the infinite sub-thread of occurrences Fi whose formulas653

are in S and which are principal, i.e., for which Fi+1 6≡ Fi.654

Let |ϕ| be the size of a formula, i.e., the number of connectives used to construct the655

formula. Take any ϕ ∈ S that has minimum size, i.e., |ϕ| ≤ |ψ| for all ψ ∈ S. We shall656

establish that ϕ must in fact be a minimum for the subformula ordering, i.e., ϕ ≤ ψ for657

all ψ ∈ S. It suffices to prove that if Fi = ψα and Fj = ϕαβ , then ϕ ≤ ψ. We proceed by658

induction on β. The result is obvious if β is empty, since one then has ϕ = ψ. Otherwise, we659

distinguish two cases:660

If ψ = ψl ? ψr and Fi+1 = (ψa)αa for some a ∈ {l, r}, we have β = aβ′. By induction661

hypothesis (with α := αa and β := β′) we obtain that ϕ ≤ ψa, and thus ϕ ≤ ψ.662

Otherwise, ψ = σX.ψ′, Fi+1 = (ψ′[ψ/X])αi and β = iβ′. By induction hypothesis,663

ϕ ≤ ψ′[ψ/X]. Since |ϕ| ≤ |ψ|, ϕ is a subformula of ψ′[ψ/X] which cannot strictly contain664

ψ. Thus we either have ϕ = ψ or ϕ ≤ ψ′. In both cases, we conclude immediately.665

We finally show that ϕ must be a fixed point formula. Take any i such that Fi = ϕα. We666

have Fi+1 = ψαa. Assuming that ϕ is not a fixed point expression, it would be of the form667

ϕ1 ? ϕ2 with ψ = ϕi for some 1 ≤ i ≤ 2, contradicting |ϕ| ≤ |ψ|. J668

A.2 Admissibility of the axiom669

We now prove the admissibility of (Ax), by showing that infinite η-expansions are valid.670
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I Proposition (9). Rule (Ax) is admissible in µMALL∞.671

Proof. As is standard, any instance of (Ax) can be expanded by introducing two dual connect-672

ives and concluding by (Ax) on the sub-occurrences. For instance, (Ax) on ` (ϕ⊗ψ)α, (ψ⊥Oϕ⊥)β673

is expanded by using rules (O), (⊗), and then axioms on ` ϕαl, ϕ⊥βr and ` ψαr, ψ⊥βl. In µMALL∞674

we can co-iterate this expansion to obtain an axiom-free pre-proof from any instance of (Ax)675

on ` F,G⊥. On any infinite branch of that pre-proof, there are exactly two threads and676

they are not eventually constant. Let t = (Fi)i∈ω and t′ = (Gi)i∈ω be the corresponding677

sequences of distinct sub-occurrences, i.e., keeping an occurrence only when it is principal.678

We actually have that, for all i, Fi ≡ G⊥i . The minimum of a thread that is not eventually679

constant is necessarily a fixed point formula, thus min(t) is a ν formula iff min(t′) is a µ, and680

one of the two threads validates the branch. J681

A.3 Translating from µMALL to µMALL∞
682

Generalizing the previous construction, we now introduce the functoriality construction,683

which shall be useful to present the translation from the finitary sequent calculus µMALL to684

its infinitary counterpart µMALL∞.685

IDefinition 40. Let F be a pre-formula such that fv(F ) ⊆ {Xi}1≤i≤n, and let ~Π = (Πi)1≤i≤n686

be a collection of pre-proofs of respective conclusions ` Pi, Qi. We define coinductively the687

pre-proof F (~Π) of conclusion ` F⊥[Pi/Xi]1≤i≤n, F [Qi/Xi]1≤i≤n as follows:688

If F = Xi then F (~Π) = Πi up to relocalization, i.e., changing the addresses of occurrences689

in Πi to match the required ones.690

If F = F1⊗F2, then F (~Π) is:

F1(~Π)

` F⊥1 [Pi/Xi]i, F1[Qi/Xi]i

F2(~Π)

` F⊥2 [Pi/Xi]i, F2[Qi/Xi]i
(⊗)

` F⊥2 [Pi/Xi]i, F⊥1 [Pi/Xi]i, (F1⊗F2)[Qi/Xi]i
(O)

` (F⊥2 OF⊥1 )[Pi/Xi]i, (F1⊗F2)[Qi/Xi]i

If F = F1 ⊕ F2, then F (~Π) is:

F1(~Π)

` F⊥1 [Pi/Xi]i, F1[Qi/Xi]i
(⊕1)

` F⊥1 [Pi/Xi]i, (F1 ⊕ F2)[Qi/Xi]i

F2(~Π)

` F⊥2 [Pi/Xi]i, F2[Qi/Xi]i
(⊕2)

` F⊥2 [Pi/Xi]i, (F1 ⊕ F2)[Qi/Xi]i
(N)

` (F⊥2 NF⊥1 )[Pi/Xi]i, (F1 ⊕ F2)[Qi/Xi]i

If F = µX.G then F (~Π) is obtained from applying functoriality on G with F (~Π) as the
derivation for the new free variable Xn+1 := X:

G(~Π, F (~Π))

` G⊥[(νX.G⊥)/X][Pi/Xi]i, G[(µX.G)/X][Qi/Xi]i
(µ)

` G⊥[(νX.G⊥)/X][Pi/Xi]i, (µX.G)[Qi/Xi]i
(ν)

` (νX.G⊥)[Pi/Xi]i, (µX.G)[Qi/Xi]i

If F = 0 then F (~Π) is directly obtained by applying (>) on F⊥[Pi/Xi]i.691

If F = 1 then F (~Π) is obtained by applying rule (⊥) followed by (1).692
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Other cases are treated symmetrically.693

As said above, the construction F (~Π) is a generalization of the infinitary η-expansion,694

where the derivations Πi are plugged where free variables are encountered. In fact, if F is a695

closed pre-formula, then F () is the derivation constructed in the proof of Proposition 9.696

Also note that, since only finitely many sequents may arise in the process of constructing697

F (~Π), and since the construction is entirely guided by its end sequent, the derivation F (~Π)698

is actually regular as long as the derivations Πi are regular as well.699

An infinite branch of F (~Π) either has an infinite branch of some Πi as a suffix, or is only700

visiting sequents of F (~Π) that are not sequents of the input derivations ~Π. In the former701

case, the branch is valid provided that the input derivations are valid. In the latter case, the702

branch contains exactly two dual threads (as in the proof of Proposition 9), one of which must703

be valid. Thus, F (~Π) is a proof provided that the input derivations are proofs. This result is704

however not usable directly to prove the validity of a pre-proof in which we make repeated705

use of functoriality, i.e., one where branches may go through infinitely many successive uses706

of functoriality.707

We now make use of functoriality to translate finitary µMALL proofs (corresponding to708

the propositional fragment of [4]) to infinitary derivations.709

I Definition 41 (µMALL sequent calculus). The sequent calculus for the propositional
fragment of µMALL is a finitary sequent calculus whose rules are the same as those of
µMALL∞, except that the ν rule is as follows:

` S⊥, F [S/X]

` S⊥, νX.F
The ν rule corresponds to reasoning by coinduction. In [4] it is found in a slightly different

form, which can be obtained from the above version by means of cut:

` Γ, S ` S⊥, F [S/X]
` Γ, νX.F

I Definition 42 (Translation from µMALL to µMALL∞). Given a µMALL proof Π of ` Γ, we710

define coinductively the µMALL∞ pre-proof Πi of ` Γ, as follows:711

If Π starts with an inference that is present in µMALL∞, we use the same inference and
proceed co-recursively. For instance,

Π =
Π1

` Γ′, F
Π2

` G,Γ′′

` Γ′, F⊗G,Γ′′
yields Πi =

Πi
1

` Γ′, F
Πi

2

` G,Γ′′

` Γ′, F⊗G,Γ′′
.

Otherwise, Π starts with an instance of the ν rule of µMALL:

Π =
Π1

` S⊥, F [S/X]

` S⊥, νX.F
We transform it as follows, where (F ) denotes a use of the functoriality construction:

Πi =

Πi
1

` S⊥, F [S/X]

Πi

` S⊥, νX.F
(F)

` F⊥[S⊥/X], F [(νX.F )/X]
(Cut)

` S⊥, F [(νX.F )/X]

` S⊥, νX.F
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This construction induces infinite branches, some of which being contained in the functori-712

ality construct, and some of which that encounter infinitely often the sequent ` S⊥, νX.F713

(up-to structural equivalence). Note that a branch that eventually goes to the left of714

the above (Cut) cannot cycle back to ` S⊥, νX.F anymore. It may still be infinite, going715

through other cycles obtained from the translation of other coinduction rules in Π1.716

As a side remark, note that if Π is cut-free, then so is Πi. Of course, if Π is cut-free but717

uses the version of the ν rule that embeds a cut, this is not true anymore.718

I Proposition 43. For any µMALL derivation Π, its translation Πi is a µMALL∞ proof.719

Proof sketch. We have to check that all infinite branches of Πi are valid. Consider one such720

infinite branch. After a finite prefix, the branch must be contained in the pre-proof obtained721

from the translation of a coinduction rule (second case in the above definition). If the branch722

is eventually contained in a functoriality construct, then it contains two dual threads, and is723

thus valid. Otherwise, the branch visits infinitely often (up-to structural equivalence) the724

sequent ` S⊥, νX.F corresponding the our translated coinduction rule. The branch in Πi
725

contains a thread that contains the successive sub-occurrences of νX.F in those sequents.726

More specifically, that formula is principal infinitely often in the thread. It only remains to727

show that it is minimal among formulas that appear infinitely often: this simply follows from728

the fact that formulas encountered along the thread inside the functoriality construct (F ) all729

contain νX.F as a subformula. J730

B Appendix relative to Section 3731

In this appendix, we first prove results corresponding to Section 3 and then develop a732

complete example of focusing process, in order to examplify the different concepts and objects733

defined in Section 3:734

reversibility of negative inference;735

focalization graph;736

focusing on positive inference;737

stepwise construction, by alternation of the two above – asynchronous and synchronous –738

phases, of a focusing proof from any given proof.739

B.1 Polarity of connectives740

I Proposition (11). An infinite branch of a pre-proof containing only negative (resp. positive)741

rules is always valid (resp. invalid).742

Proof. An infinite negative branch contains only greatest fixed points. Among the threads,743

some are not eventually constant and their minimal formulas are ν-formulas: they are valid744

threads.745

An infinite positive branch cannot be valid since for any non-constant thread t, min(t),746

its minimal formula, is a µ-formula. J747

B.2 Reversibility748

Before proving that rev actually builds a reversed proof, we first consider a simplified proof749

transformation for a proof π of a sequent ` Γ, N , rev0(π,N), the effect of which being to750

reverse only the topmost connective of N . It is defined similarly to rev except that the751

procedure is not called on the subproofs contrarily to definition 13.752
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I Definition 44 (rev0(π,N)). We define rev0(π,N) to be the pre-proof

π(1, N) . . . π(sl(N), N)
(rN)

` Γ, N
.

I Proposition 45. Let π be a µMALL∞ proof of ` Γ, N . rev0(π,N) is a µMALL∞ proof.753

Proof. The reader will easily check that any infinite branch β of rev0(π,N) is obtained from754

a branch α of π, either of the form (rN) · α when α does not contain an inference on N or755

(rN) · α1 . . . αn−1 · αn+1 . . . where αn has N a principal formula (occurrence). Validating756

threads are therefore preserved. J757

We can now consider the general case of rev:758

I Theorem (16). Let π be a µMALL∞ proof. rev(π) is a reversed proof of the same sequent.759

Proof. rev is obviously productive: each recursive call is guarded. Inferences of rev(π) are760

locally valid: if π is a preproof, so is rev(π).761

If moreover π is a proof, infinite branches of rev(π) are valid: indeed, infinite branches of762

rev(π) are either fully negative (and therefore valid) or after a certain point they coincide763

with inferences of an infinite branch of π and their validity follows that of π.764

The resulting proof is obviously shown to be reversed: we do not find any positive765

inference on any branch of rev(π), until the first positive sequent is reached. J766

B.3 Focalization graphs767

I Proposition (18). The positive trunk of a µMALL∞ proof is always finite.768

Proof. The positive trunk of a proof cannot have infinite branches, because they would be769

infinite positive branches of the original proof, thus necessarily invalid by proposition 11. J770

I Proposition (20). Focalization graphs are acyclic.771

Even though the proof directly adapts the argument from [20], we provide it for com-772

pleteness:773

Proof. We prove the result by reductio ad absurdum. Let S be a positive sequent with a774

proof π. Let π+ be the corresponding positive trunk and G the associated Focalization Graph.775

Suppose that G has a cycle and consider such a cycle of minimal length (F1 → F2 → · · · →776

Fn → F1) in G and let us consider S1, . . . ,Sn sequents of the border justifying the arrows of777

the cycle.778

These sequents are actually uniquely defined or the exact same reason as in MALL [20].779

With the same idea we can immediately notice that the cycle is necessarily of length n ≥ 2780

since two ≺-subformulas of the same formula can never be in the same sequent in the border781

of the positive trunk.782

Let S0 be
∧n
i=1 Si be the highest sequent in π such that all the Si are leaves of the tree783

rooted in S0. We will obtain the contradiction by studying S0 and we will reason by case on784

the rule applied to this sequent S0:785

the rule cannot be (1) rule since this rule produces no premiss and thus we would have786

an empty cycle which is non-sens. Any rule with no premiss would lead to the same787

contradiction.788
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If the rule is one of (⊕i) or (µ), then the premiss S ′0 of the rule would also satisfy789

the condition required for S0 (all the Si would be part of the proof tree rooted in S ′0)790

contradicting the maximality of S0. If the rule is any other non-branching rule, maximality791

of S0 would also be contradicted.792

Thus the rule shall be branching: it shall be a (⊗). Write SL and SR for the left and793

right premisses of S0. Let G = GL⊗GR be the principal formula in S0 and let F be the794

active formula of the Trunk such that F ≺ G.795

There are two possibilities:796

797

(i) either F ∈ {F1, . . . , Fn} and F is the only formula of the cycle having at the same798

time ≺-subformulas in the left premiss and in the right premiss,799

800

(ii) or F /∈ {F1, . . . , Fn} and no formula of the cycle has ≺-subformulas in both premisses.801

Let thus IL (resp. IR) be the sets of indices of the active formulas of the root S having802

(≺-related) subfomulas only in the left (resp. right) premiss. Clearly neither IL nor IR803

is empty since it would contradict the maximality of S0 . Indeed if IL = ∅, then SR804

satisfies the condition of being dominated by all the Si, 1 ≤ i ≤ n and S0 is not maximal805

anymore. By definition of the two sets of indices we have of course IL ∩ IR = ∅ and the806

only formula of the cycle possibly not in IL ∪ IR is F if we are in the case (i): all other807

formulas in the cycle have their index either in IL or in IR.808

As a consequence there must be an arrow in the cycle (and thus in the graph) from a809

formula in IL to a formula in IR (or the opposite). Let i ∈ IL and j ∈ IR be such indexes810

(say for instance Fi → Fj in G) and let S ′ be the sequent of the border responsible for811

this edge. S ′ contains F ′i and F ′j and by definition of the sets IL and IR, S ′ cannot be in812

the tree rooted in S0 which is in contradiction with the way we constructed S0.813

Then there cannot be any cycle in the focalization graph. J814

I Proposition (22). Let S be a lowest sequent of foc(π, P ) which is not conclusion of a815

rule on a positive subformula of P . Then S contains exactly one subformula of P , which is816

negative.817

Proof. foc(π, P ) is such that the maximal prefix containing only rules applied to P and818

its positive subformulas decomposes P up to its negative subformulas. Uniqueness of the819

subformula in the case of MALL, treated in [20], can be directly adapted here. J820

B.4 Productivity and validity of the focalization process821

I Proposition (23). Let π be a µMALL∞ proof, r a positive rule occurring in π and r′ be a822

negative rule occurring below r in π. If r occurs in Foc(π), then r′ occurs in Foc(π), below r.823

Proof. The proposition amounts to the simple remark that none of the transformation we824

do, for foc and rev, will ever permute a positive below a negative.825

The proposition is thus satisfied by both transformations foc and rev and thus holds for826

Foc(π) which results from the iteration of the reversibility and focalization processes. J827

I Lemma (24). For any infinite branch γ of Foc(π) containing an infinite number of positive828

rules, there exists an infinite branch in π containing infinitely many positive rules of γ.829

Proof. The lemma results from a simple application of Koenig’s lemma. J830

I Theorem (25). If π is a µMALL∞ proof then Foc(π) is also a µMALL∞ proof.831
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Proof. Let γ be an infinite branch of Foc(π). If, at a certain point, γ is obtained by832

reversibility only, then it contains only negative rules and is therefore valid.833

Otherwise, γ has been obtained by alternating infinitely often focalization phases foc and834

reversibility phases rev as described above. It therefore contains infinitely many positive835

inferences. By Lemma 24, there exists an infinite branch δ of π containing an infinite number836

of positive rules of γ. Since δ is valid, it contains a valid thread t.837

Let Fm be the minimal formula of thread t, a ν-formula, and (ri)i∈ω the rules of δ in838

which Fm is the principal formula.839

For any i, there exists a positive rule r′i occurring in γ which is above ri and ri therefore840

also appears in γ by Proposition 23, which is therefore valid. J841

B.5 An Example of Focalization842

To conclude this section of the appendices, we present a detailed example of a focalization843

process in order to illustrate the material developped in the section of the paper devoted to844

focalization.845

846

Let us consider the following proof of sequent

` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), (µX.X)⊗1.

...
` νX.X,1 (ν)

...
` νX.X,0 (ν)

` (νX.X)⊗(νX.X),1,0
(⊗)

` (νX.X)⊗(νX.X),1O0
(O)

...
` νX.X, µX.X (ν), (µ)

` νX.X, µX.X (ν)

` (νX.X)⊗(νX.X), (νX.X)⊗(1O0), µX.X
(⊗)

` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), µX.X
(⊕2)

` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), µX.X
(µ)

` 1 (1)

` 0⊕ ((νX.X)⊗(r)), (s)⊗(1O0), (µX.X)⊗1
(⊗)

The Positive Trunk corresponding to this proof is:

` (νX.X)⊗(νX.X),1O0 ` νX.X, µX.X
` (νX.X)⊗(νX.X), (νX.X)⊗(1O0), µX.X

(⊗)

` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), µX.X
(⊕2)

` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), µX.X
(µ)

` 1 (1)

` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), (µX.X)⊗1
(⊗)

and the Border is made of only two sequents:847

{` (νX.X)⊗(νX.X),1O0 ; ` νX.X, µX.X}

the Active Formulas of the positive trunk are thus:848

0⊕ ((νX.X)⊗(νX.X))849

(νX.X)⊗(1O0)850

(µX.X)⊗1851
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the Focalization Graph, which has thus those three formulas as vertices, is the following:852

(µX.X)⊗1←− (νX.X)⊗(1O0) −→ 0⊕ ((νX.X)⊗(νX.X))

which is indeed acyclic and has a single source, (νX.X)⊗(1O0), which we pick as focus.853

By rewriting the Prositive Trunk we arrive at
π1

` 0⊕ ((νX.X)⊗(νX.X)),1O0
π2

` νX.X, (µX.X)⊗1
` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), (µX.X)⊗1

(⊗)

with

π1 =

...
` νX.X,1 (ν)

...
` νX.X,0 (ν)

` (νX.X)⊗(νX.X),1,0
(⊗)

` (νX.X)⊗(νX.X),1O0
(O)

` 0⊕ ((νX.X)⊗(νX.X)),1O0
(⊕2)

and π2 =

...
` νX.X, µX.X (ν), (µ)

` νX.X, µX.X (ν)

` νX.X, µX.X (µ) ` 1 (1)

` νX.X, (µX.X)⊗1
(⊗)

and we continue by focalizing π1 and π2.854

As for π1, its conclusion is a negative sequent, so that one first considers rev(π1):

rev(π1) =

...
` νX.X,1 (ν)

...
` νX.X,0 (ν)

` (νX.X)⊗(νX.X),1,0
(⊗)

` 0⊕ ((νX.X)⊗(νX.X)),1,0
(⊕2)

` 0⊕ ((νX.X)⊗(νX.X)),1O0
(O)

rev(π1) is actually already focused: the conclusion of

...
` νX.X,1 (ν)

...
` νX.X,0 (ν)

` (νX.X)⊗(νX.X),1,0
(⊗)

` 0⊕ ((νX.X)⊗(νX.X)),1,0
(⊕2)

is a positive sequent and its positive trunk is:

` νX.X,1 ` νX.X,0
` (νX.X)⊗(νX.X),1,0

(⊗)

` 0⊕ ((νX.X)⊗(νX.X)),1,0
(⊕2)

This positive trunk contains only one active formula which therefore is automatically chosen855

as a focus (and the positive trunk actually already focused on it).856

Subproofs
...

` νX.X,1 (ν)
...

` νX.X,0 (ν)

are infinite negative branches and therefore reversed, focused proofs.857

As for π2, its conclusion is also a negative sequent so that we build rev(π2) which turns858

out to be focused as it is reduced to an infinite negative branch of (ν) rules:859
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rev(π2) =

...
` νX.X, (µX.X)⊗1

(ν)

To sum up, the focused proof associated with our starting proof object is:860

...
` νX.X,1 (ν)

...
` νX.X,0 (ν)

` (νX.X)⊗(νX.X),1,0
(⊗)

` 0⊕ ((νX.X)⊗(νX.X)),1,0
(⊕2)

` 0⊕ ((νX.X)⊗(νX.X)),1O0
(O)

...
` νX.X, (µX.X)⊗1

(ν)

` 0⊕ ((νX.X)⊗(νX.X)), (νX.X)⊗(1O0), (µX.X)⊗1
(⊗)

C Appendix relative to Section 4861

C.1 Detailed definitions862

We first give a detailed description of the multicut reduction rules. In order to treat the863

external reduction for the tensor, we first need to introduce a few preliminary definitions.864

Given a sequent ` Γ,∆, F⊗G that is a premise of a multicut, we need to define which part865

of the multicut is connected to Γ and which part is connected to ∆. These two sub-nets,866

respectively called CΓ and C∆, will be split apart in the external tensor reduction.867

I Definition 46. We call cut net any set of sequents {si}i that forms a valid set of premises868

for the multicut rule, i.e., a connected acyclic graph for the cut-connection relation. The869

conclusion of a cut net is the conclusion that the multicut rule would have with the cut net as870

premise, i.e., the set of formula occurrences that appear in the net but not as cut formulas.871

I Definition 47. LetM be a cut net, and F be a formula occurrence appearing in some872

s ∈M. We define CF ⊆M as follows. If F⊥ ∈ s′ for some s′ ∈M, then CF is the connected873

component ofM\{s} containing s′. Otherwise, CF = ∅. If ∆ is a set of formula occurrences,874

we define C∆ :=
⋃
F∈∆ CF .875

I Proposition 48. Let s = ` F,∆,Γ be a sequent, andM = {s}∪C be a cut net of conclusion876

` F,Σ. One has C = C∆
⊎
CΓ. Moreover, {` Γ} ∪ CΓ and {` ∆} ∪ C∆ are cut nets and, if877

ΣΓ and Σ∆ are their respective conclusions, we have Σ = Σ∆
⊎

ΣΓ.878

I Definition 49 (Multicut reduction rules). Principal and external reductions are re-
spectively defined in Figure 4 and 5. Internal reduction is the union of merge and principal
reductions. Merge reduction is defined as follows, with r = (merge, {F, F⊥}):

C
` ∆, F ` Γ, F⊥

(Cut)
` ∆,Γ

(mcut)
` Σ

−→
r

C ` ∆, F ` Γ, F⊥
(mcut)

` Σ

We can now provide more explicit notions of reduction sequences and fairness.879

I Definition 50. A multicut reduction sequence is a finite or infinite sequence σ =880

(πi, ri)i∈λ, with λ ∈ ω + 1, where the πi, ri are pairs of µMALL∞m proofs and ri is label881

identifying a multicut reduction rule and, whenever i+ 1 ∈ λ, πi −→
ri

πi+1.882

The following definition of fair reduction is standard from rewriting theory (see for883

instance chapter 9 of [25], definition 4.9.10):884
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C
` ∆, F ` Γ, G

(⊗)
` ∆,Γ, F⊗G

` Θ, G⊥, F⊥
(O)

` Θ, G⊥OF⊥
(mcut)

` Σ
−→
r

C ` ∆, F ` Γ, G ` Θ, G⊥, F⊥
(mcut)

` Σ

C
` ∆, F2 ` ∆, F1

(N)
` ∆, F2NF1

` Γ, F⊥i
(⊕i)

` Γ, F⊥1 ⊕ F⊥2
(mcut)

` Σ
−→
r

C ` ∆, Fi ` Γ, F⊥i
(mcut)

` Σ

C
` ∆, F [µX.F/X]

(µ)
` ∆, µX.F

` Γ, F⊥[νX.F⊥/X]
(ν)

` Γ, νX.F⊥
(mcut)

` Σ
−→
r

C ` ∆, F [µX.F/X] ` Γ, F⊥[νX.F⊥/X]
(mcut)

` Σ

C
` Γ

(⊥)
` Γ,⊥

(1)
` 1

(mcut)
Σ

−→
r

C ` Γ
(mcut)

Σ

Figure 4 Principal reductions, where r = (principal, {F, F⊥}) with {F, F⊥} the principal formulas
that have been reduced.

C
` ∆, F ` Γ, G

(⊗)
` ∆,Γ, F⊗G

(mcut)
` Σ∆,ΣΓ, F⊗G

−→
r

C∆ ` ∆, F
(mcut)

` Σ∆, F

CΓ ` Γ, G
(mcut)

` ΣΓ, G
(⊗)

` Σ∆,ΣΓ, F⊗G

C
` ∆, F,G

(O)
` ∆, FOG

(mcut)
` Σ, FOG

−→
r

C ` ∆, F,G
(mcut)

` Σ, F,G
(O)

` Σ, FOG

C
` ∆, F ` ∆, G

(N)
` ∆, FNG

(mcut)
` Σ, FNG

−→
r

C ` ∆, F
(mcut)

` Σ, F
C ` ∆, G

(mcut)
` Σ, G

(N)
` Σ, FNG

C
` ∆, Fi

(⊕i)
` ∆, F1 ⊕ F2

(mcut)
` Σ, F1 ⊕ F2

−→
r

C ` ∆, Fi
(mcut)

` Σ, Fi
(⊕i)` Σ, F1 ⊕ F2

C
(>)

` ∆,>α
(mcut)

` Σ,>α
−→
r

(>)
` Σ,>α

C
` ∆

(⊥)
` ∆,⊥α

(mcut)
` Σ,⊥α

−→
r

C ` ∆
(mcut)

` Σ
(⊥)

` Σ,⊥α

(1)
` 1

(mcut)
` 1

−→
r

(1)
` 1

Figure 5 External reductions rules, where r = (ext, F ) and F is the formula occurrence that is
principal after the rule application.
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I Definition 51 (Fair reduction sequences). A multicut reduction sequence (πi, ri)i∈λ is885

fair if for every i ∈ λ and r such that πi −→
r

π′, there is some j ≥ i, j ∈ λ, such that πj886

contains no residual of r.887

Fairness is defined in the same way for a reduction path rather than a reduction sequence.888

In that case, fairness can be rephrased in a simpler way: A multicut reduction path889

(πi, ri)i∈λ is fair if for every i ∈ λ and r such that πi −→
r

π′, there is some j ≥ i, j ∈ λ,890

such that r has disappeared from πj+1 (or: rj is r or rj erases r).891

Note that reduction paths issued from a fair reduction sequence are always fair.892

We end this section with more details on definition 28, which defines useless sequents.
Useless sequents of sort (3) and (4) are useless only because we are considering a reduction
path and not a reduction sequence. Writing⇒ for the reduction steps associated to reduction
paths, we can more explicitly say that the sequent ` Γ, Fi is useless of sort (3) with
distinguished formula Fi if, at some point in the reduction path, one of the following
reductions is performed (with {i, j} = {1, 2}):

C
` Γ, F1 ` Γ, F2

(N)
` Γ, F1NF2

(mcut)
` Σ, F1NF2

=⇒
ri

C ` Γ, Fj
(mcut)

` Σ, Fj

C
` Γ, Fi ` ∆, Fj

(⊗)
` ∆,Γ, F1⊗F2

(mcut)
` Σ∆,ΣΓ, F1⊗F2

=⇒
ri

C∆ ` ∆, Fj
(mcut)

` Σ∆, Fj

Moreover, the second reduction renders all sequents of CΓ useless of sort (4). Their893

distinguished formulas are cut formulas, chosen based on a traversal of the acyclic graph CΓ,894

in a way which ensures that G and G⊥ are never both distinguished. In particular, for each895

s′ ∈ CΓ that is cut-connected to ` Γ, Fi on G, we choose G⊥ as the distinguished formula of896

s′. More precisely, we define the distiguished formulas of CΓ inductively as follows:897

The distinguished formula of Γ, Fi is Fi.898

If the distinguished formula of a sequent s has been defined, and if s′ cut-connected to s899

on G ∈ s′, we choose G as the distinguished formula of s′.900

Notice that two dual cut formulas G and G⊥ can never both be distinguished.901

C.2 Truncated truth semantics902

In order to develop the soundness argument for the interpretation of truncated formula903

occurrences, we need to work with a slightly enriched notion of formula. We thus introduce904

below a generalization of formulas and of the interpretation of Definition 33.905

I Definition 52. Marked pre-formulas are built over the following syntax, where θ is an
ordinal:

ϕ,ψ ::= 0 | > | ϕ⊕ ψ | ϕNψ | ⊥ | 1 | ϕOψ | ϕ⊗ψ | µX.ϕ | νθX.ϕ | Xwith X ∈ V.

A marked formula is a marked pre-formula with no free variables. A marked formula906

occurrence is given by a marked formula ϕ and an address α and is written ϕα.907

I Definition 53. Let
∨
E be the truncation α 7→ >. Let f be an operator over E. We define908

the iterations of f starting from
∨
E by:909
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f0(
∨
E) =

∨
E;910

fδ(
∨
E) = f(fλ(

∨
E)) for every successor ordinal δ = λ+ 1;911

fδ(
∨
E) =

⋂
λ<δ

fλ(
∨
E) for every limit ordinal δ.912

We define the interpretation of a marked formula occurrence as follows, generalizing913

Definition 33:914

I Definition 54. Let ϕα be a marked formula occurrence and E be an environment, i.e.,915

a function mapping every free variable of ϕ to an element of E. We define [ϕα]E ∈ B, the916

interpretation of ϕα in the environment E as follows: if α ∈ Dom(τ) then [ϕα]E = τ(α);917

otherwise:918

[Xα]E = E(X)(α), [>α]E = >, [0α]E = 0, [1α]E = > and [⊥α]E = 0.919

[(ϕ? ψ)α]E = [ϕα.l]E ∧ [ψα.r]E , for ? ∈ {N,⊗}.920

[(ϕ> ψ)α]E = [ϕα.l]E ∨ [ψα.r]E , for > ∈ {⊕,O}.921

[(µX.ϕ)α]E = lfp(f)(α) and [(νXθ.ϕ)α]E = fθ(
∨
E)(α) where f : E → E is defined by:

f : h 7→ β 7→

{
τ(β) if β ∈ Dom(τ)
[ϕβ.i]E,X 7→h otherwise.

We denote by O(ϕ,X, E) the operator f and we set [ϕ]E := (α 7→ [ϕα]E).922

As is standard, the least fixed point of f is guaranteed to exist in the above definition923

because [ϕ]E is a monotonic operator in the complete lattice E, obtained by lifting the lattice924

B where 0 ≤ > with a pointwise ordering.925

I Proposition 55 (Cousot & Cousot). Let λ the least ordinal such that the class {δ : δ ∈ λ}926

has a cardinality greater than the cardinality Card(E). Let f be a monotonic operator over927

E. The sequence (fδ(
∨
E))δ∈λ is a stationary decreasing chain, its limit fλ(

∨
E) is the928

greatest fixed point of f .929

Let F be the marked formula occurrence obtained from F by marking every ν binder by930

λ. As a consequence of Proposition 55, one has that [F ] = [F ].931

I Lemma 56. Let ϕ,ψ be marked pre-formulas such that X /∈ fv(ψ). One has:

[ϕα]E,X 7→[ψ]E = [(ϕ[ψ/X])α]E .

Proof. The proof is by induction on ϕ. We treat only the cases where ϕ is a fixed point932

formula; the other cases are immediate.933

Suppose that ϕ = νY θ.ξ and let f = O(ξ, Y, E , X 7→ [ψ]E) and g = O(ξ[ψ/X], Y, E). By934

induction hypothesis one has fθ(
∨
E) = gθ(

∨
E), which concludes this case.935

Suppose now that ϕ = µY.ξ, then we have:

[(µY.ξ)α]E,X 7→[ψ]E = lfp(O(ξ, Y, E , X 7→ [ψ]E))(α)
∗= lfp(O(ξ, Y, E , X 7→ [ψ]E,Y 7→h))(α)
IH= lfp(O(ξ[ψ/X], Y, E))(α)
= [(µY.ξ[ψ/X])α]E

(*) We are considering capture-free substitutions, hence Y /∈ fv(ψ) and [ψ]E,Y 7→f = [ψ]E . J936

An immediate consequence of this proposition is that the interpretation of a least fixed937

point formula is equal to the interpretation of its unfolding:938
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I Lemma 57. If α /∈ Dom(τ), [(µX.ϕ)α]E = [(ϕ[µX.ϕ/X])α.i]E939

Proof. We set f = O(ϕ,X, E). Let us notice first that for all α ∈ Σ∗, one has [(µX.ϕ)α]E =
lfp(f)(α). Indeed, one has the equality by definition when α /∈ Dom(τ) and it is easy to prove
it when α ∈ Dom(τ) since both sides are equal to τ(α).

[(µX.ϕ)α]E = lfp(f)(α)
= [ϕα.i]E,X 7→lfp(f)

= [ϕα.i]E,X 7→[µX.ϕ]E

= [(ϕ[µX.ϕ/X])α.i]E

J940

I Lemma 58. If [(νXθ.ϕ)α]E = 0 and α /∈ Dom(τ) then there is an ordinal γ < θ s.t.941

[(ϕ[νXγ .ϕ/X])α.i]E = 0.942

Proof. We set f = O(ϕ,X, E). If θ is a successor ordinal δ + 1, then:

[(νXθ.ϕ)α]E = fδ+1(
∨
E)(α)

= [ϕα.i]E,X 7→f
δ(
∨
E)

= [ϕα.i]E,X 7→[νXδ.ϕ]E

= [(ϕ[νXδ.ϕ/X])α.i]E

We take γ to be the ordinal δ and we have obviously that [(ϕ[νXγ .ϕ/X])α.i]E = 0.943

If θ is a limit ordinal, then:

[(νXθ.ϕ)α]E = fθ(
∨
E)(α)

=
⋂
β<θ

fβ(
∨
E)

=
⋂

δ+1<θ
fδ+1(

∨
E)

Hence there is a successor ordinal δ + 1 such that [(νXθ.ϕ)α]E = fδ+1(
∨
E)(α) and we944

continue as before. J945

We prove easily the following lemma by induction on F :946

I Lemma 59. Let F be an (unmarked) formula occurrence. One has [F⊥] = [F ]⊥.947

We can finally establish our soundness result:948

I Proposition (34). If ` Γ is provable in µMALL∞τ , then [F ] = > for some F ∈ Γ.949

Proof. If F is a marked formula occurrence, we denote by F ∗ the formula occurrence obtained950

by forgetting the marking information.951

Suppose that ` Γ has a µMALL∞τ proof π and that [F ] = 0 for all F ∈ Γ. We will952

construct a branch γ = s0s1 . . . of π and a sequence of functions f0, f1, . . . where fi maps953

every formula occurrence G of si to a marked formula occurrence fi(G) such that [fi(G)] = 0954

and fi(G)∗ = G unless G = ϕα.i with α ∈ Dom(τ). We set s0 = Γ and f0(F ) = F . One has955

[F ] = [F ] = 0. Suppose that we have constructed si and fi. We construct si+1 depending956

on the rule applied to si:957

If the rule is a logical rule, G being principal in si, we set Gm := fi(G), we have the958

following cases:959
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If G = HOK, then Gm is of the form Gm = HmOKm. We set si+1 to be the960

unique premise of si, fi+1(H) = Hm and fi+1(K) = Km. Since [Gm] = 0 and961

[Gm] = [Hm] ∨ [Km], one has [Gm] = 0 and [Km] = 0. For every other formula962

occurrence L of si+1 we set fi+1(L) = fi(L).963

If G = H ⊕K, we proceed exactly in the same way as above.964

If G = H⊗K, then Gm is of the form Gm = Hm⊗Km. Since [Gm] = 0 and [Gm] =965

[Hm] ∧ [Km], one has [Hm] = 0 or [Km] = 0. Suppose wlog that [Hm] = 0. We set966

si+1 to be the premise of si that contains H and fi+1(H) = Hm. For every other967

formula occurrence L of si+1 we set fi+1(L) = fi(L).968

If G = HNK, we proceed exactly in the same way as above.969

If G = µX.K, then Gm is of the form Gm = µX.Km. We set si+1 to be the unique970

premise of si and fi+1(K[G/X]) = Km[Gm/X]. By Corollary 57 and since [Gm] = 0,971

one has [Km[Gm/X]] = 0. For every other formula occurrence L of si+1, we set972

fi+1(L) = fi(L).973

If G = νX.H, then Gm is of the form Gm = νXθ.Km. Let si+1 be the unique974

premise of si. By corollary 58 and since [Gm] = 0, there is an ordinal δ < θ such that975

[Km[νXδ.Km/X]] = 0. We set fi+1(H[G/X]) = Km[νXδ.Km/X] and for every other976

formula occurrence L of si+1, we set fi+1(L) = fi(L).977

Suppose that the rule applied to si is a cut on the formula occurrence G. By Lemma 59,978

either [G] = 0 or [G⊥] = 0, suppose wlog that [G] = 0. We set si+1 to be the premise of979

si containing G, fi+1(G) ≡ G and for every other formula occurrence L of si+1, we set980

fi+1(L) ≡ fi(L).981

If the rule applied to si is the rule (τ) with a principal formula G = ϕα, then α ∈ Dom(τ)982

and fi(G) = ψα where ψ∗ = ϕ. Hence [fi(G)] = τ(α). By construction [fi(G)] = 0, hence983

τ(α) = 0 and [τ(α)α.i] = 0. We set si+1 to be the unique premise of si.984

Since π is a valid pre-proof, its branch γ must contain a valid thread t = F0F1 . . .. Let985

νX.ϕ be the minimal formula of t and i0i1 . . . be the sequence of indices where νX.ϕ gets986

unfolded. By construction, for all k > 0 one has fik(Fik) = νXθk .Gk and the sequence of987

ordinals (θk)k is strictly decreasing, which contradicts the well-foundedness of ordinals. J988

We finally prove Proposition 36, generalized as follows:989

I Proposition 60. Let ϕα be a pre-formula occurrence compatible with τ and containing no990

ν binders, no > and no 1 subformulas. Let E be an environment such that for all β /∈ Dom(τ),991

E(X)(β) = 0. We have [ϕα]E = 0.992

Proof. The proof is by induction on ϕ.993

The cases when ϕ = 0 or ⊥ are trivial.994

If ϕ = X, then [Xα]E = E(X)(α) = 0 by hypothesis on E and since α /∈ Dom(τ) by995

compatibility with τ .996

If ϕ = ξ > ψ, where > ∈ {⊕,O}, then [(ξ > ψ)α]E = [ξα.l]E ∨ [ψα.r]E . Since (ξ > ψ)α997

is compatible with τ , one has α.l /∈ Dom(τ) and α.r /∈ Dom(τ). Indeed, if a formula998

is compatible with a truncation τ , then τ cannot truncate a son of ⊕ or a O node.999

We can thus apply our induction hypothesis, obtaining [ξα.l]E = [ψα.r]E = 0, hence1000

[(ξ > ψ)α]E = 0.1001

If ϕ = ξ ? ψ, where ? ∈ {N,⊗}, then [(ξ ? ψ)α]E = [ξα.l]E ∧ [ψα.r]E . Since (ξ ? ψ)α1002

is compatible with τ , one has α.l /∈ Dom(τ) or α.r /∈ Dom(τ). Indeed, if a formula is1003

compatible with a truncation τ , then τ cannot truncate both sons of a N or a ⊗ node.1004

We conclude by induction as before on the subformula that is not truncated, and which1005

is thus still compatible with τ .1006
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If ϕ = µX.ψ, then [µX.B]E = lfp(f)(τ) where f is as in the definition 33. By Cousot’s1007

theorem [9], [(µX.B)α]E =
∨
δ<λ ϕ

δ(
∧
E)(α). We show by an easy transfinite induction1008

that for all δ < λ and β /∈ Dom(τ), we have ϕδ(
∧
E)(β) = 0. This concludes the proof.1009

J1010


	Introduction
	MALL and its infinitary proof system MALL
	Focalization
	Polarity of connectives
	Reversibility of negative inferences
	Focalization Graph
	Productivity and validity of the focalization process

	Cut elimination
	Extracting proofs from reduction paths
	Truncated truth semantics
	Proof of cut elimination

	Conclusion
	Appendix relative to Section 2
	Details on the validity condition
	Admissibility of the axiom
	Translating from MALL to MALL

	Appendix relative to Section 3
	Polarity of connectives
	Reversibility
	Focalization graphs
	Productivity and validity of the focalization process
	An Example of Focalization

	Appendix relative to Section 4
	Detailed definitions
	Truncated truth semantics


