
HAL Id: hal-01339326
https://hal.inria.fr/hal-01339326

Submitted on 29 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Scale Anisotropic Mesh Adaptation for
Time-Dependent Problems

Frédéric Alauzet, Adrien Loseille, Géraldine Olivier

To cite this version:
Frédéric Alauzet, Adrien Loseille, Géraldine Olivier. Multi-Scale Anisotropic Mesh Adaptation for
Time-Dependent Problems. [Research Report] RR-8929, INRIA Saclay - Ile-de-France. 2016, pp.42.
�hal-01339326�

https://hal.inria.fr/hal-01339326
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
89

29
--

FR
+E

N
G

RESEARCH
REPORT
N° 8929
June 2016

Project-Team Gamma3

Multi-Scale Anisotropic
Mesh Adaptation for
Time-Dependent
Problems
Frédéric Alauzet, Adrien Loseille and Géraldine Olivier

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université
4 rue Jacques Monod
91893 Orsay Cedex

Multi-Scale Anisotropic Mesh Adaptation for
Time-Dependent Problems

Frédéric Alauzet∗, Adrien Loseille and Géraldine Olivier

Project-Team Gamma3

Research Report n° 8929 — June 2016 — 39 pages

Abstract: This paper deals with anisotropic mesh adaptation applied to unsteady inviscid
CFD simulations. Anisotropic metric-based mesh adaptation is an efficient strategy to reduce
the extensive CPU time currently required by time-dependent simulations from the perspective
of performing this kind of computations on a daily basis in an industrial context. In this work,
we detail the time-accurate extension of multi-scale anisotropic mesh adaptation for steady flows
[26], i.e., a control of the interpolation error in Lp norm, to unsteady flows based on a space-time
error analysis and an enhanced version of the fixed-point algorithm [2]. We also show that each
stage - remeshing, metric field computation, solution transfer, and flow solution - is important to
design an efficient time-accurate anisotropic mesh adaptation process. The parallelization of the
whole mesh adaptation platform is also discussed. The efficiency of the approach is emphasized on
three-dimensional problems with convergence analysis and CPU data.

Key-words: Anisotropic Mesh Adaptation, Time-accurate, Multi-scale, Metric, Fixed-Point
Algorithm, Unsteady Flows

∗ INRIA Saclay Ile-de-France, Projet Gamma3, 1, rue Honoré d’Estienne d’Orves, 91126 Palaiseau, France.
email: frederic.alauzet@inria.fr

Multi-Scale Anisotropic Mesh Adaptation for
Time-Dependent Problems

Résumé : Ce document présente une méthode d’adaptation de maillage anisotrope pour
les problèmes instationnaires.

Mots-clés : Adaptation de maillage anisotrope, précis en temps, multi-échelle, métrique,
algorithme de point fixe, écoulements instationnaires

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 3

Contents

1 Introduction 3

2 The steady case 5
2.1 Metric-based generation of anisotropic adapted meshes 6
2.2 Summary of steady multi-scale anisotropic mesh adaptation 6

3 Space-time Lp interpolation error analysis and space-time optimal contin-
uous mesh 8
3.1 Error model . 8
3.2 Spatial minimization for a fixed t . 8
3.3 Temporal minimization . 9

4 Error analysis for the global fixed-point mesh adaptation algorithm 11
4.1 Spatial minimization on a sub-interval . 12
4.2 Temporal minimization . 12

5 From theory to practice 14
5.1 Computation of the optimal continuous mesh 14
5.2 Matrix-free P1-conservative solution interpolation 16
5.3 The flow solver: Wolf . 17
5.4 Metric field gradation . 17
5.5 The local adaptive remesher: AMG . 18

6 Parallelization of the mesh adaptation loop 19
6.1 A shared memory multi-threaded parallelization 19
6.2 Parallel performance . 20

7 Space-time convergence analysis 22
7.1 Adaptation of the time domain . 23
7.2 Computation of the space-time error and associated complexity parameters . 25
7.3 Spherical blast . 26
7.4 A blast in a city . 30

8 Other applications 32
8.1 Vortical flow behind a F117 fighter . 33
8.2 Impact of a water column on an obstacle . 33

9 Conclusions 35

1 Introduction

The 3D simulation of unsteady flows for complex geometries, which is actually the typical
situation for real-life problems, still remains a challenge. Indeed, these computations are very
time consuming. The use of anisotropic metric-based mesh adaptation, which has already
proven its efficiency for steady problems [4, 6, 21, 34, 35, 40, 42], seems to be appropriate in
order to reduce the CPU time of such simulations while preserving their accuracy. However,
extension to the unsteady case is far from straightforward as such simulations have many
difficulties arising from unsteadiness. To achieve an efficient time-accurate mesh adapta-
tion scheme for unsteady flows, we have to overcome the issues described in the following
discussion.

First of all, we have to remedy the problem of the latency of the mesh with respect to the
solution, i.e., the mesh is lagging behind the solution in time. Indeed, if a mesh is adapted
for a solution at time t, once the solution progress in time again, it is clear that this mesh is
not adapted for the next time-steps. Consequently, no error control can be guaranteed.

RR n° 8929

4 F. Alauzet, A. Loseille and G. Olivier

Theoretically, error estimates used for steady flows [4, 26] need to be extended to the
unsteady case. In other words, for time-dependent simulations, the temporal error should
also be controlled. A space-time error analysis is then required.

At each remeshing, the solution has to be interpolated on the new adapted mesh. This
stage becomes crucial in the context of unsteady problems and even more if a large number
of transfers is performed, as the error due to this solution transfer accumulates throughout
the simulation. Therefore, the error introduced by this stage can spoil the overall accuracy
of the solution [5].

In regards to the meshing phase, a difficulty arises from the definition of the solver time-
step dt (omitting CFL factor) which is homogeneous to the smallest element height of the
mesh hmin. Consequently, a single small-height element in the whole mesh is sufficient to
considerably reduce the time-step and thus increase the CPU time of the simulation. This
is a serious problem, especially in the context of highly anisotropic mesh adaptation, which
involves highly stretched elements. The only remedy is to reduce this constraint as much
as possible by generating anisotropic meshes controlling the highest hmin value [30]. This
implies a substantial effort on the anisotropic mesh generator as the quality of the mesh
must be very good. For example, if the mesh generator fails to generate the minimal height
element for which a size of htarget had been prescribed, and instead build an element of height
hmin = 0.01× htarget, the number of solver iterations is multiplied by 100 for time-accurate
simulations. Consequently, for a given mesh, not a single meshing mistake is allowed despite
millions of tetrahedra are generated in order to obtain a coherent time-step and to not increase
drastically the CPU time of the simulation.

State-of-the-art

Over the past few years, a rather large number of papers have been published dealing with
mesh adaptation for steady numerical simulations, whereas only a small number have ad-
dressed time-dependent problems. For the unsteady case, three different approaches can be
distinguished:

• the so called h-refinement method that consists of adapting the mesh frequently in order
to maintain the solution within refined regions and to introduce a safety area around
critical regions [24, 25, 36, 39]. This method is based on coarsening/refinement tech-
niques without node displacement to reduce the solution transfer error. This technique
have been used to produce isotropic meshes only

• using an unsteady mesh adaptation algorithm [10, 41]. This method is based on local or
global remeshing techniques and the error is estimated every n1 flow solver iterations.
If the error is greater than a prescribed threshold, the mesh is readapted. Therefore,
the mesh is adapted every n2 > n1 iterations with n2 a priori unknown

• and more recently, perform local adaptive remeshing enabling the construction of
anisotropic meshes. In this case, the mesh is frequently adapted in order to guarantee
that the solution always evolves in refined regions [7, 18, 35, 37]. However, much care
must still be paid to the interpolation error, notably if the projection step is performed
on the fly after each mesh modification.

All these approaches involve a large number of mesh adaptations and tends to introduce
unquantified errors due to the transfer of the solution from the old mesh to the new one.
This is particularly a problem for hyperbolic problems [5]. Moreover, the first and the third
approaches do not control explicitly the error made on the solution as they perform an
arbitrary large and a priori number of adaptations. The second one authorizes the error to
grow through the simulation. Note that the first approach cannot be extended to the case of
anisotropic mesh adaptation. Finally, none of them considers the intrinsic non-linear nature
of the mesh adaptation problem: the convergence of the mesh adaptation process is never
addressed and therefore the obtention of the optimal mesh cannot be expected. And, none
of them takes into account the temporal error in the error analysis.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 5

Our approach

In order to overcome all the problems relative to mesh adaptation for time-dependent sim-
ulations stated in the introduction, an innovative strategy based on a transient fixed-point
algorithm has been developed in [2]. The main goals were to guarantee a control of the spa-
tial and temporal interpolation errors during the whole simulation and to control (reduce)
the number of mesh adaptations in order to master (diminish) the error introduced by the
transfers of solutions. This new strategy starts with the observation that direct extension of
steady adaptation algorithms to unsteady problems is not appropriate: specific algorithms
must be developed that truly take into account the transient nature of the solution. It relies
on the assumption that the temporal error is always controlled by the spatial one, which is
indeed the case when solving a linear advection problem under a CFL condition [2]. So far,
the transient fixed-point mesh adaptation algorithm relies on:

• an isotropic mesh adaptation

• a control of the spatial and temporal interpolation error in L∞ norm thanks to metric
intersection in time

• a local transient fixed-point mesh adaptation algorithm to converge the non-linear prob-
lem of mesh adaptation.

But, this algorithm is valid only when the space-time interpolation error is controlled in
L∞ norm. Controlling the space-time error in Lp norm is interesting as additional guarantees
hold: second of order of convergence of non smooth flows, the avoidance of prescribing a min-
imal size during the remeshing, and the ability to capture all the scales of the solution [29].
This requires the computation of a global normalization term. Unfortunately, this require-
ment is not compatible with the previous local approach in which each time sub-interval is
adapted in a decoupled manner. Since multi-scale mesh adaptation has now proved its effi-
ciency for steady CFD computations [4, 26], it seems quite relevant to extend the fixed-point
algorithm proposed in [2] to this framework. In the following sections, this extension is done
by proposing:

• a global fixed-point mesh adaptation algorithm to converge the mesh adaptation non-
linear problem

• the extension of the multi-scale error estimate [26] to unsteady problems by proposing
a Lp space-time error analysis

• a conservative solution transfer operator to considerably diminish the error introduced
by this stage of the algorithm

• a high-quality anisotropic local remeshing controlling the heights of the elements to
guarantee optimal solver time-steps and to ensure maximal robustness in the meshing
process. This issue has been handled with care in [30].

The paper is outlined as follows. After recalling the steady case in Section 2, the space-
time error analysis is given in Section 3. Section 4 describes the global fixed-point mesh
adaptation algorithm and Section 5 explains how to use the mathematical analysis in practice.
The parallelization of the mesh adaptation loop is discussed in Section 6 and numerical
examples are provided in the last section.

2 The steady case
Let H be a mesh of a bounded domain Ω and let Vh be the usual linear finite element space:

Vh =
{
φ ∈ C0(Ω)

∣∣ φ|Ki
is affine for all elements Ki ∈ H

}
.

For a given continuous function u, we denote by Πhu the P1-interpolant of u on H, which
is the element of Vh such that Πhu(pi) = u(pi) for all vertices pi ∈ H. In this study, we

RR n° 8929

6 F. Alauzet, A. Loseille and G. Olivier

focus on minimizing in space and in time the interpolation error on a sensor of interest. We
first recall the generation of anisotropic adapted meshes based on the prescription of a metric
field. Then, the optimality problem of finding the best mesh with respect to the control of
the interpolation error in Lp norm is provided and solved analytically.

2.1 Metric-based generation of anisotropic adapted meshes
Metric-based generation of anisotropic adapted meshes uses the notion of Riemannian met-
ric space [16, 27, 28]. For a computational domain Ω ⊂ Rd, a Riemannian metric space
(M(x))x∈Ω is a spatial field that defines at any point of Ω a metric tensor M(x), e.g. a
d × d symmetric positive definite matrix. It is then possible for a mesh generator to work,
i.e., to evaluate all geometric quantities, in this Riemannian metric space instead of working
in the canonical Euclidean space. In a Riemannian metric space, the dot product is defined
locally byM: 〈u,v〉M = 〈u,Mv〉 for (u,v) ∈ R3×R3. Thus, the computation of geometric
quantities requires integral formulae to take into account the variation of the metric field. In
that case, the length of edge e = ab is computed using the straight line parameterization
γ(t) = a + tab, where t ∈ [0, 1]:

`M(ab) =

∫ 1

0

‖γ′(t)‖M dt =

∫ 1

0

√
abT M(a + tab) ab dt ,

and the volume of element K is:

|K|M =

∫
K

√
detM(x) dx .

It is important to note that, in a Riemannian metric space, computing the length of a segment
(i.e., an edge) differs from evaluating the distance between the extremities of this segment.
Indeed, the distance between two points requires to compute the geodesic between these two
points. When the metric field is varying, this path is usually not straight anymore.

The main idea of metric-based mesh adaptation, initially introduced in [17], is to generate
a unit mesh in the prescribed Riemannian metric space, e.g. a mesh of Ω ⊂ R3 such that
each edge has a unit length and each tetrahedron is regular (or equilateral) with respect to
(M(x))x∈Ω:

∀e, `M(e) = 1 and ∀K, |K|M =

√
2

12
.

The resulting mesh in the canonical Euclidean space will be anisotropic and adapted.

2.2 Summary of steady multi-scale anisotropic mesh adaptation
We seek for the best mesh approximating the smooth solution u of a steady scalar PDE over a
domain Ω of Rd. In our investigation, we focus on the specification of a mesh that is optimal
for the interpolation error. Multi-scale mesh adaptation relies on the minimization of the
spatial interpolation error in Lp norm [9, 20]. It is a new approach as compared to the now
well-known L∞ strategy which tends to equi-distribute the spatial error by controlling the
spatial interpolation error in L∞ norm [6, 7, 15, 18, 35, 37, 40]. As far as we are concerned,
we choose to use the continuous mesh framework introduced in [27, 28] and used in [4, 26, 29].

The considered problem of mesh adaptation consists in finding the mesh H of Ω that
minimizes the linear interpolation error u− Πhu in Lp norm, for a given sensor u and for a
given number of mesh vertices N . The problem is thus stated in an a priori way:

Find HLp having N vertices such that ELp(HLp) = minH
(∫

Ωh

|u(x)−Πhu(x)|p dx

) 1
p

.

(1)
As it, Problem (1) is a global combinatorial problem which turns out to be intractable in
pratice. Indeed, both topology and vertices locations need to be optimized. This ill-posed
problem can be reformulated in the continuous mesh framework [27, 28]. In this framework,

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 7

we propose the following continuous model of a mesh. A continuous mesh M of a domain
Ω is identified to a Riemannian metric space M = (M(x))x∈Ω that, at each point x of Ω,
prescribes a density, a set of anisotropy directions and the stretching along these directions,
this information being locally contained in metric tensor M(x). The spatial size of the
continuous mesh is given by its spatial complexity: C(M) =

∫
Ω

√
detM(x)dx which is the

continuous counterpart of the number of vertices. Continuous mesh M defines a class of
equivalence of discrete meshes, which are all unit meshes with respect to M. We also define
a continuous model of the linear interpolation operator Πh denoted πM. It is then possible
to recast (1) into a well-posed continuous global optimization problem of finding the optimal
continuous mesh minimizing the continuous interpolation error in Lp norm, for a given sensor
u and for a given spatial complexity N :

Find MLp such that ELp(MLp) = minM

(∫
Ω

|u(x)− πMu(x)|p dx

) 1
p

, (2)

under constraint:

C(M) =

∫
Ω

√
detM(x)dx = N . (3)

The continuous mesh spatial complexity N enables the user to control the level of accuracy
of the mesh, and thus, to implicitly control the number of vertices of the resulting discrete
mesh. According to [27], if H is a unit mesh with respect to M and u is a smooth function,
then the following bound holds:

‖u−Πhu‖Lp(Ωh) ≤ ‖u− πMu‖Lp(Ω) =

(∫
Ω

(
trace

(
M− 1

2 (x)|Hu(x)|M− 1
2 (x)

))p
dx

) 1
p

, (4)

where Hu is the Hessian of u and |Hu| the matrix deduced from Hu by taking the absolute
value of its eigenvalues. Writing the optimality conditions provides the unique (by convexity)
optimal continuous mesh MLp = (MLp(x))x∈Ω solution of Problem (2) under Constraint (3):

MLp(x) = DLp (det |Hu(x)|)− 1
2p+d |Hu(x)| with DLp = N 2

d

(∫
Ω

(det |Hu(x)|) p
2p+d dx

)− 2
d

(5)
where d is the domain dimension. In Relation (5), we distinguish three terms. First, constant
DLp is a global normalization constant resulting from Constraint (3). Second, matrix term
|Hu| specifies the local mesh orientation and anisotropy (or stretching). Third, scalar term
(det |Hu|)

−1
2p+d modifies the local mesh density to take into account the sensitivity of the Lp

norm used in the error estimate.

Now, to obtain an optimal discrete mesh HLp , it is sufficient to generate a unit mesh with
respect to MLp = (MLp(x))x∈Ω thanks to Relation (4). Finally, Bound (4) can be rewritten
for MLp , and the following bound follows up for a unit mesh HLp with respect to MLp :

E(HLp) = ‖u−Πhu‖Lp(Ωh) ≤ E(MLp) = dN− 2
d

(∫
Ω

(det |Hu(x)|) p
2p+d dx

) 2p+d
dp

≤ Cst

N 2/d
.

(6)
A main result arises from the previous bound: a global second-order asymptotic mesh con-
vergence is expected for the considered variable u. Indeed, a simple analogy with regular
grids leads to N = O

(
h−d

)
so that the previous estimate becomes:

‖u−Πhu‖Lp(Ωh) ≤ Csth2.

For all p ∈ [1,∞[, it is possible to analyze in which conditions the last integral in (6) is
bounded. Following this idea, it is observed in [4, 26, 29] that the second-order convergence
property still holds even when singularities are present in the flow field.

RR n° 8929

8 F. Alauzet, A. Loseille and G. Olivier

3 Space-time Lp interpolation error analysis and space-
time optimal continuous mesh

The multi-scale mesh adaptation presented in the previous section only controls spatial errors.
But, in the context of time-dependent problems, temporal errors must be controlled as well.
In this study, we do not account for time discretization errors, rather we focus on a space-time
analysis of the spatial error in unsteady simulations. In other words, we seek for the optimal
space-time mesh controlling the space-time spatial discretization error. Taking into account
time discretization errors is not so important for the type of calculations that are shown here,
but it can be of paramount impact in many other cases, in particular, when implicit time
advancing is considered. The following assumption is then made (it has been demonstrated
under specific conditions in [2]): as an explicit time scheme is used for time advancing, then
the error in time is controlled by the error in space under CFL condition. As far as the above
hypothesis is true, the spatial interpolation error is a good measure of the total space-time
error of the discretized unsteady system.

3.1 Error model
Our goal is to solve an unsteady PDE defined on computational space-time domain Q =
Ω × [0, T] where T is the (positive) maximal time and Ω ⊂ R3 is the spatial domain. Its
extension to time-dependent functions reads:

(Πhϕ) (t) = Πh (ϕ(t)) , ∀ t ∈ [0, T].

The considered problem of mesh adaptation consists in finding the space-time mesh H of
Q that minimizes the space-time linear interpolation error u− Πhu in Lp norm, for a given
sensor u and for a given number of space-time mesh vertices Nst. The problem is thus stated
in an a priori way:

Find Hopt having Nst space-time vertices such that ELp(Hopt) = min
H
‖u−Πhu‖Lp(Ωh×[0,T]) .

In the continuous mesh framework, we rewrite this problem under the continuous form:

Find MLp = (MLp(x, t))(x,t)∈Ω×[0,T] such that ELp(MLp) = min
M
‖u− πMu‖Lp(Ω×[0,T]) ,

(7)
under the space-time complexity constraint:

Cst(M) =

∫ T

0

τ(t)−1

(∫
Ω

√
detM(x, t) dx

)
dt = Nst . (8)

where the continuous mesh space-time complexity Nst is given. In its definition, τ(t) is
the time-step used at time t of interval [0, T] and Nst is the space-time mesh complexity.
Introducing the continuous interpolation error, we recall that we can write the continuous
error model as follows:

ELp(M) =

(∫ T

0

∫
Ω

trace
(
M− 1

2 (x, t)|Hu(x, t)|M− 1
2 (x, t)

)p
dx dt

) 1
p

.

where Hu is the Hessian of sensor u. To find the optimal space-time continuous mesh,
Problem (7-8) is solved in two steps. First, a spatial minimization is done for a fixed t.
Second, a temporal minimization is performed.

3.2 Spatial minimization for a fixed t

Let us assume that at time t, we seek for the optimal continuous mesh MLp(t) which mini-
mizes the instantaneous error, i.e., the spatial error for a fixed time t:

ẼLp(M(t)) =

∫
Ω

trace
(
M− 1

2 (x, t) |Hu(x, t)|M− 1
2 (x, t)

)p
dx

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 9

under the constraint that the spatial complexity is constant equal to:

C(M(t)) =

∫
Ω

√
detM(x, t) dx = N (t). (9)

Similarly to Section 2.2 with d = 3, solving the optimality conditions provides the optimal
instantaneous continuous mesh in Lp norm MLp(t) = (MLp(x, t))x∈Ω at time t defined by:

MLp(x, t) = N (t)
2
3

(∫
Ω

(det |Hu(x̄, t)|) p
2p+3 dx̄

)− 2
3

(det |Hu(x, t)|)− 1
2p+3 |Hu(x, t)| . (10)

The corresponding optimal instantaneous error at time t is:

ẼLp(MLp(t)) = 3pN (t)−
2p
3

(∫
Ω

(det |Hu(x, t)|) p
2p+3 dx

) 2p+3
3

= 3pN (t)−
2p
3 K(t)

2p+3
3 . (11)

For the sequel of this paper, we denote: K(t) =

∫
Ω

(det |Hu(x, t)|) p
2p+3 dx.

3.3 Temporal minimization

To complete the resolution of optimization Problem (7-8), we perform a temporal minimiza-
tion in order to get the optimal space-time continuous mesh. In other words, we need to find
the optimal time law t → N (t) for the instantaneous mesh size. First, we consider the case
where the time-step τ is specified by the user as a function of time t→ τ(t). Second, we deal
with the case of an explicit time advancing solver subject to Courant time-step condition.

Temporal minimization for specified τ We consider the case where the time-step τ is
specified by a function of time t→ τ(t). After the spatial optimization, the space-time error
is:

ELp(MLp) =

(∫ T

0

ẼLp(MLp(t)) dt

) 1
p

= 3

(∫ T

0

N (t)−
2p
3 K(t)

2p+3
3 dt

) 1
p

(12)

and we aim at minimizing it under the following space-time complexity constraint:∫ T

0

τ(t)−1N (t) dt = Nst. (13)

In other words, we concentrate on seeking the optimal distribution of N (t) when the space-
time complexity Nst is prescribed. Let us apply the one-to-one change of variables:

Ñ (t) = N (t) τ(t)−1 and K̃(t) = τ(t)−
2p
3 K(t)

2p+3
3 .

Then, our temporal optimization problem becomes, find space-time continuous mesh MLp

such that:

(ELp(MLp))
p

= min
M

3p
∫ T

0

Ñ (t)−
2p
3 K̃(t) dt under constraint

∫ T

0

Ñ (t) dt = Nst .

The solution of this problem is given by:

Ñopt(t)
− 2p+3

3 K̃(t) = Cst ⇒ Nopt(t) = C(Nst) τ(t)
3

2p+3 K(t) .

Here, constant C(Nst) can be obtained by introducing the above expression in space-time
complexity Constraint (13), leading to:

C(Nst) =

(∫ T

0

τ(t)−
2p

2p+3 K(t)dt

)−1

Nst ,

RR n° 8929

10 F. Alauzet, A. Loseille and G. Olivier

which completes the description of the optimal space-time metric for a prescribed time-step.
Using Relation (10), the analytic expression of the optimal space-time metric in Lp norm
MLp is:

MLp(x, t) = N
2
3
st

(∫ T

0

τ(t)−
2p

2p+3 K(t)dt

)− 2
3

τ(t)
2

2p+3 (det |Hu(x, t)|)− 1
2p+3 |Hu(x, t)| . (14)

The following optimal error is finally obtained:

ELp(MLp) = 3N−
2
3

st

(∫ T

0

τ(t)−
2p

2p+3 K(t)dt

) 2p+3
3p

. (15)

This analysis provides the optimal continuous meshes for each time level.

Temporal minimization for explicit time advancing In the case of an explicit time
advancing scheme subject to a Courant condition, the situation is trickier, since the time-step
strongly depends on the smallest mesh size. We restrict ourselves to the case of smooth data
and solution.

We still seek for the optimal continuous mesh that minimizes space-time Error (12) under
complexity Constraint (13). Let ∆xmin,1(t) = minx mini hi(x) be the smallest mesh size of
the optimal instantaneous continuous mesh in Lp norm at time t of unit complexity MLp,1(t),
i.e, Relation (10) with C(MLp(t)) = 1:

MLp,1(x, t) = K(t)−
2
3 (det |Hu(x, t)|)− 1

2p+3 |Hu(x, t)|. (16)

Since the coefficients of a metric tensor have the same dimension as 1/h2, where h is the
typical mesh size, we deduce the smallest mesh size of MLp(t) given by Relation (10):

∆xmin(t) = N (t)−
1
3 ∆xmin,1(t),

where ∆xmin,1(t) is independent of the mesh complexity. A way to write the Courant con-
dition for time-advancing is to define the time-step τ(t) by:

τ(t) = c(t)−1 ∆xmin(t) = N (t)−
1
3 c(t)−1 ∆xmin,1(t) , (17)

where c(t) is the maximal wave speed over the domain at time t. Again, we search for the op-
timal distribution of N (t) when the space-time complexity Nst is prescribed by Relation (13),
with

Nst =

∫ T

0

N (t)
4
3 c(t) (∆xmin,1(t))−1 dt .

We choose to apply the one-to-one change of variables:

N̂ (t) = N (t)
4
3 c(t) (∆xmin,1(t))−1 and K̂(t) = K(t)

2p+3
3 c(t)

p
2 (∆xmin,1(t))−

p
2 .

Therefore, the corresponding space-time approximation error over the simulation time inter-
val and space-time complexity reduces to:

(ELp(MLp))
p

= 3p
∫ T

0

N (t)−
2p
3 K(t)

2p+3
3 dt = 3p

∫ T

0

N̂ (t)−
p
2 K̂(t) dt and

∫ T

0

N̂(t)dt = Nst .

This optimization problem has for solution:

N̂opt(t)
− p+2

2 K̂(t) = Cst ⇒ N̂opt(t) = C(Nst) K̂(t)
2
p+2 ,

and by considering the space-time complexity constraint relation we deduce:

C(Nst) = Nst

(∫ T

0

K̂(t)
2
p+2 dt

)−1

.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 11

For the sake of clarity, we set θ(t) = c(t) (∆xmin,1(t))−1. Using the definitions of N̂ and K̂
in the above relations, we get:

N (t)
4
3 θ(t) = Nst

(∫ T

0

(
K(t)

2p+3
3 θ(t)

p
2

) 2
p+2

dt

)−1 (
K(t)

2p+3
3 θ(t)

p
2

) 2
p+2

⇐⇒ N (t) = N
3
4
st

(∫ T

0

(
K(t)

2p+3
3 θ(t)

p
2

) 2
p+2

dt

)− 3
4 (
K(t)

2p+3
3 θ(t)−1

) 3
2(p+2)

.

Consequently, after some simplifications, we obtain the following expression of the optimal
space-time continuous mesh MLp and error:

MLp(x, t) = N
1
2
st

(∫ T

0

(
θ(t)

p
2 K(t)

2p+3
3

) 2
p+2

dt

)− 1
2

θ(t)
−1
p+2 K(t)

−1
3(p+2) (det |Hu(x, t)|) −1

2p+3 |Hu(x, t)|

(18)

ELp(MLp) = 3N−
1
2

st

(∫ T

0

(
θ(t)

p
2 K(t)

2p+3
3

) 2
p+2

dt

) p+2
2p

, (19)

where θ(t) = c(t) (∆xmin,1(t))−1 and K(t) =

∫
Ω

(det |Hu(x, t)|) p
2p+3 dx. This analysis pro-

vides the optimal continuous meshes for each time level.

4 Error analysis for the global fixed-point mesh adapta-
tion algorithm

The computation of the optimal continuous mesh given by Relation (14) or (18) involves a
global normalization term which requires the knowledge of quantities over the whole simula-
tion time frame. For instance, Relation (14) has for global normalization term:

N
2
3
st

(∫ T

0

τ(t)−
2p

2p+3

(∫
Ω

(det |Hu(x̄, t)|) p
2p+3 dx̄

)
dt

)− 2
3

,

which requires knowledge of all the time-steps τ(t) and Hessians Hu(x, t) over time frame
[0, T]. Thus, the complete simulation must be performed before evaluating any space-time
continuous mesh. We consider a global fixed-point mesh adaptation algorithm covering the
whole time frame [0, T]. This iterative algorithm is used to converge the non-linear mesh
adaptation problem, i.e., converging the mesh-solution couple. This is also a way to predict
the solution evolution and to adapt the mesh accordingly.

Moreover, the previous analysis provides the optimal size of the adapted meshes for each
time level. Hence, this analysis requires the mesh to be adapted at each flow solver time-
step which is inconceivable in practical applications. We propose to use a coarse adapted
discretization of the time axis. The basic idea consists in splitting the simulation time frame
[0, T] into nadap adaptation sub-intervals:

[0, T] = [0 = t1, t2] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap , tnadap+1 = T] ,

and to keep the same adapted spatial mesh for each time sub-interval. On each sub-interval,
the mesh is adapted to control the solution accuracy from ti to ti+1. Consequently, the time-
dependent simulation is performed with nadap different adapted meshes. This drastically
reduces the number of generated meshes during the simulation, hence the number of solution
transfers. Moreover, the flow solver performs many iterations (tens to hundreds) on the same
fixed spatial mesh. This provides a first answer to the adaptation of the whole space-time
mesh, the spatial mesh being kept constant for each sub-interval when the global space-time
mesh is visualized.

RR n° 8929

12 F. Alauzet, A. Loseille and G. Olivier

Now, we want to extend the previous analysis (Section 3) to the fixed-point mesh adap-
tation algorithm context where the simulation time interval [0,T] is split into nadap sub-
intervals [ti, ti+1] for i = 1, .., nadap. Each spatial mesh Mi is then kept constant during each
sub-interval [ti, ti+1]. We could consider this partition as a time discretization of the mesh
adaptation problem. Here, the proposed approach leads to an optimal discrete answer.

4.1 Spatial minimization on a sub-interval
Given the continuous mesh spatial complexity N i for the single adapted mesh used during
time sub-interval [ti, ti+1], we seek for the optimal continuous mesh Mi

Lp solution of the
following problem:

Ẽi
Lp(Mi

Lp) = min
Mi

∫
Ω

trace
(

(Mi)−
1
2 (x)Hi

u(x) (Mi)−
1
2 (x)

)p
dx such that C(Mi) = N i ,

where matrix Hi
u on the sub-interval can be defined by either using a L1 or a L∞ norm:

Hi
L1(x) =

∫ ti+1

ti
|Hu(x, t)|dt or Hi

L∞(x) = ∆ti max
t∈[ti,ti+1]

|Hu(x, t)| , (20)

with ∆ti = ti+1 − ti. As previously, we get the spatial optimality condition:

Mi
Lp(x) = (N i)

2
3

(∫
Ω

(detHi
u(x̄))

p
2p+3 dx̄

)− 2
3

(detHi
u(x))−

1
2p+3 Hi

u(x).

The corresponding optimal error Ei(Mi
Lp) is:

Ẽi
Lp(Mi

Lp) = 3p (N i)−
2p
3

(∫
Ω

(detHi
u(x))

p
2p+3 dx

) 2p+3
3

= 3p (N i)−
2p
3 (Ki)

2p+3
3 .

where Ki =

∫
Ω

(
detHi

u(x)
) p

2p+3 dx.

To complete our analysis, a temporal minimization must be carried out. Again, we first
consider the case where the time-step τ is specified by a function of time. We then deal with
the case of an explicit time advancing solver subject to Courant time-step condition.

4.2 Temporal minimization
Temporal minimization for specified τ After the spatial minimization, the temporal
optimization problem becomes find the optimal space-time continuous mesh MLp such that:

(ELp(MLp))
p

= min
M

nadap∑
i=1

Ẽi
Lp(Mi

Lp) = min
M

3p
nadap∑
i=1

(N i)−
2p
3 (Ki)

2p+3
3 ,

under space-time complexity constraint:

nadap∑
i=1

N i

(∫ ti+1

ti
τ(t)−1dt

)
= Nst .

We set the one-to-one mapping:

Ñ i = N i

(∫ ti+1

ti
τ(t)−1dt

)
and K̃i = (Ki)

2p+3
3

(∫ ti+1

ti
τ(t)−1dt

) 2p
3

,

then the optimization problem reduces to:

min
M

nadap∑
i=1

(Ñ i)−
2p
3 K̃i such that

nadap∑
i=1

Ñ i = Nst .

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 13

The solution is:

Ñ i
opt = C(Nst) (K̃i)

3
2p+3 with C(Nst) = Nst

(nadap∑
i=1

(K̃i)
3

2p+3

)−1

⇒ N i = Nst

nadap∑
j=1

Kj

(∫ tj+1

tj
τ(t)−1dt

) 2p
2p+3

−1

Ki

(∫ ti+1

ti
τ(t)−1dt

)− 3
2p+3

.

We deduce the following optimal continuous mesh MLp = {Mi
Lp}i=1,..,nadap and error:

Mi
Lp(x) = N

2
3
st

(nadap∑
j=1

Kj
(∫ tj+1

tj
τ(t)−1dt

) 2p
2p+3

)− 2
3(∫ ti+1

ti
τ(t)−1dt

)− 2
2p+3

(detHi
u(x))−

1
2p+3 Hi

u(x)

(21)

ELp(MLp) = 3N−
2
3

st

(nadap∑
i=1

Ki
(∫ ti+1

ti
τ(t)−1dt

) 2p
2p+3

) 2p+3
3p

. (22)

Temporal minimization for explicit time advancing Similarly to the previous section,
the Courant-based time-step is:

τ(t) = c(t)−1 ∆ximin = (N i)−
1
3 c(t)−1 ∆ximin,1 for t ∈ [ti, ti+1] ,

where ∆ximin,1 is the smallest height of Mi
Lp,1 and c(t) is the maximal wave speed over the

domain. The optimization problem is find the optimal space-time continuous mesh MLp such
that:

(ELp(MLp))
p

= min
M

nadap∑
i=1

Ẽi
Lp(Mi

Lp) = min
M

3p
nadap∑
i=1

(N i)−
2p
3 (Ki)

2p+3
3

under the constraint:
nadap∑
i=1

(N i)
4
3

(∫ ti

ti−1

c(t) (∆ximin,1)−1dt

)
= Nst .

For the sake of clarity, we set: θi =

∫ ti

ti−1

c(t) (∆ximin,1)−1dt. We specify again:

N̂ i =
(
N i
) 4

3 θi and K̂i = (Ki)
2p+3

3

(
θi
) p

2 .

Then, the optimization problem becomes:

min
M

3p
nadap∑
i=1

(N̂ i)−
p
2 K̂i such that

nadap∑
i=1

N̂ i = Nst .

This optimization problem has for solution:

N̂ i
opt = C(Nst) (K̂i)

2
p+2 with C(Nst) = Nst

(nadap∑
i=1

(K̂i)
2
p+2

)−1

,

from which we deduce:

N i
opt = N

3
4
st

nadap∑
j=1

(
(Kj)

2p+3
3

(
θj
) p

2

) 2
p+2

− 3
4 (

(Ki)
2p+3

3

(
θi
)−1
) 3

2(p+2)

.

The optimal continuous mesh MLp = {Mi
Lp}i=1,..,nadap and error read:

Mi
Lp(x) = N

1
2
st

nadap∑
j=1

(
(Kj)

2p+3
3 (θj)

p
2

) 2
p+2

− 1
2

(θi)
−1
p+2 (Ki)

−1
3(p+2) (detHi

u(x))
−1

2p+3 Hi
u(x)

(23)

RR n° 8929

14 F. Alauzet, A. Loseille and G. Olivier

ELp(MLp) = 3N−
1
2

st

(nadap∑
i=1

(
(Ki)

2p+3
3 (θi)

p
2

) 2
p+2

) p+2
2p

. (24)

5 From theory to practice
The global fixed-point mesh adaptation algorithm is schematized in Algorithm 1 where H,
S and M denote respectively meshes, solutions and metrics. And, H is the Hessian-metric
given by Relation (20). In the following, we describe each step of this algorithm.

5.1 Computation of the optimal continuous mesh

Computation of the Hessian-metric Practically, it remains to know how to compute
the Hessian-metric Hi

u on sub-interval i given by Relations (20), i.e., how it is discretized.
The strategy adopted in [2] is to sample the solution on the time sub-interval. More precisely,
nk solutions equally distributed on the sub-interval time frame are saved, including the initial
solution at ti and the final solution at ti+1. Positive Hessian |Hu(x, tk)|, which is obtained
by taking the absolute value of the eigenvalues of Hu(x, tk), is evaluated for each sample.
If the samples are balanced in time, the time elapsed between two samples is ∆ti

nk−1 where
∆ti = ti+1− ti is the sub-interval time length. In practice, we need to choose enough sample
to mesh properly the regions where physical phenomena evolve during the sub-interval. In
this paper, twenty solution samples are sufficient for all the presented examples.

For Hessian-metric Hi
L1 , the following discretization is done:

Hi
L1(x) ≈ 1

2

∆ti

nk − 1
|Hu(x, ti)|+ ∆ti

nk − 1

nk−1∑
k=2

|Hu(x, tk)|+1

2

∆ti

nk − 1
|Hu(x, ti+1)| = ∆ti |Hi

avg(x)| ,

where tk = ti + k−1
nk−1∆ti.

Algorithm 1 Mesh Adaptation Loop for Unsteady Flows
Initial mesh and solution (H0,S0

0) and set targeted space-time complexity Nst

Fixed-point loop to converge the global space-time mesh adaptation problem
For j = 1, nptfx

Adaptive loop to advance the solution in time on time frame [0, T]

1. For i = 1, nadap

(a) Sj0,i = Interpolate conservatively next sub-interval initial solution from
(Hj

i−1,Sji−1,Hj
i);

(b) Sji = Compute solution on sub-interval from pair (Sj0,i,Hj
i);

(c) |H|ji = Compute sub-interval Hessian-metric from solution sample
(Hj

i , {Sji (k)}k=1,nk);

EndFor

2. Cj = Compute space-time complexity from all Hessian-metrics ({|H|ji}i=1,nadap);

3. {Mj
i}i=1,nadap = Compute all sub-interval unsteady metrics (Cj , {|H|ji}i=1,nadap);

4. {Mj
i}i=1,nadap = Metric gradation on all sub-interval unsteady metrics {Mj

i}i=1,nadap ;

5. {Hj+1
i }i=1,nadap = Generate all sub-interval adapted meshes ({Hj

i , Mj
i}i=1,nadap);

EndFor

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 15

For Hessian-metric Hi
L∞ , the following discretization is used:

Hi
L∞(x) ≈ ∆ti

nk⋂
k=1

|Hu(x, tk)| = ∆ti |Hi
max(x)| ,

where ∩ has to be understood as the metric intersection in time of all samples [2].

Choice of the optimal continuous mesh The optimal adapted mesh for each sub-
interval is generated according to the analysis performed in Section 4. For the numerical
results presented below, we select the optimal mesh given by Relation (21) and the following
particular choice has been made:

• the Hessian-metric for sub-interval i is discretized in time in L1 norm: Hi
L1

• all sub-intervals have the same time length ∆t = T/nadap.

Moreover, integral
∫ ti+1

ti
τ(t)−1dt corresponds to the number of time-steps (iterations) per-

formed by the flow solver during the ith sub-interval. In practice using the flow solver number
of iterations of each sub-interval to define the continuous mesh may cause trouble because
it highly depends on the discrete representation of the continuous mesh, i.e., the generated
discrete mesh. Thus, the number of iterations of a sub-interval may substantially vary be-
tween two fixed-point iterations. To avoid this issue, one may prefer considering the flow
solver time-step constant on each sub-interval. In that case, we can just consider the time-
step τ(t) constant and equal to ∆t (thanks to the global normalization term) so the integral∫ ti+1

ti
τ(t)−1dt reduces to 1. Another approach is to compute the continuous time-step by

means of the CFL condition associated with the continuous mesh. This will cancel any is-
sue due to the spatial discretization. Here, we chose the first approach by considering the
time-step constant.

With these choices, the optimal continuous mesh MLp = {Mi
Lp}i=1,..,nadap simplifies to:

Mi
Lp(x) = N

2
3
st

nadap∑
j=1

(∫
Ω

(det |Hj
L1(x)|) p

2p+3 dx
)− 2

3 (
det |Hi

L1(x)|
)− 1

2p+3 |Hi
L1(x)| . (25)

In that case, as we assume that theoretically one time-step is done by sub-interval, Navg =
Nst/nadap represents the average spatial complexity by sub-interval. We do not prescribe
the temporal complexity, i.e., we do not control the number of time-steps done at each
sub-interval.

In practice, the user prescribes the number of sub-intervals nadap and the sub-interval
average spatial complexity Navg leading to a total space-time complexity of

Nst = nadap ×Navg . (26)

This prescription is the theoretical complexity. In fact, the total number of space-time
vertices Nst of the simulation discrete meshes is directly proportional to the prescribed
total space-time complexity:

Nst = c Nst ,

where coefficient c depends on the physics of the problem, the geometry of the problem,
the mesh gradation (see Section 5.4), and the local remesher. Nevertheless, for the same
simulation, if a different total space-time complexity is prescribed, e.g. kNst, then we observe
that the resulting total number of space-time vertices of the discrete meshes is proportional
with the same coefficient c, e.g. almost equal to c kNst.

Remark 5.1. The temporal minimization distributes optimally the number of spatial vertices
for each sub-interval in order to minimize the error. This number is linked to the integral:∫

Ω

(det |Hj
L1(x)|) p

2p+3 dx .

RR n° 8929

16 F. Alauzet, A. Loseille and G. Olivier

Consequently, the resulting discrete space-time mesh has a different number of spatial vertices
for each sub-interval and the total number of spatial vertices of the space-time mesh is:

Nspatial =

nadap∑
i=1

N i . (27)

5.2 Matrix-free P1-conservative solution interpolation

At each remeshing, the solution needs to be transferred from the previous mesh to the next one
to pursue the computation. This stage becomes crucial in the context of unsteady problems
and even more if a large number of transfers is performed, as the error introduced by this stage
can spoil the overall accuracy of the solution. In the context of the resolution by a second
order numerical scheme of a PDE system of conservation laws, as the compressible Euler
system, it seems mandatory for the interpolation method to satisfy the following properties
in order to obtain a consistent mesh adaptation scheme: mass conservation, P1 exactness
preserving the second order of the adaptive strategy, and verify the maximum principle.

The mass conservation property of the interpolation operator is achieved by local mesh
intersections, i.e., intersections are performed at the element level. The use of mesh inter-
section to build a conservative interpolation process seems natural for unrelated - a fortiori
non-embedded - meshes. The locality is primordial for efficiency and robustness. The idea
is to find, for each element of the new mesh, its geometric intersection with all the elements
of the background mesh it overlaps and to mesh this geometric intersection with simplices.
We are then able to use a Gauss quadrature formula to exactly compute the mass which has
been locally transferred.

High-order accuracy is obtained through the reconstruction of the gradient of the solution
from the discrete data and the use of some Taylor formulae. Unfortunately, this high-order
interpolation can lead to a loss of monotonicity. The maximum principle is recovered by
correcting the interpolated solution in a conservative manner, using a limiter strategy very
similar to the one used for Finite-Volume solvers. Finally, the solution values at vertices
are reconstructed from this piecewise linear by element discontinuous representation of the
solution. More details are given in [5]. The algorithm is summarized in Algorithm 2 where
mK stands for the integral of any conservative quantities (density, momentum and energy)
on the considered element.

Algorithm 2 Conservative Interpolation Process
Piecewise linear (continuous or discontinuous) representation of the solution on Hback

1. For all elements Kback ∈ Hback, compute solution mass mKback
and gradient ∇Kback

2. For all elements Knew ∈ Hnew, recover solution mass mKnew
and gradient ∇Knew

:

(a) compute the intersection of Knew with all Ki
back ∈ Hback it overlaps

(b) mesh the intersection polygon/polyhedra of each couple of elements (Knew,K
i
back)

(c) compute mKnew
and ∇Knew

using Gauss quadrature formulae

=⇒ a piecewise linear discontinuous representation of the mass on Hnew is obtained

3. Correct the gradient to enforce the maximum principle

4. Set the solution values to vertices by an averaging procedure.

Figure 1 points out the superiority of the P1-conservative solution transfer (right) with re-
spect to the classic P1 interpolation (left) on an adaptive blast simulation in three dimensions,
see Section 7.3. For both simulations, all parameters are the same except for the solution
transfer stage. This figure shows the final solution obtained with 128 mesh adaptations, i.e.,
a total of 128 solution interpolations. The error introduced during the classic P1 solution

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 17

interpolation accumulates throughout the simulation and clearly spoils the solution accuracy
while the solution remains highly resolved with the P1-conservative operator.

Figure 1: Final solution of a blast adaptive simulation (see Section 7.3) with 128 mesh
adaptations. Left, using a classic P1 solution interpolation. Right, using the P1-conservative
solution interpolation.

5.3 The flow solver: Wolf
In all the examples, the flow is modeled by the conservative Euler equations. Assuming that
the gas is perfect, inviscid and that there is no thermal diffusion, the Euler equations for
mass, momentum and energy conservation read:

∂W

∂t
+∇ · F (W) = 0 , (28)

where W = t(ρ, ρu, ρE) is the conservative variables vector and vector F represents the
convective operator:

F (W) = t (ρu, ρuu + pex, ρvu + pey, ρwu + pez,u(ρE + p)) .

We have noted ρ the density, u = (u, v, w) the velocity vector, E = T + ‖u‖
2

2 the total energy
and p = (γ− 1)ρT the pressure with γ = 1.4 the ratio of specific heat capacities. and T the
temperature.

The Euler system is solved by means of a Finite Volume technique on unstructured
meshes composed of tetrahedra. The proposed scheme is vertex-centered, achieves a second
order accuracy in space thanks to a MUSCL type reconstruction method with a numerical
dissipation of sixth order and a second order accuracy in time with an explicit Runge-Kutta
scheme. More details can be found in [4, 11].

5.4 Metric field gradation
Sizes and orientations prescriptions in the generation of anisotropic meshes are achieved using
metric fields which may have huge variations or may be quite irregular when evaluated from
numerical solutions exhibiting discontinuities or steep gradients. This makes the generation
of a unit mesh difficult or impossible, thus leading to poor quality anisotropic meshes. Gen-
erating high-quality anisotropic meshes requires smoothing of the metric field by bounding
its variations in all directions. To this end, a mesh gradation control procedure is used [1, 23].
It consists of reducing in all directions the size prescribed at any points if the variation of
the metric field is larger than a fixed threshold. We adopt the following continuous vision of
the anisotropic mesh gradation control. Each point of the domain defines a metric field in
the whole domain by growing its metric at a rate given by the desired gradation coefficient.
These fields define well-graded smooth continuous meshes over the domain and represent the
size constraint imposed by each point in the entire domain. Then, each point of the domain
has to take into account these constraints to guarantee a metric field with a smooth variation
controlled by the size gradation.

Let p be a point of a domain Ω supplied with a metricM(p) and β the specified gradation.
Point p imposes at each point x of the domain a growth metric constraintMp(x) given by:

Mp(x) = tRΞ(px) ΛR where Ξ(px) =

(
η21(px) 0 0

0 η22(px) 0
0 0 η23(px)

)
. (29)

RR n° 8929

18 F. Alauzet, A. Loseille and G. Olivier

where a growth factor is associated independently with each eigenvalue ofM:

η2
i (px) =

(
(1 +

√
λi‖px‖2 ln(β))t (1 + `Mp

(px) ln(β))1−t
)−2

for 0 ≤ t ≤ 1 and i = 1, . . . , 3 .

In the numerical examples, we generally consider t = 1
8 . From point p, a well-graded

smooth continuous mesh is defined all over domain Ω by: (Mp(x))x∈Ω with Mp(x) =
tRΞ(px) ΛR . The reduced metric at a given point x of domain Ω is given by the strongest
size constraint imposed by the metric at x and by the spanned metrics (parametrized by the
given size gradation) of all the other points of the domain at x:

M̃(x) =

(⋂
p∈Ω

Mp(x)

)
∩M(x) .

In the case of a mesh H supplied with a discrete metric field given at its vertices, each
vertex provides a metric to all the other vertices that imposes its size constraints in all
directions. The metric reduction is thus performed with all mesh vertices. To avoid this
quadratic complexity algorithm, the mesh gradation problem is approximated with a linear
complexity algorithm based on mesh edges. More precisely, the size correction is performed
edge by edge. Let pq be an edge of the mesh with endpoints metricsM(p) andM(q). We
define the metrics Mq(p) and Mp(q) with growth at both extremities of the edge which
are given by Relation (29). Then, the reduction is performed for each vertex by a metric
intersection. The information is propagated in the whole domain from an iterative algorithm
depicted in Algorithm 3. To design a pseudo-exponential size variation law, the gradation
coefficient β is increased while getting farther from a vertex. The gradation coefficient is
increased by a factor α at each step as stated in Algorithm 3. This algorithm is topology-
dependent because the increased gradation coefficient is not a function of the distance but it is
a function of a topological distance, i.e., the ball order. Therefore, to reduce the dependency
on the mesh topology, the edges are randomly treated.

The result of the metric field size gradation is illustrated in Figure 2 where the metric fields
are shown before and after the gradation process. The mesh gradation clearly regularizes the
initial non-smooth metric field.

Algorithm 3 Metric Field Size Gradation
While (Correction = 1)

1. Correction = 0

2. Copy current metric fieldM inMnew

3. Loop over the edge of H in a random order

Let pq be the current edge;

(a) Grow vertices metric to both edge extremities:
M(q) −→Mq(p) and M(p) −→Mp(q);

(b) Apply the reduction process to each vertex:
Mnew(p) =Mnew(p) ∩Mq(p) and Mnew(q) =Mnew(q) ∩Mp(q) ;

(c) If one metric is modified then correction = 1;

EndEdgeLoop

4. Increase the size gradation factor to β ← αβ with α > 1;

EndWhile

5.5 The local adaptive remesher: AMG
The adaptive remesher used in this paper is based a combination of generalized standard
operators (insertion, collapse, swap of edges and faces). The generalized operators are based

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 19

Figure 2: Global view of the metric field at each vertex, the unit ball scaled by one-fourth of
each metric is plotted. Left, the initial metric field computed with the error estimate. Right,
the new metric field after gradation. It clearly illustrates that mesh gradation regularizes the
metric field.

on recasting the standard operators in a cavity framework [31]. Additional modifications
on the cavity allow to either favor a modification, that would have been rejected with the
standard operator, or to improve the final quality by combining automatically many standard
operators at once. In addition, the CPU time is also improved and becomes independent of
the current modification. The unit speed is around 20,000 points inserted or removed per
second on Intel i7 architecture at 2,7Ghz. For robustness purpose, both the surface and the
volume mesh are adapted simultaneously, and each local modification is checked to verify
that a valid mesh is obtained. For the volume, the validity consists in checking that each
newly created element has a strictly positive volume. For the surface, the validity is checked
by ensuring that the deviation of the geometric approximation with respect to a reference
surface mesh remains within a given tolerance [14].

For unsteady simulations, the mesh adaptation becomes critical as the CPU time of the
simulation depends on the quality of the worse element. Indeed, when an explicit time-
stepping is used, the minimal time-step governs the speed of the simulation. Consequently,
the minimal size (or height) generated during the remeshing process may impact drastically
the CPU time. If the generated size if 0.01 of the minimal target, then the while CPU time
will be multiplied by 100. To overcome this issue, we add an additional control based on the
height of the tetrahedra. We start from the definition of the minimal height of a tetrahedron:

h2 =
1

3

V

Smax
, (30)

where h is the minimal height, V the volume and Smax the maximal area of the faces. For
each provided metric, we consider then the regular tetrahedron of side h1, h2, h3, where (hi)i
are the unit lengths along the eigenvectors of the metric. Then, assuming that the sizes
may be in the range [1√

2
hi,
√

2hi], we can estimate the global minimal height htar using
Relation (30). A mesh modification is then rejected if the minimal height of the new set of
tetrahedra is lower than htar and the minimal height of the initial set of elements. Numerical
experiments have proven that this additional constraint does not have a negative impact on
the level of anisotropy while preserving an optimal CPU time-step for the flow solver.

6 Parallelization of the mesh adaptation loop

6.1 A shared memory multi-threaded parallelization
The main motivation is to take advantage of today’s ubiquitous multi-core computers in
mesh adaptive computations. However, the adaptive platform is highly heterogeneous as it
contains several codes components that have different internal databases and that consider
different numerical algorithms. Indeed, the time-accurate mesh adaptation loop involves four
codes:

• Wolf the second order Finite-Volume flow solver

• Metrix to compute the continuous space-time mesh and perform the metric fields gra-
dation

RR n° 8929

20 F. Alauzet, A. Loseille and G. Olivier

• AMG the local adaptive remesher based on the cavity operator

• Interpol for the P1-conservative solution transfer.

Two different strategies have been used to parallelize the different steps considering the
shared memory paradigm. First, a semi-automatic parallelization based on the p-thread
API and, second, a pipelining strategy.

P-threads parallelization The first strategy is an intrusive parallelization of the code
using the p-threads paradigm for shared-memory cache-based parallel computers. One of
the main assets of this strategy resides in a slight impact on the source code implementation
and on the numerical algorithms. This strategy is applied to the flow solver and to the
error estimate code. Parallelization is at the loop level and requires few modifications of the
serial code [32, 33]. However, to be efficient, this approach requires a subtle management of
cache misses and cache-line overwrites to enable correct scaling factor for loop with indirect
addressing. The key point is to utilize a renumbering strategy based on Hilbert space-filling
curves to minimize them [3]. Indeed, space-filling curves (SFCs) are mathematical objects
that exhibit clustering properties very desirable in the context of renumbering algorithms
[38]. Then, for loops with indirect addressing, the main block is split into many - several
more than the number of threads - small blocks and dynamic scheduling is used to reduce
concurrent memory access issues.

Pipelining parallelization After Step 3 of Algorithm 1, all continuous meshes, i.e., un-
steady metrics, for each sub-interval have been evaluated. Therefore, the metric gradation
and the generation of the new adapted meshes for all sub-intervals can be done at the same
time. The second strategy consists of using a pipelining parallelization: each available pro-
cessor manages these two tasks in serial for a given sub-interval. When a processor is finished,
it handles again these two tasks for another sub-interval as long as there are meshes to be
generated. In this way, the local remesher and the metric gradation are run in parallel on
the same computer or in a distributed manner on an heterogeneous architecture.

Data communication Our implementation of the mesh adaptation platform considers
independent dedicated codes for each stage of the adaptation loop. The main drawback of
this strategy is that between two stages, one code writes the data (e.g. the mesh and the
fields) out-of-core and the next code reads them back and builds its internal database. This
results in a larger part devoted to I/O as compared to the all-in-one approach. But, the CPU
time for the I/O is generally negligible with respect to the global CPU time. The advantage
of the proposed strategy is its flexibility. Each code can be developed independently with
its own programming language and its own optimal internal database. Moreover, each code
is interchangeable with another one, only the I/O between the different codes need to be
compatible. To reduce communication, the amount of transfer ofout-of-core data is minimized
and binary files are used.

6.2 Parallel performance

Parallel performance has been analyzed on two different multi-cores computers with different
processors and memory access speeds:

• Computer 1:

– 2 chips: Xeon E5-2670 10 cores 2.5 GHz

– both chips are connected by 2 QPI links with a speed of 16 GB/s

• Computer 2:

– 4 chips: Xeon E7-4850 10 cores 2 GHz

– all chips are connected to all by 1 QPI link with a speed of 16 GB/s

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 21

The selected test case is the spherical blast of Section 7.3. First, the parallel efficiency of
the flow solver and the solution transfer code is analyzed on one sub-interval. Then, timings
for the full time-accurate mesh adaptation loop are given for two fixed-point loop iterations.
Parallel timings are compared to the CPU time in serial on the same mesh(es), thus strong
speed-ups are analyzed.

Currently, all distributed architectures have hyper-threading capabilities. The main func-
tion of hyper-threading is to increase the number of independent instructions in the pipeline.
With hyper-threading, one physical core appears as two (or more) processors to the operating
system, which can use each core to schedule two (or more) processes at once. If the memory
resources for one process are not available, then another process can continue if its memory
resources are available. It means that hyper-threading hides process memory latency and
cache misses. As a result, super-scalar speed-ups can be obtained with respect to the serial
code because of a large reduction of the memory latency and cache misses [33]. Here, for each
parallel run, hyper-threading has been used by launching a number of threads equal to twice
the number of cores. For instance, the 4 HT run means than 4 cores have been used but 8
threads have been launched. The benefits of hyper-threading are clearly visible in the paral-
lel timings (see tables below) by comparing the serial run and the parallel run on one core
with hyper-threading, i.e., the 1HT columns. Hyper-threading is also mandatory to achieve
good speed-up on multi-chips architectures by counterbalancing slower speed memory access
between chips.

Flow solver For the flow solver profile, the solution is computed from a-dimensioned time
0.6945 to 0.7 which corresponds to the last sub-interval when nadap = 128. The mesh size
is 2, 173, 612 vertices, 13, 037, 975 tetrahedra and 75, 090 boundary triangles. To reach final
time, the solver perform 36 Runge-Kutta iterations with a 5-steps scheme, leading to a total
of 180 time-steps. I/Os and initialization are not taken into account in the timings. Timings
and speed-ups for Computer 1 and 2 are summarized in Table 1 and 2, respectively. We
observe an almost perfect strong speed-up up to 1 chip with 10 cores using hyper-threading.
Speed-up decreases when 2 chips are used due to memory access speed between chips, but
it still remains good and very good on Computer 1 and 2, respectively. However, speed-ups
drop drastically on 4 chips on Computer 2 because there is not enough memory links between
the chips.

Nbr. of cores Serial 1 HT 2 HT 4 HT 8 HT 10 HT 20 HT
Timings (sec.) 1,054 878 423 236 133 112 71
Speed-up 1.0 1.2 2.5 4.5 7.9 9.4 14.9

Table 1: Flow solver timings and speed-up on computer 1 up to 20 cores with hyper-
threading.

Nbr. of cores Serial 1 HT 2 HT 4 HT 8 HT 10 HT 20 HT 40 HT
Timings (sec.) 2,072 1,506 759 393 228 193 121 117
Speed-up 1.0 1.4 2.8 5.2 9.1 10.7 17.1 17.7

Table 2: Flow solver timings and speed-up on computer 2 up to 40 cores with hyper-
threading.

Solution transfer The five solution fields at a-dimensioned time 0.6945 of the spheri-
cal blast problem are interpolated. The background mesh size is 2, 166, 190 vertices and
12, 993, 399 tetrahedra and the new mesh size is 2, 173, 612 vertices and 13, 037, 975 tetrahe-
dra. For that case, 226 millions tetrahedron-tetrahedron intersections have been computed
and 1.7 billions tetrahedra have been generated to mesh the intersections. In the timings
analysis, I/Os and initializations are not taken into account. Timings and speed-ups for
Computer 1 and 2 are summarized in Table 3 and 4, respectively. We notice that the speed-
ups are excellent on both computers and even super-linear for a low number of cores thanks

RR n° 8929

22 F. Alauzet, A. Loseille and G. Olivier

to the hyper-threading which reduces memory latency. However, for computer 2, we notice
when more chips are used, the speed-up degrades. This is mainly due to slower memory
access between the chips (only one link between each).

Nbr. of cores Serial 1 HT 2 HT 4 HT 8 HT 10 HT 20 HT
Timings (sec.) 1,435 1,071 562 301 158 126 72
Speed-up 1.0 1.3 2.6 4.8 9.1 11.3 19.93

Table 3: Solution transfer timings and speed-up on computer 1 up to 20 cores with hyper-
threading.

Nbr. of cores Serial 1 HT 2 HT 4 HT 10 HT 20 HT 40 HT
Timings (sec.) 2,087 1,625 1,011 413 193 115 63
Speed-up 1.0 1.3 2.0 5.0 10.8 18.1 33.1

Table 4: Solution transfer timings and speed-up on computer 2 up to 40 cores with hyper-
threading.

Full adaptation loop Let us now analyze the timings for the full adaptation loop meaning
that I/Os, file manipulations and code initializations are included. Two global fixed-point
iterations are performed and the time frame has been split into 16 sub-intervals, i.e., nadap =
16. The space-time complexity prescription leads to an average spatial mesh size for each
sub-interval of 1, 318, 667 vertices and 2, 048, 968 tetrahedra. Timings and speed-ups for
Computer 1 are given in Table 5. Note that the CPU time dedicated to the resolution of the
flow equations represents about 90 % of the total CPU time, which demonstrates the limited
CPU time overhead due to the adaptation loop. This very limited cost has to be compared
with the enormous gains in terms of solution quality and mesh optimality, as long as with
the ability to manage unsteady simulations complexity at will.

Nbr. of cores Serial 2 4 8 20 HT
Wolf & Interpol total timings (min.) 2,014 1,060 586 307 140
Wolf & Interpol total speed-up 1.0 1.9 3.4 6.6 14.4
AMG & Metrix total timings (min.) 152 83 45 26 16
AMG & Metrix total speed-up 1.0 1.8 3.4 5.9 9.5
Adaptation loop total timings (min.) 2,166 1,143 631 333 156
Adaptation loop total speed-up 1.0 1.9 3.4 6.5 13.9

Table 5: Full adaptation loop timings and speed-up on computer 1 up to 20 cores with
hyper-threading.

7 Space-time convergence analysis
The goal of this section is to analyse the space-time convergence of the adaptive process and
to emphasize the adaptation of the time domain. The temporal adaptation is achieved by
controlling the number of sub-intervals (defined by nadap) while using the unsteady mesh
adaptation loop presented in Algorithm 1.

We first demonstrate the loss of convergence order if the time domain is not adapted,
then we describe how the time domain can be adapted using the unsteady mesh adaptation
algorithm. Then, we present our choices for the computations of the space-time error and
the simulation complexity. Finally, a space-time convergence analysis is carried out for two
simulations. The first one is a 3D blast problem inside a simple geometry (a box) where
a detailed analysis can be carried out. The second one is a realistic simulation of a blast
with a geometry representing a city, demonstrating that such analysis can also be made on
relatively complex real-life problems.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 23

7.1 Adaptation of the time domain

When a convergence analysis is carried out, the rate of reduction of the error is analyzed
with respect to the increase of the mesh size (e.g. the mesh size). A convergence rate α is
obtained if we have:

‖u− uh‖ ≤ Cst N−
α
d (31)

where u denotes the exact solution, uh the approximate (i.e., discretized) one, N stands for
the mesh size (number of vertices) and d the dimension of the computational domain.

For the steady case, a loss of convergence order (it drops to order one or less) generally
occurs in the presence of steep gradients (Navier-Stokes equations), or genuine discontinuities
or singularities (Euler equations) in the flow, despite the use of a tried-and-tested spatially
high-order method. Indeed, the numerical method is second-order far from singularity or
discontinuity, and first-order at singularity or discontinuity vicinity. The computed mesh
convergence order obtained in practice on uniformly refined meshes differs from the one
expected in theory. Theoretically, Relation (6) demonstrates that an asymptotic second-order
mesh convergence is obtained for smooth functions thanks to mesh adaptation in Lp norm.
In several works [4, 26, 29], it has also been shown that the theoretical convergence order
of numerical schemes - here a state-of-the-art second-order shock-capturing solver - is also
recovered thanks to anisotropic mesh adaptation, even if the flow field exhibits singularities,
genuine discontinuities, or steep gradients. It is because, in order to reduce the error by
a factor four, mesh adaptation requires : a mesh size four times smaller in the singularity
vicinity, a mesh size four times smaller in the direction normal to the discontinuity and two
times smaller in the other two directions in the discontinuity vicinity, and a mesh size two
times smaller in smooth regions. Thus, the overall mesh size is only increased by a factor 2d.

When dealing with unsteady simulations, the space-time error convergence has to be
analyzed with respect to the space-time mesh size (by adding the time discretization, i.e.
d = 4). In our case, an explicit time integration scheme is considered, thus the time-step
is governed by a CFL condition and is proportional to the mesh size, see Relation (17).
Therefore, the time-step is divided by a coefficient a when the mesh size is divided by a
coefficient a. We now detail the evolution of the space-time mesh size when the accuracy
is increased. We still assume that the space-time approximation is second-order far from
singularity or discontinuity, and is first-order at singularity or discontinuity vicinity.

Let us consider the simulation of a 1D constant planar shock wave (i.e., a step function)
moving at constant speed until final time T = 1. In that case, we have d = 2. The number of
sub-intervals is set to nadap and the sub-intervals have the same time length ∆t = 1/nadap.
An average number of vertices equal to nx is prescribed for each sub-interval. As the shock
moves at a constant speed and is constant in time, the following mesh characteristics can be
deduced:

• each sub-interval is meshed with nx vertices

• the space interval [0, 1
nadap

] corresponds to the area swept by the discontinuity for the
first sub-interval, thus the nx vertices are located in that region1. Then, the shock
wave swept the interval [1

nadap
, 2
nadap

] which is refined with the nx vertices at second
sub-interval and so on

• as the same mesh size is prescribed for each sub-interval, nt time-steps are performed
for each sub-interval.

The resulting adapted space-time mesh is illustrated in Figures 3 and 4 (left). In that case,
we end-up with a total space-time mesh size of

Nst = nadap × (nx× nt) .

Now, we want to increase the mesh size to perform a convergence analysis. We assume
the number of sub-intervals remains constant. If the spatial size is divided by two then the

1The number of vertices located outside that region can be neglected.

RR n° 8929

24 F. Alauzet, A. Loseille and G. Olivier

time-step is also divided by two, see right mesh in Figure 3, then the total space-time mesh
size of the refined mesh is

nadap × (2nx× 2nt) = 4Nst .

For this space-time mesh, the error is divided by 2 because the space-time approximation is
first-order at the discontinuity vicinity. As Nst is multiplied by 4 (and we have d = 2), we
obtain α = 1 in Relation (31) which means a convergence at first order. This is due to the
non-adaptation of the time axis leading to a non-optimal mesh adaptation process.

To adapt the time axis, we propose to multiply by two the number of sub-intervals and
to keep the same average number of vertices nx on each sub-interval. As the size of the
sub-interval is divided by two, the spatial size and the time-step are also divided by two, see
right mesh in Figure 4. In that case, the total space-time mesh size of the refined mesh is:

2nadap × (nx× nt) = 2Nst .

We observe that we achieved the same accuracy as previously but the space-time mesh size
has been increased by a factor two instead of four. Now, the error is divided by 2 for Nst

multiplied by 2, we thus obtain α = 2 in Relation (31) meaning a convergence at second
order. By doing so, we have performed an adaptation of the time axis and recover the second
order convergence of the numerical scheme similarly to the steady case.

The same analysis can be done for the general case in nD where we assume that the
regular part of the solution contributes to the space-time error at the same order as the
singular (discontinuous) part of the solution. Following the above comments for the steady
case and the time adaptation of the mesh, for a nD unsteady simulation (hence d = n+ 1),
the space-time error is divided by four if the adapted mesh has 2n more vertices in smooth
regions, is four times finer in singularity vicinity, and is four times finer orthogonally to
discontinuities (and two times smaller in the other directions), so that the time-step is also
four times smaller. Therefore, the space-time mesh size is increased by a factor 4 × 2n. As
convergence order α verifies ε ∼ N−

α
d , the reduction of the error and the increase in mesh

size give:
1

4
= (4× 2n)−

α
d = (

1

4
)
α
d (n2 +1) ⇒ α =

2 d

n+ 2
.

We obtain α = 4
3 ,

3
2 and 8

5 in 1D, 2D and 3D, respectively.

Remark 7.1. If the "regular" error is a lot smaller that the "singular" error, as all the mesh
vertices will focus on singular regions, we can observe an arbitrary large order of convergence.

Remark 7.2. This simplified analysis highlights the usefulness of adapting the number of
sub-intervals to carry out a convergence analysis. Note that if the mesh is adapted at each
flow solver iteration (which is impracticable for real-life applications), the same time axis
adaptation is automatically performed. Indeed, due to the CFL condition, dividing mesh
size by two requires twice the solver iterations and thus the generation of twice the meshes.
In consequence, the proposed adaptation of the time axis is logical.

Remark 7.3. Most unsteady adaptation algorithms in the literature consist of adapting the
mesh at each n (n small) solver iterations - if not at each iteration - and one can legitimately
question our choice of adapting on time sub-intervals. The above analysis and Remark 7.2
show that using time sub-intervals, limits considerably the number of generated meshes and
thus the number of solution transfers. This is definitely a major problem with respect to
the accumulation of transfer errors [5] and pleads in favor of using time sub-intervals for
consistent space-time adaptation.

However, to perform this consistent time adaptation, the number of sub-intervals is di-
vided by two when spatial size is divided by two. The direct consequence is that twice as
many meshes are generated and therefore, twice as many solution transfers are performed.
To avoid an accumulation of transfer errors, which can definitely hinder convergence, it is
mandatory to use evolved transfer operators which are especially designed to limit these er-
rors. The P1-conservative interpolation scheme recalled in Section 5.2 achieves this goal in a
very efficient manner [5].

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 25

Constant number
of sub-intervals

x

t

2nd sub-interval

1st sub-interval

3rd sub-interval

4th sub-interval

NST = nadap ⇥ (nx⇥ nt)
x

t

4th sub-interval

3rd sub-interval

2nd sub-interval

1st sub-interval

4 NST = nadap ⇥ (2 nx⇥ 2 nt)

Figure 3: Illustration in 1D of the refinement of the space-time mesh when the space-time
mesh size is increased and the number of sub-intervals is kept constant.

x

t

2nd sub-interval

1st sub-interval

3rd sub-interval

4th sub-interval

NST = nadap ⇥ (nx⇥ nt)
x

t

5th sub-interval

6th sub-interval

7th sub-interval

8th sub-interval

4th sub-interval

3rd sub-interval

2nd sub-interval

1st sub-interval

2 NST = 2nadap ⇥ (nx⇥ nt)

Adaptive number
of sub-intervals

Figure 4: Illustration in 1D of the refinement of the space-time mesh when the space-time
mesh size is increased and the number of sub-intervals is increased too.

7.2 Computation of the space-time error and associated complexity
parameters

To analyze the accuracy of each simulation and to perform a convergence analysis, we compute
the L1-norm of the space-time error with respect to a reference solution:

errst =

∫ T

0

∫
Ω

|uref (x, t)−u(x, t)|dxdt ≈
nrefadap∑
i=1

∆t

Nref
tet (i)∑
j=1

|Kj | |uref (Gj , t
i+1)− u(Gj , t

i+1)|

(32)

with the notations:

• nrefadap is the number of reference adapted meshes (sub-intervals) used for the simulation

• ∆t = T

nrefadap
is the sub-intervals time length

• Nref
tet (i) is the number of tetrahedra of the ith adapted mesh, denoted Href

i , used to
compute the reference solution for sub-interval [ti, ti+1]

• |Kj | is the volume of the jth tetrahedron of Href
i

• uref (Gj , t
i+1) and u(Gj , t

i+1) are the reference solution and the solution at jth tetra-
hedron barycenter at time ti+1, respectively.

To run the simulation, the theoretical total space-time complexity is prescribed as de-
scribed in Section 5.1: Nst = nadapNavg. However, this value cannot be used for the conver-
gence analysis. For this analysis, we propose to observe the convergence of the space-time
error given by Relation (32) with respect to three parameters:

1. The total number of spatial vertices of the simulation run on nadap adapted meshes
which the sum of the number of vertices of each sub-interval mesh:

Nspatial =

nadap∑
i=1

N i .

RR n° 8929

26 F. Alauzet, A. Loseille and G. Olivier

In that case, the time discretization is not taken into account and we assume that only
one time-step is performed on each sub-interval. This parameter is consistent with the
theoretical prescription which does not take into account the time discretization.

2. The total number of space-time vertices of the simulation run on nadap adapted meshes:

Nst =

nadap∑
i=1

niiter ×N i ,

where the time discretization corresponds to the number of time-steps of the flow solver
at each sub-interval, e.g. niiter is the number of time-steps for the ith sub-interval.

3. The effective CPU time of the simulation for the last two fixed-point iterations.

These parameters deserve some comments for a correct interpretation of the results in Sections
7.3 and 7.4.

Remark 7.4. The first parameter is consistent with the choices made in Section 5.1 to define
the optimal continuous mesh given by Relation (25), and thus, the user prescription for the
mesh complexity. However, as we assume that only one time-step is done for each sub-
interval, the theoretical analysis made in Section 7.1 does not hold anymore. Indeed, this
parameter is blind for any adaptations of the temporal domain, i.e., the number of time-
steps. Therefore, for this parameter, it is not advantageous to perform more adaptations
(e.g. using more sub-intervals), and all the more so that the solution interpolation stage is
source of errors.

Remark 7.5. The second parameter represents the real size of the discrete space-time mesh, so
it is consistent with the theoretical analysis of Section 7.1, e.g. doing more mesh adaptation
should improve the space-time convergence order of the mesh adaptation scheme. Notice
that the time discretization highly depends on the generated discrete meshes2 and thus may
have some fluctuations due to the discrete representation.

Remark 7.6. The third parameter is a pragmatic parameter because it represents the real
size of the domain space-time mesh used to run the simulation (like the first parameter) but
also all the code’s cost associated with the creation of this optimal space-time mesh in the
adaptation process. It will show what is the most efficient strategy to apply in practice with
the code considered in this work.

7.3 Spherical blast
The first example is a spherical Riemann problem between two parallel walls simulating a
blast. The computational domain is a box of size [−1.5, 1.5] × [−1.5, 1.5] × [0, 1]. Initially,
the gas is at rest with density ρout = 1 and pressure pout = 1 everywhere except in a
sphere centered at (0, 0, 0.4) with radius 0.2. Inside the sphere the parameters are ρin = 1
and pin = 5. For both regions, we have γ = 1.4. The initial pressure jump results in a
strong outward moving shock wave, an outward contact discontinuity and an inward moving
rarefaction wave, see Figure 5 (left). The main feature of the solution is the interactions
between these waves. Another significant feature is the development of a low density region
in the center of the domain. The solution remains cylindrically symmetric throughout the
simulation and is computed until a-dimensioned time T = 0.7.

For all the adaptive simulations, the density of the flow is chosen as the sensor variable
and the space-time interpolation error on the sensor is controlled in L2 norm. Twenty solution
samples are used to compute the hessian-metric HL1 given in Section 5.1.

The adaptive reference solution has been computed using nrefadap = 128 sub-intervals,
i.e., the number of adapted meshes used to run the simulation, and a theoretical average
complexity of Navg = 640, 000 per sub-interval. This represents a total space-time complexity
Nst equal to 82 million. Practically, the discrete meshes - used to compute the reference

2An explicit time integration is considered and the time-step is linked to the smallest element height of
the mesh.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 27

solution - have an average number of spatial vertices of Nref
avg = 1, 712, 282 vertices, detailed

statistics about some of the adapted meshes are given in Table 6. The total number of
space-time vertices used to compute the reference solution is Nref

st = 11 billion.

In order to perform the convergence study, 30 adaptive simulations have been run where
the two varying parameters are:

• The number of adapted meshes (sub-intervals): nadap = {4 ; 8 ; 16 ; 32 ; 64 ; 128}

• The average complexity: Navg = {40, 000 ; 80, 000 ; 160, 000 ; 240, 000 ; 320, 000}.
Thus, the total space-time complexity Nst varies between 160, 000 and 41 million. Running
all these simulations makes it possible to analyze the impact of increasing the theoretical
complexity of the mesh on the solution accuracy either at fixed number of adaptations while
increasing the average complexity or at fixed average complexity while increasing the number
of adaptations.

Solution - density field - evolution at a-dimensioned time 0.175 , 0.35 , 0.525 , 0.7, and
adapted meshes evolution for sub-intervals 32, 64, 96, 128 for the adaptive simulation with
parameters nadap = 128 and Navg = 320, 000 are presented in Figure 5. These pictures illus-
trate the complex behavior of the physical phenomena (shock waves, contact discontinuities,
rarefaction waves, low density region) and the many interactions between them.

Figure 6 (left) shows the final density field at a-dimensioned 0.7 for different prescribed
space-time complexities where nadap = 16 and Navg = {40, 000 ; 80, 000 ; 160, 000 ; 320, 000}.
The improvement in solution accuracy is clearly visible as solutions have increasingly details,
and the waves become increasingly fine. Figure 6 (right) shows the last sub-interval adapted

Figure 5: Spherical blast. Left, solution - density field - evolution at a-dimensioned time
0.175 , 0.35 , 0.525, and 0.7 (from top to bottom), and right, adapted meshes evolution for sub-
intervals 32, 64, 96 and 128 (from top to bottom) for the adaptive simulation with parameters
nadap = 128 and Navg = 320, 000.

RR n° 8929

28 F. Alauzet, A. Loseille and G. Olivier

meshes for the adaptive simulations with Navg = 320, 000 and nadap = {4 ; 8 ; 16 ; 32}.
The adaptation of the mesh for the whole time sub-interval is clearly visible. Indeed, the
mesh refinement along band-shaped regions, which corresponds to the zone in which physical
phenomena evolves during a time sub-interval, are visible. We also observe that the thickness
of the refined band-shaped regions reduces when the number of adapted meshes increases,
this points out the adaptation of the time axis as explained in Section 7.1.

The convergence curves of the space-time error errst (given by Relation (32)) with respect
to the three parameters Nspatial, Nst and CPU time are given in Figure 7. Two plots also
show the convergence for uniform meshes with a uniform size h ranging from 0.04 to 0.00625,
and a number of vertices between 249, 514 and 61, 230, 237. The number of space-time ver-
tices varies between 12, 475, 700 and 48, 616, 808, 178. Uniform meshes statistics are given in
Table 7 (left).

The top plots show the convergence of errst with respect to the number of spatial vertices
Nspatial. Left, convergence curves for five prescribed Navg with varying nadap (from 4 to 128)
are presented. We observe a convergence at order 2 (the black dashed curve is cN−

2
4) for

the five curves at fixed Navg while increasing the number of adaptations. Right, we compare
the convergence for prescribed total complexities ranging from 640, 000 to 5, 120, 000 when
Navg is fixed to 40, 000 and nadap is increased from 4 to 128, and when nadap is fixed to 16
and Navg is increased from 40, 000 to 320, 000. We observe a faster convergence when Navg

is increased and nadap is fixed. This is conforming to Remark 7.4 because the number of
time-steps is not taken into account in the mesh size.

The middle plots show the convergence of errst with respect to the number of space-time

Figure 6: Spherical blast. Left, final solution at a-dimensioned 0.7 for adaptive simulations
with nadap = 16 and Navg = {40, 000 ; 80, 000 ; 160, 000 ; 320, 000} (from top to bottom). It
points out the solution - density field - accuracy improvement while increasing the average
theoretical complexity of the adaptive simulation. Right, last sub-interval adapted meshes for
adaptive simulations with Navg = 320, 000 and nadap = {4 ; 8 ; 16 ; 32} (from top to bottom).

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 29

vertices Nst. Left, convergence curves for five prescribed Navg with varying nadap (from 4 to
128) are presented. All of them point out a convergence at order 3 (the black dashed curve is
cN−

3
4). This order of convergence is larger than the one expected by the theory in Section 7.1.

It should be of the order of 8/5. But, in this simulation, singular phenomena are preponderant
with respect to regular phenomena. As explained in Remark 7.1, an arbitrary large order
can be obtained in such case. On the contrary, we notice that the series of uniform meshes
converge only at order one which is in accordance with the theory. The lack of accuracy of

nadap = 8

nadap = 16
nadap = 32

nadap = 64
nadap = 128

nadap = 4

nadap = 4

nadap = 8

nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 16
nadap = 32

nadap = 64
nadap = 128

Navg = 80K

Navg = 40K

Navg = 160K

Navg = 320K

nadap = 4

nadap = 8

nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 4

nadap = 8

nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 16

nadap = 32

nadap = 64

nadap = 128

Navg = 80K

Navg = 40K

Navg = 160K

Navg = 320K

nadap = 4

nadap = 8

nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 4

nadap = 8
nadap = 16

nadap = 32
nadap = 64

nadap = 128

nadap = 16
nadap = 32

nadap = 64
nadap = 128

Navg = 80K

Navg = 40K

Navg = 160K

Navg = 320K

Figure 7: Spherical blast. Convergence curves of the space-time error with respect to the
number of spatial vertices (top), the number of space-time vertices (middle), and the CPU
time (bottom). Left, convergence curves for five prescribed average complexity with varying
number of adapted meshes (sub-intervals). Right, convergence comparison between fixed av-
erage complexity with varying number of adapted meshes and fixed number of adapted meshes
with varying average complexity.

RR n° 8929

30 F. Alauzet, A. Loseille and G. Olivier

the uniform meshes solutions with respect to the adaptive reference solution is emphasized
in Table 7 (right) where final density solution extractions along a line are shown. For each
adaptive curve, we observe that the curve directly to its left is always below, and the curve
directly to its right is always above. This means that a better convergence rate is obtained
by increasing nadap than by increasing Navg. This is emphasized in the right plot where we
compare the convergence for different prescribed total complexities when Navg is fixed and
nadap is increased, and when nadap is fixed and Navg is increased. The convergence order is
3 when nadap is increased while it is 1.6 when nadap is fixed. This result is in accordance
with Remark 7.5. Moreover, Section 7.1 theoretical analysis points out that, for the same
prescribed total space-time complexity, the space-time discrete mesh size increases faster
when nadap is fixed and Navg is increased than when Navg is fixed and nadap is increased.
This is clearly illustrated in the right plot.

The bottom plots show the convergence of errst with respect to the CPU time. These
plots are more pragmatic because if the theory suggests to increase the number of adapted
meshes to improve the convergence order, this has a cost in practice because:

• It increases the number of IOs to communicate between code

• The flow solver has to build its data base more often

• The local remesher has to generate more meshes

• The solution needs to be interpolated more times, and thus more error due to this
transfer is accumulated.

All curves are nearly aligned (except the red one with the lowest prescribed average complex-
ity) which means that whatever the set of parameters {nadap,Navg}, they will achieve the
same space-time error for the same CPU time. However, these plots suggest having a high
Navg value before increasing nadap. We clearly see that the solution accuracy degrades sig-
nificantly for lower Navg values (40, 000 and 80, 000) when a large number of adapted meshes
is considered, and also slightly degrades for middle Navg values (120, 000 and 240, 000) when
nadap equals 128. This is due to the interpolation stage that spoils the solution accuracy even
if a conservative interpolation is considered. This accuracy degradation is not visible when
the error is plotted with respect to the mesh size (top and middle plots) but it appears when
efficiency is concerned. The convergence for the series of uniform meshes is also plotted. It
undeniably points out the superiority of the adaptive process in terms of accuracy and CPU
time.

Sub-interval # vertices # tetrahedra # triangles minh avg h ratio quotient
1 2, 870, 443 17, 424, 113 9, 626 0.0002 0.0065 15 250
32 1, 311, 468 7, 883, 090 11, 582 0.0003 0.0108 23 463
64 1, 715, 800 10, 285, 064 34, 860 0.0004 0.0135 21 370
96 1, 908, 009 11, 414, 259 55, 484 0.0003 0.0163 20 316
128 2, 173, 612 13, 037, 975 75, 090 0.0003 0.0187 18 268

Table 6: Spherical blast. Adapted meshes statistics used to compute the reference solution:
number of vertices, number of tetrahedra, number of triangles, minimal edge size, average
edge size, average anisotropic ratio, and average anisotropic quotient.

7.4 A blast in a city
This second example is a purely three-dimensional blast problem in a relatively complex
geometry representing a city. In this simulation, shock waves interact with each other and
are reflected by the buildings. The city geometry is the same as in [2] with a domain size of
85m × 70m × 70m. Initially, the ambient air is at rest ρout = 1 and pout = 1. To simulate
the blast, a high pressure and density region is introduced in a half-sphere of radius 2.5 m.
In this region, the relevant parameters are ρin = 10, pin = 25 and uin = 0. For both regions,
we have γ = 1.4. The solution is computed until a-dimensioned time T = 15.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 31

vertices # tetrahedra # triangles h

249, 514 1, 482, 072 41, 620 0.04000

981, 414 5, 920, 992 107, 206 0.02500

3, 865, 472 23, 625, 435 270, 146 0.01575

15, 410, 860 94, 933, 056 676, 270 0.00100

61, 230, 237 381, 366, 990 1, 725, 984 0.00625

Table 7: Spherical blast. Left, uniform meshes statistics used to compute the solution:
number of vertices, number of tetrahedra, number of triangles, and edge size. Right, final
density solution extraction along a line for the reference solution (red) and the two solutions
computed on the two finest uniform meshes (green and brown).

The density of the flow is chosen as the sensor variable for our mesh adaptation process.
The space-time interpolation error on the sensor is controlled in L2 norm. Twenty solution
samples are used to compute the hessian-metric HL1 .

The adaptive reference solution has been computed using nrefadap = 128 adapted meshes,
and a theoretical average complexity of Navg = 800, 000 per sub-interval. This represents
a total space-time complexity Nst equal to 102 million. Practically, the discrete meshes
- used to compute the reference solution - have an average number of spatial vertices of
Nref

avg = 3, 327, 382 vertices, detailed statistics about some of the adapted meshes are given
in Table 8. The total number of space-time vertices used to compute the reference solution
is Nref

st = 11 billion. Figures 8 and 9 show the evolution of the reference solution - density
field - at a-dimensioned time 5 , 10 , 15, and the associated adapted meshes evolution for
sub-intervals 43, 86, 128 on the surface and in a cut plane inside the volume, respectively. It
points out the complexity and the unpredictable behavior of the physical phenomena with
a large number of shock waves interacting with the geometry, and instabilities developing in
the region where the blast was initiated. Thanks to the feature-based mesh adaptation, all
shock waves are automatically captured by the adaptation process and properly refined.

In order to perform the convergence study, 18 adaptive simulations have been run where
the two varying parameters are:

• The number of adapted meshes (sub-intervals): nadap = {4 ; 8 ; 16 ; 32 ; 64 ; 128}

• The average complexity: Navg = {100, 000 ; 200, 000 ; 400, 000}.

Thus, the total space-time complexity Nst varies between 400, 000 and 51 million. Again,
running all these simulations makes it possible to analyze the impact of increasing the theo-
retical complexity of the mesh on the solution accuracy either at fixed number of adaptations
while increasing the average complexity or at fixed average complexity while increasing the
number of adaptations.

The convergence curves of the space-time error errst with respect to the three parameters
Nspatial, Nst and CPU time are given in Figure 10. Comments on the results are identical to
the one made for the previous example in Section 7.3.

For the top plots showing the convergence of errst with respect to the number of spatial
vertices Nspatial, we observe the same order of convergence and a faster convergence when
Navg is increased and nadap is fixed which is conforming to Remark 7.4.

For the middle plots showing the convergence of errst with respect to the number of
space-time vertices Nst, a convergence at order 2 (the black dashed curve is cN−

2
4) instead

of order 3 is observed. This is due to the instability regions that contain regular physical
phenomena, and thus singular regions are less preponderant, as discussed in Remark 7.1. The
plots again emphasize that a better convergence rate is obtained by increasing nadap than by
increasing Navg.

RR n° 8929

32 F. Alauzet, A. Loseille and G. Olivier

For the bottom plots showing the convergence of errst with respect to the CPU time,
we see that again the three curves are nearly aligned signifying that whatever the set of
parameters {nadap,Navg}, they will achieve the same space-time error for the same CPU time.
Another time, we observe a slight accuracy degradation for the lowest average complexity
(100, 000) when nadap equals 128 suggesting to have a high Navg value before increasing
nadap.

8 Other applications

The proposed adaptive method is generic and can be applied to a large variety of numer-
ical problems. In this section, we show its application to aeronautic and multi-fluid flow
simulations.

Figure 8: 3D blast in a city. Top, adapted surface meshes and, bottom, density iso-values
on the surface. From left to right, meshes and solutions at sub-intervals 43, 86, and 128,
respectively.

Figure 9: 3D blast in a city. Top, cut in the adapted volume meshes and, bottom, corre-
sponding density iso-values. From left to right, meshes and solutions at sub-intervals 43, 86,
and 128, respectively.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 33

Sub-interval # vertices # tetrahedra # triangles minh avg h ratio quotient
1 829, 275 4, 927, 323 44, 902 4 mm 123 mm 12 106
32 3, 218, 351 19, 451, 629 114, 206 2 mm 149 mm 18 253
64 3, 459, 242 20, 822, 072 194, 166 5 mm 208 mm 18 270
96 3, 772, 838 22, 675, 024 266, 450 4 mm 250 mm 16 251
128 4, 187, 548 25, 249, 618 329, 610 4 mm 288 mm 15 249

Table 8: 3D blast in a city. Adapted meshes statistics used to compute the reference solution:
number of vertices, number of tetrahedra, number of triangles, minimal edge size, average
edge size, average anisotropic ratio, and average anisotropic quotient.

8.1 Vortical flow behind a F117 fighter

We simulate a subsonic flow of a notional F117 fighter at high angle-of-attack. The aircraft
length is 19 meters and it has a wing span of 16 meters. The fighter geometry is shown
in Figure 11 (top left). The F117 fighter is flying at cruise with Mach number 0.4 with an
angle-of-attack of 20◦. For such conditions, a vortical flow develops in the wake of the F117
fighter, see Figure 12.

The local Mach variable is chosen as the sensor variable for the mesh adaptation process.
The space-time interpolation error on the sensor is controlled in L2 norm. The simulation
is split into 128 sub-intervals, e.g. 128 adapted mesh to run the whole simulation, and an
average complexity of 200, 000 has been set. This represents a total space-time complexity of
25.6 million. Twenty solution samples are used to compute the hessian-metric HL1 on each
sub-interval. And, three fixed-point iterations have been performed to converge the adaptive
process.

Practically, the discrete meshes have an average number of spatial vertices of Navg =
741, 885 vertices and total number of space-time vertices used to run the simulation is Nst =
17.7 billion. The last adapted mesh is shown in Figure 11 where different cut planes through
the volume are presented. This mesh is composed of 1, 037, 548 vertices and 4, 421, 690
tetrahedra. The automatic adaptation of the wake region where the vortical flow develops
is clearly visible. It results in the computation of a highly resolved solution where, vortices
have been propagated far in the flow field.

8.2 Impact of a water column on an obstacle

The second example aims at demonstrating the proposed method on a long-time simulation
involving a 3D complex liquid-air interface. The flow modeling relies on a Level Set formu-
lation [12] of a two-fluid incompressible flow solved by a standard Projection method. This
simulation consists of a water column falling in a parallelepiped-shaped domain containing
a cubic obstacle leading to unpredictable development of complex liquid-air interface. This
problem involves a violent transient flow, generating a very complex interface when the water
impacts the obstacle and the opposite wall (for a physical time close to 2 seconds). Then, the
flow returns to a smooth sloshing mode. Several calculations of this case have been presented
in the literature, see for instance [13, 19, 22]. These works show that long-term accuracy
is a difficult challenge and [19] shows that mesh adaptation is efficient to achieve that goal.
The simulation has been run until the final time of 6 seconds which corresponds to a forward
wave motion, a backward one, and then a second forward motion.

In regards to mesh adaptation, the sensor variable is the norm of the velocity and it is
coupled with a specific interface metric described in [19]. The space-time interpolation error
on the sensor is controlled in L2 norm. The simulation is split into 120 sub-intervals of 0.05
seconds, e.g. 120 adapted mesh to run the whole simulation, and an average complexity of
50, 000 has been set. This represents a total space-time complexity of 6 million. Twenty
solution samples are used to compute the hessian-metric HL1 on each sub-interval. And,
three fixed-point iterations have been performed to converge the adaptive process.

RR n° 8929

34 F. Alauzet, A. Loseille and G. Olivier

The evolution of the water-air interface and the associated adapted meshes is presented
in Figure 13 at several physical times. The violence of the transient flow at the impact is
illustrated at time 0.8 and 1.2 seconds, and the complexity of the simulation, notably by the
presence of several tubes in the flow, is illustrated by the interface shape at time 1.6 and 2
seconds. In the background, on can see the associated adapted meshes used to compute these
solutions. We clearly notice the mesh refinement in the neighboring region of the interface
and related to the water dynamic. We observe that the mesh size is highly dependent of the
flow behavior. Meshes with a smaller number of vertices than the average are generated at

nadap = 4
nadap = 8

nadap = 16
nadap = 32

nadap = 64
nadap = 128

nadap = 4

nadap = 8

nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 32

nadap = 64
nadap = 128

Navg = 100K

Navg = 200K

Navg = 400K

nadap = 4

nadap = 8

nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 4

nadap = 8
nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 16

nadap = 32

nadap = 64

nadap = 128

Navg = 100K

Navg = 200K

Navg = 400K

nadap = 4

nadap = 8

nadap = 16
nadap = 32

nadap = 64

nadap = 128

nadap = 4

nadap = 8

nadap = 16

nadap = 32

nadap = 64

nadap = 128

nadap = 32

nadap = 64
nadap = 128

Navg = 100K

Navg = 200K

Navg = 400K

Figure 10: 3D blast in a city. Convergence curves of the space-time error with respect to
the number of spatial vertices (top), the number of space-time vertices (middle), and the
CPU time (bottom). Left, convergence curves for three prescribed average complexity with
varying number of adapted meshes (sub-intervals). Right, convergence comparison between
fixed average complexity with varying number of adapted meshes and fixed number of adapted
meshes with varying average complexity.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 35

the beginning and at the end of the simulation when the flow is smooth, whereas larger size
meshes are generated to simulate accurately the breaking wave after the impact on the wall.

9 Conclusions

In this paper, we have presented a new time-accurate multi-scale anisotropic mesh adaptation
and its application to complex three-dimensional flows in computational fluid dynamics. This
new approach relies on a new space-time Lp interpolation error analysis and a global fixed-
point mesh adaptation algorithm. The space-time error analysis has been carried out for
adaptations at each time-step or for sub-intervals, and for a fixed time-step or for explicit
time-stepping. The use of the global fixed-point mesh adaptation algorithm is fundamental
as it allows the adaptive process to predict the solution behavior, to compute the optimal
space-time continuous mesh, to adapt the mesh in time, and to converge the non-linear mesh
adaptation problem. The practical use of this theory has been thoroughly described, in
particular with respect to the evaluation of the optimal space-time continuous mesh. The
parallelization of the time-accurate multi-scale anisotropic mesh adaptation loop has been
discussed and proven to be efficient on multi-core computers. And finally, a very detailed
space-time convergence analysis has been given. This analysis emphasizes the benefits of
using mesh adaptation for unsteady flows in terms of accuracy, convergence order and CPU

Figure 11: F117 fighter. Top left, F177 geometry and initial surface mesh. Other pic-
tures show the last adapted meshes with cut planes through the volume: top right a back
view, bottom left two side views, and bottom right a top view. Each picture illustrates the
adaptation of the mesh in the wake region.

RR n° 8929

36 F. Alauzet, A. Loseille and G. Olivier

time. Many applications have been presented showing that the proposed method is generic,
automatic, robust and efficient.

This strategy can be further improved. One point remaining is the adaptation of the
sub-interval length that has not been addressed. It may lead to further improvement in the
temporal adaptation of the space-time mesh. Moreover, in the presented approach, spatial
and temporal domains are treated in a decoupled manner leading to a separate adaptation
of the spatial and temporal meshes. Eventually, to envision a more optimal adaptation of
the space-time mesh, without resorting to very frequent remeshing, the proposed idea is to
consider dynamic meshes. An adequate prescribed motion of the mesh for each sub-interval
may provide a more optimal answer.

This work has only discussed the case of an explicit temporal scheme. If an implicit scheme
is considered with possibly arbitrary large time-steps, the size of the time-steps should be
adapted in order to control the error introduced by the temporal scheme. A first work in this
direction has been proposed in [8].

Figure 12: F117 fighter. Density solution field at a-dimensioned time T/4, T/2, 3T/4 and
T . Top, solution iso-lines for several cut planes behind the aircraft. Bottom, top view of the
solution iso-values.

Figure 13: Water-air interface and associated adapted meshes evolution at physical time
0.4, 0.8, 1.2, 1.6, 2 and 2.4 seconds.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 37

Acknowledgments
This work was partly done in the MAIDESC ANR project which is supported by the french
ministry of Research under contract ANR-13-MONU-0010.

We acknowledge D. Marcum and A. Dervieux for the fruitfull discussions and remarks
on this work. We also acknowledge D. Guegan from Lemma Company for running the water
column falling simulation.

References
[1] F. Alauzet. Size gradation control of anisotropic meshes. Finite Elem. Anal. Des.,

46:181–202, 2010.

[2] F. Alauzet, P.J. Frey, P.L. George, and B. Mohammadi. 3D transient fixed point mesh
adaptation for time-dependent problems: Application to CFD simulations. J. Comp.
Phys., 222:592–623, 2007.

[3] F. Alauzet and A. Loseille. On the use of space filling curves for parallel anisotropic
mesh adaptation. In Proceedings of the 18th International Meshing Roundtable, pages
337–357. Springer, 2009.

[4] F. Alauzet and A. Loseille. High order sonic boom modeling by adaptive methods. J.
Comp. Phys., 229:561–593, 2010.

[5] F. Alauzet and M. Mehrenberger. P1-conservative solution interpolation on unstructured
triangular meshes. Int. J. Numer. Meth. Engng, 84(13):1552–1588, 2010.

[6] C.L. Bottasso. Anisotropic mesh adaption by metric-driven optimization. Int. J. Numer.
Meth. Engng, 60:597–639, 2004.

[7] G. Compère, E. Marchandise, and J.-F. Remacle. Transient adaptivity applied to two-
phase incompressible flows. J. Comp. Phys., 227(3):1923–1942, 2008.

[8] T. Coupez, G. Jannoun, N. Nassif, H.C. Nguyen, H. Digonnet, and E. Hachem. Adaptive
time-step with anisotropic meshing for incompressible flows. J. Comp. Phys., 241:195–
211, 2013.

[9] F. Courty, D. Leservoisier, P.L. George, and A. Dervieux. Continuous metrics and mesh
adaptation. Appl. Numer. Math., 56(2):117–145, 2006.

[10] P.A. de Sampaio, P.R. Lyra, K. Morgan, and N. Weatherill. Petrov-Galerkin solutions of
the incompressible Navier-Stokes equations in primitive variables with adaptive remesh-
ing. Comput. Methods Appl. Mech. Engrg., 106:143–178, 1993.

[11] C. Debiez and A. Dervieux. Mixed-Element-Volume MUSCL methods with weak vis-
cosity for steady and unsteady flow calculations. Comput. & Fluids, 29:89–118, 2000.

[12] A. Dervieux and F. Thomasset. Multifluid incompressible flows by a finite element
method. Lecture Notes in Physics, 11:158–163, 1981.

[13] R.N. Elias and A.L.G.A. Coutinho. Stabilized edge-based finite element simulation of
free-surface flows. Int. J. Numer. Meth. Fluids, 54(6-8):965–993, 2007.

[14] P.J. Frey. About surface remeshing. In Proceedings of the 9th International Meshing
Roundtable, pages 123–136, New Orleans, LO, USA, 2000.

[15] P.J. Frey and F. Alauzet. Anisotropic mesh adaptation for CFD computations. Comput.
Methods Appl. Mech. Engrg., 194(48-49):5068–5082, 2005.

[16] P.J. Frey and P.L. George. Mesh generation. Application to finite elements. ISTE Ltd
and John Wiley & Sons, 2nd edition, 2008.

RR n° 8929

38 F. Alauzet, A. Loseille and G. Olivier

[17] P.L. George, F. Hecht, and M.G. Vallet. Creation of internal points in Voronoi’s type
method. Control and adaptation. Adv. Eng. Software, 13(5-6):303–312, 1991.

[18] C. Gruau and T. Coupez. 3D tetrahedral, unstructured and anisotropic mesh generation
with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech.
Engrg., 194(48-49):4951–4976, 2005.

[19] D. Guégan, O. Allain, A. Dervieux, and F. Alauzet. An L∞-Lp mesh adaptive method
for computing unsteady bi-fluid flows. Int. J. Numer. Meth. Engng, 84(11):1376–1406,
2010.

[20] W. Huang. Metric tensors for anisotropic mesh generation. J. Comp. Phys., 204(2):633–
665, 2005.

[21] W.T. Jones, E.J. Nielsen, and M.A. Park. Validation of 3D adjoint based error estima-
tion and mesh adaptation for sonic boom reduction. In 44th AIAA Aerospace Sciences
Meeting and Exhibit, AIAA-2006-1150, Reno, NV, USA, Jan 2006.

[22] K.M.T. Kleefsman, G. Fekken, A.E.P. Veldman, B. Iwanowski, and B. Buchner. A
Volume-of-Fluid based simulation method for wave impact problems. J. Comput. Phys.,
206(1):363–393, 2005.

[23] X. Li, J.-F. Remacle, N. Chevaugeon, and M.S. Shephard. Anisotropic mesh gradation
control. In Proceedings of the 13th International Meshing Roundtable, pages 401–412.
Springer, 2004.

[24] R. Löhner. Three-dimensional fluid-structure interaction using a finite element solver
and adaptive remeshing. Computing Systems in Engineering, 1(2-4):257–272, 1990.

[25] R. Löhner and J.D. Baum. Adaptive h-refinement on 3D unstructured grids for transient
problems. Int. J. Numer. Meth. Fluids, 14(12):1407–1419, 1992.

[26] A. Loseille and F. Alauzet. Optimal 3D highly anisotropic mesh adaptation based
on the continuous mesh framework. In Proceedings of the 18th International Meshing
Roundtable, pages 575–594. Springer, 2009.

[27] A. Loseille and F. Alauzet. Continuous mesh framework. Part I: well-posed continuous
interpolation error. SIAM J. Numer. Anal., 49(1):38–60, 2011.

[28] A. Loseille and F. Alauzet. Continuous mesh framework. Part II: validations and appli-
cations. SIAM J. Numer. Anal., 49(1):61–86, 2011.

[29] A. Loseille, A. Dervieux, P.J. Frey, and F. Alauzet. Achievement of global second-order
mesh convergence for discontinuous flows with adapted unstructured meshes. In 37th
AIAA Fluid Dynamics Conference, AIAA Paper 2007-4186, Miami, FL, USA, Jun 2007.

[30] A. Loseille and R. Löhner. Adaptive anisotropic simulations in aerodynamics. In 48th
AIAA Aerospace Sciences Meeting, AIAA Paper 2010-169, Orlando, FL, USA, Jan 2010.

[31] A. Loseille and R. Löhner. Cavity-based operators for mesh adaptation. 51th AIAA
Aerospace Sciences Meeting, Jan 2013.

[32] L. Maréchal. A parallelization framework for numerical simulation. The LP3 library.
Documentation, INRIA, Jun 2010.

[33] L. Maréchal. Handling unstructured meshes in multithreaded environments with the help
of Hilbert renumbering and dynamic scheduling. Parallel Computing, 2015. Submitted.

[34] T. Michal and J. Krakos. Anisotropic mesh adaptation through edge primitive opera-
tions. 50th AIAA Aerospace Sciences Meeting, Jan 2012.

[35] C.C Pain, A.P. Humpleby, C.R.E. de Oliveira, and A.J.H. Goddard. Tetrahedral mesh
optimisation and adaptivity for steady-state and transient finite element calculations.
Comput. Methods Appl. Mech. Engrg., 190:3771–3796, 2001.

Inria

Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems 39

[36] R.D. Rausch, J.T. Batina, and H.T.Y. Yang. Spatial adaptation procedures on tetrahe-
dral meshes for unsteady aerodynamic flow calculations. AIAA Journal, 30:1243–1251,
1992.

[37] J.-F. Remacle, X. Li, M.S. Shephard, and J.E. Flaherty. Anisotropic adaptive simulation
of transient flows using discontinuous Galerkin methods. Int. J. Numer. Meth. Engng,
62:899–923, 2005.

[38] H. Sagan. Space-Filling Curves. Springer, New York, NY, 1994.

[39] W. Speares and M. Berzins. A 3D unstructured mesh adaptation algorithm for time-
dependent shock-dominated problems. Int. J. Numer. Meth. Fluids, 25:81–104, 1997.

[40] A. Tam, D. Ait-Ali-Yahia, M.P. Robichaud, M. Moore, V. Kozel, and W.G. Habashi.
Anisotropic mesh adaptation for 3D flows on structured and unstructured grids. Comput.
Methods Appl. Mech. Engrg., 189:1205–1230, 2000.

[41] J. Wu, J.Z. Zhu, J. Szmelter, and O.C. Zienkiewicz. Error estimation and adaptivity in
Navier-Stokes incompressible flows. Computational Mechanics, 6:259–270, 1990.

[42] M. Yano, J.M. Modisette, and D.L. Darmofal. The importance of mesh adaptation for
higher-order discretizations of aerodynamics flows. In 20th AIAA Computational Fluid
Dynamics Conference, AIAA-2011-3852, Honolulu, HI, USA, June 2011.

RR n° 8929

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université
4 rue Jacques Monod
91893 Orsay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	1 Introduction
	2 The steady case
	2.1 Metric-based generation of anisotropic adapted meshes
	2.2 Summary of steady multi-scale anisotropic mesh adaptation

	3 Space-time Lp interpolation error analysis and space-time optimal continuous mesh
	3.1 Error model
	3.2 Spatial minimization for a fixed t
	3.3 Temporal minimization

	4 Error analysis for the global fixed-point mesh adaptation algorithm
	4.1 Spatial minimization on a sub-interval
	4.2 Temporal minimization

	5 From theory to practice
	5.1 Computation of the optimal continuous mesh
	5.2 Matrix-free P1-conservative solution interpolation
	5.3 The flow solver: Wolf
	5.4 Metric field gradation
	5.5 The local adaptive remesher: AMG

	6 Parallelization of the mesh adaptation loop
	6.1 A shared memory multi-threaded parallelization
	6.2 Parallel performance

	7 Space-time convergence analysis
	7.1 Adaptation of the time domain
	7.2 Computation of the space-time error and associated complexity parameters
	7.3 Spherical blast
	7.4 A blast in a city

	8 Other applications
	8.1 Vortical flow behind a F117 fighter
	8.2 Impact of a water column on an obstacle

	9 Conclusions

