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Enabling Fast Failure Recovery in Shared Hadoop Clusters:
Towards Failure-Aware Scheduling

Orcun Yildiz, Shadi Ibrahim*, Gabriel Antoniu

INRIA Rennes - Bretagne Atlantique Research Center, France

Abstract

Hadoop emerged as the de facto state-of-the-art system for MapReduce-based data analytics. The reliability of Hadoop systems depends in
part on how well they handle failures. Currently, Hadoop handles machine failures by re-executing all the tasks of the failed machines (i.e.,
executing recovery tasks). Unfortunately, this elegant solution is entirely entrusted to the core of Hadoop and hidden from Hadoop schedulers.
The unawareness of failures therefore may prevent Hadoop schedulers from operating correctly towards meeting their objectives (e.g., fairness, job
priority) and can significantly impact the performance of MapReduce applications. This paper presents Chronos, a failure-aware scheduling strategy
that enables an early yet smart action for fast failure recovery while still operating within a specific scheduler objective. Upon failure detection,
rather than waiting an uncertain amount of time to get resources for recovery tasks, Chronos leverages a lightweight preemption technique to
carefully allocate these resources. In addition, Chronos considers data locality when scheduling recovery tasks to further improve the performance.
We demonstrate the utility of Chronos by combining it with Fifo and Fair schedulers. The experimental results show that Chronos recovers to
a correct scheduling behavior within a couple of seconds only and reduces the job completion times by up to 55% compared to state-of-the-art

schedulers.
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1. Introduction

Due to its simplicity, fault tolerance, and scalability, MapReduce [1] is by far the most powerful programming
model for data intensive applications. The popular open source implementation of MapReduce, Hadoop [2], was
developed primarily by Yahoo!, where it processes hundreds of terabytes of data on at least 10,000 cores, and is now
used by other companies, including Facebook, Amazon, Last.fm, and the New York Times [3].

Failures are part of everyday life, especially in today’s data-centers, which comprise thousands of commodity
hardware and software devices. For instance, Dean [4] reported that in the first year of the usage of a cluster at
Google there were around a thousand individual machine failures and thousands of hard drive failures. Consequently,
MapReduce was designed with hardware failures in mind. In particular, Hadoop handles machine failures (i.e., fail-
stop failure) by re-executing all the tasks of the failed machines (i.e., executing recovery tasks), by leveraging data
replication.

Hadoop has not only been used for running single batch jobs, it has also recently been optimized to simultaneously
support the execution of multiple diverse jobs (both batch and interactive jobs) belonging to multiple concurrent
users. Several built-in schedulers (i.e., Fifo, Fair and Capacity schedulers) have been introduced in Hadoop to operate
shared Hadoop clusters towards a certain objective (i.e., prioritizing jobs according to their submission times in Fifo
scheduler; favoring fairness among jobs in Fair and Capacity schedulers) while ensuring a high performance of the
system, mainly by accommodating these schedulers with locality-oriented strategies [5, 6, 7]. These schedulers adopt
a resource management model based on slots to represent the capacity of a cluster: each worker in a Hadoop cluster
is configured to use a fixed number of map slots and reduce slots in which it can run tasks.
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While failure handling and recovery has long been an important goal in Hadoop clusters, previous efforts to handle
failures have entirely been entrusted to the core of Hadoop and hidden from Hadoop schedulers. The unawareness
of failures may therefore prevent Hadoop schedulers from operating correctly towards meeting their objectives (e.g.,
fairness, job priority) and can significantly impact the performance of MapReduce applications. When failure is
detected, in order to launch recovery tasks, empty slots are necessary. If the cluster is running with the full capacity,
then Hadoop has to wait until “free” slots appear. However, this waiting time (i.e., time from when failure is detected
until all the recovery tasks start) can be long, depending on the cluster status (i.e., the number of free slots and
the completion time of current running tasks to free more slots, if needed). As a result, a violation of scheduling
objectives is likely to occur (e.g., high priority jobs may have waiting tasks while lower priority jobs are running) and
the performance may significantly degrade. Moreover, when launching recovery tasks, locality is totally ignored. This
in turn can further increase the job completion time due to the extra cost of transferring a task’s input data through
network, a well-known source of overhead in today’s data-centers.

Adding failure-awareness to Hadoop schedulers is not straightforward; it requires the developer to carefully deal
with challenging yet appealing issues including an appropriate selection of slots to be freed, an effective preemption
mechanism with low overhead and enforcing data-aware execution of recovery tasks. To the best of our knowledge,
no scheduler explicitly coping with failures has been proposed. To achieve these goals, this paper makes the following
contributions:

e We propose Chronos', a failure-aware scheduling strategy that enables an early yet smart action for fast failure
recovery while operating within a specific scheduler objective. Chronos takes early action rather than waiting
an uncertain amount of time to get a free slot (thanks to our preemption technique). Chronos embraces a smart
selection algorithm that returns a list of tasks that need to be preempted in order to free the necessary slots to
launch recovery tasks immediately. This selection considers three criteria: the progress scores of running tasks,
the scheduling objectives, and the recovery tasks input data locations.

e In order to make room for recovery tasks rather than waiting an uncertain amount of time, a natural solution is to
kill running tasks in order to create free slots. Although killing tasks can free the slots easily, it wastes the work
performed by the killed tasks. Therefore, we present the design and implementation of a novel work-conserving
preemption technique that allows pausing and resuming both map and reduce tasks without resource wasting
and with little overhead.

e We demonstrate the utility of Chronos by combining it with two state-of-the-art Hadoop schedulers: Fifo and
Fair schedulers. The experimental results show that Chronos achieves almost optimal data locality for the
recovery tasks and reduces the job completion times by up to 55% over state-of-the-art schedulers. Moreover,
Chronos recovers to a correct scheduling behavior after failure detection within only a couple of seconds.

It is important to note that Chronos is not limited to Fifo or Fair scheduling and can be easily combined with other
Hadoop schedulers. Moreover, our preemption technique can be used as an alternative solution to task killing or
waiting and therefore can leverage the scheduling decision in Hadoop, in general.

Relationship to previous work. This paper extends our previous contribution introduced in a previous paper [8] by
providing more detailed descriptions and more thorough experiments. In particular, we have substantially extended
two sections: While Section 2 gives an overview of MapReduce, Hadoop, scheduling in Hadoop and its fault-tolerance
mechanism, Section 8 discusses related works on scheduling, failure recovery, task preemption and data-aware task
scheduling in MapReduce. Moreover, we added more details to illustrate the different preemption techniques in
Hadoop: Wait, Kill, and Preemption. We add more experiments to study the effectiveness of Chronos under multiple
failures and also with different numbers of jobs and nodes. We also demonstrated the effectiveness of our preemption
technique by comparing Chronos against Chronos-Kill (i.e., Chronos uses kill primitive as a preemption technique
instead of the work-conserving preemption technique). Moreover, we evaluated Chronos on its sensitivity to the
failure injection time. Lastly, we investigated the potential benefit of launching local recovery tasks by implementing
and evaluating Chronos* (i.e., Chronos applies an aggressive slot allocation).

!From Greek philosophy, the god of time.



The paper is organized as follows: Section 2 presents the background of our study. We present the Chronos
scheduling strategy in Section 3 and our work-conserving preemption technique in Section 4. We then present our
experimental methodology in Section 5 which is followed by the experimental results in Section 6. Section 7 discusses
the performance impact of Chronos. Finally, Section 8 reviews the related work and Section 9 concludes the paper.

2. Background

We provide a brief background on MapReduce, Hadoop, scheduling in Hadoop and its fault-tolerance mechanism.

2.1. MapReduce

MapReduce is a software framework for solving many large-scale computing problems [1, 9]. The MapReduce
abstraction is inspired by the map and reduce functions, which are commonly used in functional languages. The
MapReduce system allows users to easily express their computation as map and reduce functions. The map function,
written by the user, processes a key/value pair to generate a set of intermediate key/value pairs and the reduce function,
also written by the user, merges all intermediate values associated with the same intermediate key.

2.2. Hadoop

Hadoop, an open source implementation of MapReduce, is used to process massive amounts of data on clusters.
Users submit jobs as consisting of two functions: map and reduce. These jobs are further divided into tasks which is
the unit of computation in Hadoop. Input and output of these jobs are stored in a distributed file system. Each input
block is assigned to one map task and composed of key-value pairs. In the map phase, map tasks read the input blocks
and generate the intermediate results by applying the user defined map function. These intermediate results are stored
on the compute node where the map task is executed. In the reduce phase, each reduce task fetches these intermediate
results for the key-set assigned to it and produces the final output by aggregating the values which have the same key.

2.3. Job scheduling in Hadoop

In Hadoop, job execution is performed with a master-slave configuration. JobTracker, Hadoop master node,
schedules the tasks to the slave nodes and monitors the progress of the job execution. TaskTrackers, slave nodes,
run the user defined map and reduce functions upon the task assignment by the JobTracker. Each TaskTracker has
a certain number of map and reduce slots which determines the maximum number of map and reduce tasks that it
can run. Communication between master and slave nodes is done through heartbeat messages. At every heartbeat,
TaskTrackers send their status to the JobTracker. Then, JobTracker will assign map/reduce tasks depending on the
capacity of the TaskTracker and also by considering the locality of the map tasks (i.e., among the TaskTrackers with
empty slots, the one with the data on it will be chosen for the map task).

The first version of Hadoop comes with a fixed Fifo scheduler. In Fifo scheduling, the JobTracker simply pulls
jobs from a single job queue. Although the scheduler’s name suggests the prioritization of old jobs, Fifo scheduler
also takes into account jobs’ priority. Hadoop is also augmented with the Fair scheduler for multi-tenant clusters. The
Fair scheduler assigns resources to jobs in a way such that, on average over time, each job gets an equal share of the
cluster’s resources. Short jobs are able to access the cluster resources, and will finish intermixed with the execution of
long jobs. Fair scheduler is primarily developed by Facebook, and aims at providing better responsiveness for short
jobs, which are the majority at Facebook production clusters [6].

2.4. Fault-tolerance in Hadoop

When the master is unable to receive heartbeat messages from a node for a certain amount of time (i.e., failure
detection timeout), it will declare this node as failed [10, 11]. Then, currently running tasks on this node will be
reported as failed. Moreover, completed map tasks also will be reported as failed since these outputs were stored on
that failed node, not in the distributed file system as reducer outputs. For a better recovery from the failures, Hadoop
will try to execute the recovery tasks on any healthy node as soon as possible. To do so, Hadoop gives the highest
priority to recovery tasks. Thus, recovery tasks are re-inserted in the head of the job’s queue. Yet, the launching of
these tasks depends on the cluster status (i.e., the number of current free slots and the completion time of current
running tasks to free more slots, if needed). When there is a free slot in the cluster, Hadoop first will launch the
cleanup task for the recovery task. Cleanup tasks try to ensure that failure will not affect the correct execution of the
MapReduce job. When the cleanup task is completed, recovery task can run on a node with the empty slot.
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Figure 1: Recovery task waiting times and job completion times of Fifo scheduler under failure. The experimental setup is the same as in
Section 6.1.1.

3. Chronos

3.1. Design Principles
We designed Chronos with the following goals in mind:

¢ Enabling an early action upon failure: Hadoop handles failures by scheduling recovery tasks to any available
slots. However, available slots might not be freed up as quickly as expected. When the Hadoop cluster is fully
utilized (i.e., available slots are fully occupied) and several jobs are sharing the cluster’s resources, recovery
tasks will need to wait for the resources to be freed. This waiting time varies according to (1) the running
applications (i.e., by analyzing the traces collected from three different research clusters [12], we observe that
the execution time of map and reduce tasks varies from 2 to 84631 seconds and from 9 to 81714 seconds,
respectively); and (2) the progress of the application. Consequently, this introduces uncertainty in the waiting
time for launching recovery tasks. As shown in Figure 1(a), the waiting time varies from 46 to 51 seconds which
leads to increase in the completion time of jobs (see Figure 1(b)). Furthermore, during this time, scheduling
objectives are violated. Chronos thus takes immediate action to make room for recovery tasks upon failure
detection rather than waiting an uncertain amount of time.

e Minimal overhead: For the early action, a natural solution is to kill the running tasks in order to free slots for
recovery tasks. Although the killing technique can free the slots easily, it results in a huge waste of resources:
it discards all of the work performed by the killed tasks. Therefore, Chronos leverages a work-conserving task
preemption technique (Section 4) that allows it to stop and resume tasks with almost zero overhead. On the
other hand, Chronos relies on Hadoop’s heartbeat messages to collect the useful information (i.e., real-time
progress reports) that is fed later to our smart slot allocation strategy. The overhead of the progress reports is
very little since Chronos leverages the information already provided by heartbeat messages.

e Data-aware task execution: Although data locality is a major focus during failure-free periods, locality is
totally ignored by Hadoop schedulers when launching recovery tasks (e.g., our experimental result reveals that
Hadoop achieves only /2.5% data locality for recovery tasks, more details are given in Section 6.1.2). Chronos
thus strongly considers local execution of recovery tasks.

e Performance improvement: Failures can severely impact Hadoop’s performance: Dinu et al. reported that
the performance of one single MapReduce application degrades by up to 3.6X for one single machine failure
[10]. For multiple jobs, as shown in Figure 1(b), the job completion times increase by 30% to 70%. Through
eliminating the waiting time to launch recovery tasks and efficiently exposing data-locality, Chronos not only
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Figure 2: Chronos overview

corrects the scheduling behavior in Hadoop after failure but also improves the performance (i.e., reduces job
completion times).

e Resource utilization: Chronos aims at having better resource utilization by two key design choices. First, it
reduces the need for remote transfer of input data by launching local recovery tasks. Second, Chronos uses a
work-conserving preemption technique that prevents Chronos from wasting the work done by preempted tasks.

¢ Schedulers independent: Chronos targets to make Hadoop schedulers failure-aware and is not limited to Fifo
or Fair schedulers. Taken as a general failure-aware scheduling strategy, Chronos can be easily integrated
with other scheduling policies (e.g., priority scheduling with respect to the duration of jobs). Moreover, our
preemption technique can be used as an alternative solution to task killing or waiting and therefore can leverage
the scheduling decision in Hadoop in general.

Hereafter, we will explain how Chronos achieves the above goals. We will discuss how Chronos allocates the
necessary slots to launch recovery tasks, thanks to the tasks-to-preempt selection algorithm.

3.2. Smart slots allocation

Figure 2 illustrates the architecture of Chronos and its main functionalities. Chronos tracks the progress of all
running tasks using the cost-free real-time progress reports extracted from the heartbeats. When failure is detected,
Chronos consults the JobTracker to retrieve the list of failed tasks and the nodes that host their input data. Chronos
then extracts the list of candidate tasks (running tasks) that belong to nodes where the input data of failed tasks reside.
This list is then fed to the tasks-to-preempt selection algorithm (Algorithm 1) which first sorts the tasks according to
the job priority. After sorting the tasks for preemption, the next step is to decide whether a recovery task can preempt
any of these tasks in the sorted list. To respect scheduling objectives, we first compare the priorities of the recovery
task and candidate tasks for preemption. If this condition holds, the recovery task can preempt the candidate task.
For example, recovery tasks with higher priority (e.g., tasks belonging to earlier submitted jobs for Fifo or belonging
to a job with a lower number of running tasks than its fair share for Fair scheduler) would preempt the selected
tasks with less priority. Consequently, Chronos enforces priority levels even under failures. The list is then returned
to Chronos, which in turn triggers the preemption technique in order to free slots to launch recovery tasks. If the
scheduler behavior is corrected, Chronos stops preempting new tasks.

Remarks. (1) The main objective of Chronos is to correct the behavior of Hadoop schedulers after failure. Therefore,
once this is achieved, Chronos operates similarly to Hadoop’s original mechanism to avoid preempting tasks from the
same job. However, given that the work-conserving preemption technique has a very low overhead and to demonstrate
the potential benefit of launching local recovery tasks, in Section 6.8 we have evaluated Chronos with an aggressive
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Algorithm 1: Tasks-to-preempt Selection Algorithm

Data: L, ;. a list of running tasks of increasing priority;
T,, alist of recovery tasks t, of decreasing priority
Result: T, a list of selected tasks to preempt
for Task t.:T, do
for Task t:L,,s.s do
if t belongs to job with less priority compared to t,;
AND !T,.contains(t) then
‘ T,.add(t);
end
end

end

task preemption (noted as Chronos*). Chronos* frees slots to re-execute all recovery tasks, even within the same job.
(2) Chronos waits until new heartbeats are received to feed the tasks-to-preempt selection algorithm with more up-to-
date information. Relying on previous heartbeats information may result in preempting almost-complete tasks. This
waiting time, introduced by Chronos, ranges from milliseconds to several seconds, according to the heartbeat interval®
(0.3 seconds in our experiments) and the current network latency. (3) In general, the number of preempted tasks
depends on the number of the failed tasks, the number of free slots, and the scheduler objective which determines the
priority of failed tasks. At most, this number will be equal to the number of failed tasks. To have as many preempted
tasks as failed tasks, all the failed tasks have to be able to preempt tasks that have lower priority than them. If there are
already empty slots in the cluster, recovery tasks can be launched on these empty slots and the remaining tasks will
preempt the tasks if there are tasks with lower priority than them. In this work, we consider fail-stop machine failures.
Hence, the number of the failed tasks that Hadoop can tolerate is limited by the replication scheme. The maximum
number of the preempted tasks is bounded by the replication scheme as well since this will be equal to the number of
the failed tasks (in the worst case). With respect to the replication scheme, there can be a maximum of R — 1 machine
failures where R represents the number of replicas. The maximum number of the failed tasks will be equal to the
multiplication of R — 1 and the number of tasks belonging to currently running jobs on each failed machine. These
tasks include completed and currently running map tasks on the failed machines and currently running reduce tasks
on the failed machines. To note that, completed map tasks on the failed machines are considered as failed tasks since
their output is not stored on the HDFS unlike the reduce tasks.

4. Work-Conserving Preemption

Preemption has been widely studied and applied for many different use cases in the area of computing. Similarly,
Hadoop can also benefit from the preemption technique in several cases (e.g., achieving fairness, better resource
utilization or better energy efficiency). However, only kill technique is available in Hadoop which can be used by
developers as a preemption technique. Although kill technique is simple and can take a fast action (i.e. deallocating
the resources), it wastes the resources by destroying the on-going work of the killed tasks. This amount of wasted
work will even increase with the long running tasks. Moreover, this amount can be more significant if the killed task
is a reduce task: Later, when the copy of the killed task is launched, it has to fetch all the intermediate mapper outputs
which will result in additional usage of network resources that have already been scarce.

Apart from killing, also waiting approach can be taken. It is simply waiting for running tasks that should be
preempted to finish, meaning that not taking any action for achieving the several goals as we described above. Waiting

2Hadoop adjusts the heartbeat interval according to the cluster size. The heartbeat interval is calculated so that the JobTracker receives a min_heartbeat _interval
of 100 heartbeat messages every second (by default). Moreover, the min_heartbeat_interval limits the heartbeat interval to not be smaller than 300 milliseconds,
corresponding to the cluster size of 30 nodes. The heart beat interval in Hadoop is computed as:
heartbeat_interval = max((1000 X cluster_size + number_heartbeat_per_second), min_heartbeat__interval)
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can be efficient when a cluster runs many short jobs. However, it can introduce a considerable amount of delay for the
preempting jobs in case of long-running tasks that have to be preempted.

Besides wait and kill approaches, we can also apply work-conserving preemption technique to achieve our goals.
Interestingly, this technique is neither supported by Hadoop nor has been investigated by the scientific community
in detail. For clarity, we illustrate these three techniques (i.e., wait, kill and preemption) in Figure 3. It presents a
scenario where a shorter task needs a slot from the longer one as it arrives in the middle of the execution of the longer
task. With wait approach, we can see that the execution time of the short task prolonged as much as the remaining
time of the longer task to complete. With kill approach, we observe the longest execution time where on-going work
of the first job is wasted and needs to be re-executed after the completion of the short task. In the last scenario with
the work-conserving preemption approach, we can see that all the work that has been done by the longer task has been
conserved at the moment of the preemption. After short task finishes its execution, long task continues its execution
where it left off. This scenario promises the lowest average waiting time for both jobs which motivated us to leverage
it within Chronos. In this paper, Chronos leverages it for better handling of failures by pausing the running tasks to
make room for the recovery tasks, and resuming them from their paused state when there is an available slot.

For the preemption mechanism, a naive checkpointing approach [13] can be taken as a strawman solution. Al-
though this approach is simple to implement, it will introduce a large overhead since checkpointing requires flushing
all the data associated with the preempted task. Moreover, obtaining this checkpoint upon resume can consume a
significant amount of network and I/O resources. In this section, we introduce our lightweight preemption technique
for map and reduce task preemption.

4.1. Map Task Preemption

During the map phase, TaskTracker executes the map tasks that are assigned to it by the JobTracker. Each map task
processes a chunk of data (input block) by looping through every key-value pair and applying the user defined map
function. When all the key-value pairs have been processed, JobTracker will be notified as the map task is completed
and the intermediate map output will be stored locally to serve the reducers.

For the map task preemption, we introduce an earlyEnd action for map tasks. The map task listens for the
preemption signal from Chronos in order to stop at any time. Upon receiving the preemption request, this action
will stop the looping procedure and split the current map task into two subtasks. The former subtask covers all the
key-value pairs that have been processed before the preemption request comes. This subtask will be reported back to
the JobTracker as completed as in the normal map task execution. On the other hand, the second subtask contains the
key-value pairs that have not been processed yet. This subtask will be added to the map pool for later execution when
there is an available slot, as for new map tasks. This map task preemption mechanism is illustrated in Figure 4. Full
parallelism of map tasks by having independent key-value pairs gives us the opportunity to have fast and lightweight
map preemption and also ensures the correctness of our preemption mechanism.
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4.2. Reduce Task Preemption

In Hadoop, reduce task execution consists of three phases: shuffle, sort and reduce. During the shuffle phase,
reducers obtain the intermediate map outputs for the key-set assigned to them. The sort phase performs a sort operation
on all the fetched data (i.e., intermediate map outputs in the form of key-value pairs). Later, the reduce phase produces
the final output of the MapReduce job by applying the user defined reduce function on these key-value pairs.

For the reduce preemption, the splitting approach (as in the map preemption) would not be feasible due to the
different characteristics of map and reduce tasks. Full parallelism of map execution and having map inputs on the
distributed file system enables us to apply a splitting approach for map preemption. However, the three different
phases of the reducer are not fully independent of each other. Therefore, we opt for a pause and resume approach for
the reduce preemption. In brief, we store the necessary data on the local storage for preserving the state of the reduce
task with pause and we restore back this information upon resume.

Our reduce preemption mechanism can preempt a reduce task at any time during the shuffle phase and at the
boundary of other phases. The reason behind this choice is that usually the shuffle phase covers a big part of the
reduce task execution, while the sort and reduce phases are much shorter. In particular, the sort phase is usually very
short due to the fact that Hadoop launches a separate thread to merge the data as soon as it becomes available.

During the shuffie phase, reducers obtain the intermediate map outputs for the key-set assigned to them. Then,
these intermediate results are stored either on the memory or local disk depending on the memory capacity of the node
and also the size of the fetched intermediate results [14]. Upon receiving a preemption request, the pause action takes
place and first stops the threads that fetch the intermediate results by allowing them to finish the last unit of work (i.e.,
one segment of the intermediate map output). Then, it stores all the in-memory data (i.e., number of copied segments,
number of sorted segments) to local disk. This information is kept in files that are stored in each task attempt’s specific
folder, which can be accessed later by the resumed reduce task.

Preemption at the boundary of the phases follows the same procedure as above. The data necessary to preserve the
state of the reduce task is stored on the local disk and then the reduce task will release the slot by preempting itself.
The task notifies the JobTracker with a status of suspended. Suspended tasks will be added to the reduce pool for later
execution when there is an available slot.

5. Experimental Methodology

We implemented Chronos in Hadoop-1.2.1. We evaluated Chronos performance on the Grid’5000 [15, 16] testbed,
more specifically we employed nodes belonging to the parapluie cluster on Rennes site of Grid’5000. These nodes
are outfitted with /2-core AMD 1.7 GHz CPUs and 48 GB of RAM. Intra-cluster communication is done through a
1 Gbps Ethernet network.
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Figure 5: Performance comparison for Map-Heavy jobs

Hadoop deployment. We configured and deployed a Hadoop cluster using 9 nodes. The Hadoop instance consists of
the NameNode and the JobTracker, both deployed on a dedicated machine, leaving § nodes to serve as both DataNodes
and TaskTrackers. The TaskTrackers were configured with 8 slots for running map tasks and 4 slots for executing
reduce tasks. At the level of HDFS, we used a chunk size of 256 MB due to the large memory size in our testbed.
We set a replication factor of 2 for the input and output data. As suggested in several studies in the literature [10], we
set the failure detection timeout to a smaller value (i.e., 25 seconds) compared to the default timeout of 600 seconds,
since the default timeout is too big compared to the likely completion time of our workloads in failure-free periods.
Workloads. We evaluated Chronos using two representative MapReduce applications (i.e., wordcount and sort bench-
marks) with different input data sizes from the PUMA datasets [17]. Wordcount is a Map-heavy workload with a light
reduce phase, which accounts for about 70% of the jobs in Facebook clusters [18]. On the other hand, sort pro-
duces a large amount of intermediate data which leads to a heavy reduce phase, therefore representing Reduce-heavy
workloads, which accounts for about 30% of the jobs in Facebook clusters [18].

Failure injection. To mimic the failures, we simply killed the TaskTracker and DataNode processes of a random
node. We can only inject one machine failure since Hadoop cannot tolerate more failures due to the replication factor
of 2 for HDFS.

Chronos implementation. We implemented Chronos with two state-of-the-art Hadoop schedulers: Fifo (i.e., priority
scheduler with respect to job submission time) and Fair schedulers. We compare Chronos to these baselines. The Fifo
scheduler is the default scheduler in Hadoop and is widely used by many companies due to its simplicity, especially
when the performance of the jobs is the main goal. On the other hand, the Fair scheduler is designed to provide fair
allocation of resources between different users of a Hadoop cluster. Due to the increasing numbers of shared Hadoop
clusters, the Fair scheduler also has been exploited recently by many companies [6, 19]. Although we implemented
Chronos in Hadoop 1.2.1, the same logic can also be applied to the next generation of Hadoop, YARN [20]. Major
difference of YARN from the Hadoop 1.2.x versions is that it separates the JobTracker into ResourceManager and
ApplicationManager. The main motivation behind this new design is to provide better fault tolerance and scalability.
However, our initial experiences with YARN indicate that severe impact of failures still exists since its schedulers are
also unaware of failures and YARN adopts the same fault tolerance mechanism as Hadoop 1.2.x.

6. Experimental Results

6.1. The Effectiveness of Chronos

6.1.1. Reducing job completion time
Fifo Scheduler. We ran two wordcount applications with input data sizes of /17 GB and 56 GB, respectively. The
input data sizes result in fairly long execution times of both jobs, which allowed us to thoroughly monitor how both
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Figure 6: Data locality for Map-Heavy jobs under Chronos, Fifo and Fair Schedulers

Hadoop and Chronos handle machine failures. More importantly, this mimics a very common scenario when small
and long jobs concurrently share a Hadoop cluster [6, 21]. Also, we tried to ensure that the cluster capacity (64 map
slots in our experiments) is completely filled. After submitting the jobs, we have injected the failure before the reduce
phase starts in order to have only map tasks as failed tasks. In contrast to Fifo, Chronos reduces the completion time
of the first job and the second one by 20% and 10%, respectively. Most of the failed tasks belong to the first job
and therefore Chronos achieves better performance for the first job compared to the second one. The main reason
for the performance improvement is the fact that Fifo waits until there is a free slot before launching the recovery
tasks, while Chronos launches recovery tasks shortly after failure detection. The waiting time for recovery tasks is
51 seconds (15% of the total job execution) in the Fifo scheduler and only 1.5 seconds in Chronos (Chronos waited
1.5 seconds until new heartbeats arrived). Moreover, during this waiting time, recovery tasks from the first submitted
job (high priority job) are waiting while tasks belonging to the second job (low priority) are running tasks. This
obviously violates the Fifo scheduler rule. Therefore, the significant reduction in the waiting time not only improves
the performance but also ensures that Fifo operates correctly towards its objective.

Fair scheduler. We ran two wordcount applications with input data sizes of /7 GB and 56 GB, respectively. The
failure is injected before the reduce phase starts. Figure 5(b) demonstrates that Chronos improves the job completion
time by 2% to 14%, compared to Fair scheduler. This behavior stems from eliminating the waiting time for recovery
tasks besides launching them locally. We observe that failure results in a serious fairness problem between jobs with
Hadoop’s Fair scheduler: this fairness problem (violation) lasts for almost 48 seconds (16% of the total execution
time) in the Fair scheduler, while Chronos restores fairness within about 2 seconds by preempting the tasks from the
jobs which exceed their fair share.

Discussion. One may think that preempting tasks from low priority jobs to launch recovery tasks of high priority jobs
will obviously result in a performance degradation for low priority jobs in Chronos compared to both the Fifo and
Fair schedulers. However, the performance improvements (i.e., the reductions in completion times) of high priority
jobs in Chronos (due to the waiting time reduction and data locality improvement) result in an earlier release of slots
and therefore tasks belonging to low priority jobs are launched earlier and fewer tasks are competing with them for
resources.

6.1.2. Improving data locality

Besides the preemptive action, Chronos also tries to launch recovery tasks locally. Figure 6 shows the data locality
of each job from previous experiments with Fifo (Figure 6(a)) and Fair (Figure 6(b)) schedulers. While the second job
has a similar data locality, we can clearly observe that Chronos significantly improves the data locality for the first job
for both scenarios (i.e., /5% and 22% data locality improvement compared to Fifo and Fair schedulers, respectively).
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This improvement is due to the almost optimal locality for recovery tasks with Chronos (all the recovery tasks which
are launched through Chronos are executed locally). Only 72.5% of the recovery tasks were executed locally in
Hadoop. The improved locality brings better resource utilization by eliminating the need for remote transfer of input
blocks for recovery tasks and further improves the performance.

Summary. The aforementioned results demonstrate the effectiveness of Chronos in reducing the violation time of the
scheduler (i.e., priority based on job submission time and fairness) to a couple of seconds. More importantly, Chronos
reduces the completion time of the first job (the job was affected by the machine failure) due to the reduction in the
waiting time and optimal locality for recovery tasks. This in turn allows the second job to utilize all available resources
of the cluster and therefore improves the performance.

6.2. Impact of Reduce-Heavy Workloads

We also evaluated Chronos with Reduce-Heavy workloads. We ran two sort applications with input data sizes of
17 GB and 56 GB, respectively. Both jobs have 32 reduce tasks. We injected the failure during the reduce phase in
order to have failed reduce tasks from the first job. Figure 7 details the job completion time with Chronos and Fifo.
Chronos achieves a 55% performance improvement for the first job and /1% for the second one. The improvement in
the Reduce-Heavy benchmark is higher compared to the Map-Heavy benchmark because reduce tasks take a longer
time until they are completed and therefore the recovery (reduce) tasks have to wait almost 325 seconds in Fifo.
Chronos successfully launches recovery tasks within 2 seconds.
Summary. Chronos achieves a higher improvement when the failure injection is in the reduce phase which clearly
states that the main improvement is due to the reduction in the waiting time. Here it is important to mention that other
running reduce tasks will be also affected by the waiting time as they need to re-fetch the lost map outputs (produced
by the completed map tasks on the failed machine).

6.3. The effectiveness of the preemption technique

To assess the impact of the preemption technique on Chronos performance, we have also implemented Chronos
with a kill primitive as a preemption technique (Chronos-Kill). Instead of pausing the candidate tasks to free the
slot, we kill the candidate tasks with Chronos-Kill. We repeated the same experiments as above, and Figure 8(a)
shows the results. Although both implementations have similar completion times for first job, Chronos-Kill degrades
the completion time of the second job by /2.5%. Note that with Fifo scheduler, the first job has a higher priority
compared to the second job due to its earlier submission time. Chronos-Kill thus kills the tasks from the second job
to allocate slots for recovery tasks. This results in a waste of resources (we have observed that more than 50% of
the killed tasks are killed after 60 seconds of execution, as shown in Figure 8(b)). On the other hand, our preemption
mechanism has a work-conserving behavior in which the preempted tasks from the second job continue their execution
without wasting the work that has already been done.
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6.4. Overhead of Chronos

The overhead of Chronos may be caused by two factors: first, due to the collection of the useful information (i.e.,
real-time progress reports) that is fed later to our smart slot allocation strategy, and second, due to the overhead of
the preemption technique. With respect to the slot allocation strategy, the overhead of Chronos is very little because
Chronos leverages the information already provided by heartbeat messages. We have studied the overhead of the
preemption technique by repeating the same experiment as in Section 6.1.1 (under failures). Figure 9(a) shows the
completion times of each successful task with Chronos and Hadoop, we can see that they both have a similar trend.
Thus, we conclude that the preemption technique does not add any noticeable overhead to cluster performance in
general.

What is more, we studied the overhead of Chronos during the normal operation of the Hadoop cluster. We ran
the same experiment as in Section 6.1.1 five times without any failures and Figure 9(b) shows that Chronos incurs
negligible performance overhead during the normal operation.
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Figure 9: Overhead of Chronos
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6.5. Chronos and Hadoop under multiple failures

We also evaluated Chronos under multiple failures. We repeated the same Hadoop deployment in previous exper-
iments by only changing the replication factor of HDFES to 3 in order to tolerate two failures.

We ran two wordcount applications with input data sizes of /7 GB and 56 GB, respectively. After submitting
the jobs, we have injected two failures before the reduce phase starts in order to have only map tasks as failed tasks.
Figure 10 illustrates that Chronos again reduces the completion time of the jobs by 22% and 13% thanks to its early
yet smart slot allocation strategy for recovery tasks.

6.6. Chronos at scale

We evaluated Chronos with different numbers of nodes and jobs to further show its effectiveness. On 17 nodes,
we ran different numbers of wordcount applications (i.e., 4, 8 and 16 jobs) with input data sizes of /7 GB and 56 GB.
After submitting the jobs, we have injected the failure before the reduce phase starts. Table 1 shows the average job
completion time and the completion time of all jobs (i.e., the time between launching the first job and the completion
of the last job in the job pool) for each scenario. The improvements of the average job completion time and the
completion time of all jobs with Chronos are also shown in parentheses. The results show that Chronos is able to
improve MapReduce applications’ performance under failures regardless of the number of jobs. Especially, we can
see that Chronos brings the largest improvement in the average job completion time for the run with 4 jobs. This is
expected since the number of failed tasks is almost the same regardless of the number of submitted jobs. Therefore,
the improvement in the average job completion time is less significant with the increasing number of jobs. On the
other hand, we observe that the run with 16 jobs has the best improvement rate (25%) with Chronos in terms of the
completion time of all jobs. This is because Chronos results in earlier release of slots and therefore the tasks belonging
to later jobs are launched earlier.

Table 1: Average and total completion time of MapReduce jobs on 17 nodes

Number of jobs | Average job completion time | Completion time of all jobs
Hadoop Chronos Hadoop Chronos

4 jobs 306.5 s 256 s (16%) 350.1s 323.55 (8%)

8 jobs 350.5 s 330.9 s (6%) 410.1s 379.3 s (7T%)

16 jobs 3144 s 2973s(5%) | 540.1s 406.7 s (25%)

We also ran 8 wordcount applications with input data sizes of /7 GB and 56 GB on different numbers of nodes:
9, 17 and 33 nodes. For 33 nodes, we used paravance cluster of the Rennes site since parapluie cluster consists of
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only 19 nodes. The nodes in paravance cluster are outfitted with two 8-core Intel Xeon 2.4 GHz CPUs and 128 GB of
RAM. We leverage the 10 Gbps Ethernet network for intra-cluster communication. After submitting the jobs, we have
injected the failure before the reduce phase starts. Table 2 shows the average job completion and the completion time
of all jobs for each different numbers of nodes. The improvement of the average job completion and completion time
of all jobs with Chronos are also shown in parentheses. These results combined with the previous results demonstrate
that Chronos is able to improve the performance of MapReduce applications under failures at different scales. In
particular, we observe that the run with 33 nodes has the best improvement rate with Chronos in terms of average
job completion time. This is because the large capacity of the cluster results in a high number of candidate tasks for
preemption in Chronos. On the other hand, this behavior is exactly opposite for the completion time of all jobs where
we see that the run with 9 nodes has the best improvement rate.

Table 2: Average and total completion time of MapReduce jobs on different number of nodes

Number of nodes | Average job completion time | Completion time of all jobs
Hadoop Chronos Hadoop Chronos
9 nodes 730.6 s 639 s (12%) 1564.1 s 1298.2 s (17%)
17 nodes 350.5 s 330.9 s (6%) 410.1s 379.3 5 (7T%)
33 nodes 205.1s 177.6 s (14%) 245.8 s 233.1s (5%)

6.7. The sensitivity of Chronos to failure injection time

To assess the impact of failure injection time on Chronos performance, we performed an experiment with different
failure injection times. To do so, we ran three wordcount applications with input data sizes of the first job as /7 GB and
the later jobs as 56 GB on 17 nodes. All jobs have 64 reduce tasks and Fifo scheduling objective is used by Hadoop
and Chronos. Figure 11 shows the results for three different failure injection times with respect to the first job: (1)
Job 1 completed only half of its map phase, (2) Job 1 finished completely its map phase and (3) Job 1 completed half
of its reduce phase when failure was injected. These results show us that Chronos reduces the job completion times
even under different failure injection times with respect to the first job (i.e., the most affected job from the failure). In
particular, Chronos brings the largest improvement for the first job in all three cases; this is due to the fact that the first
job has most of the failed tasks compared to the other jobs when the failure was injected. Moreover, we observe that
the first job has the worst performance when the failure was injected when it completed half of its reduce phase (case
3). This is because the number of the failed tasks is the highest here since failure phase covers the reduce tasks and
the map tasks. Furthermore, we observe that the second job has a higher completion time with Chronos in this case, as
shown in Figure 11(c). Note that the number of reduce tasks of each job is equal to the number of reduce slots in the
cluster (i.e., each node has 4 reduce slots and therefore there are 64 reduce slots in total.). When Chronos preempts
the reducers from the second job to allocate resources for the recovery reduce tasks of the first job, these preempted
tasks have to wait for free slots. Therefore, the second job has a performance degradation with Chronos in order to
favor the execution of the recovery tasks. However, this performance degradation (10%) is much lower compared to
the performance improvement gained for the first job (40%).

6.8. Chronos with aggressive slot allocation

After observing that Chronos’s preemption technique has a negligible overhead, we slightly changed the smart
slot allocation strategy of Chronos by implementing Chronos* with aggressive slot allocation strategy. With Chronos,
recovery tasks with higher priority would preempt the selected tasks with less priority. With Chronos*, we also allow
recovery tasks to preempt the selected tasks with the same priority (e.g., recovery tasks belonging to the same job with
selected tasks). One may think that preempting tasks from the same job to launch recovery tasks would not improve
the job performance. However, thanks to the work-conserving preemption technique we can safely preempt the tasks
even belonging to the same job in order to improve the locality of recovery tasks.

To assess the effectiveness of Chronos*, we ran two wordcount applications with input data sizes of /7 GB and
56 GB, respectively. The failure is injected before the reduce phase starts. We adjusted the network speed to 256 Mbps
in order to incorporate the locality factor on the performance. The results are shown in Figure 12. Although both
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Figure 11: Job completion times of Hadoop and Chronos under different failure injection phases

implementations have similar completion times for the first job, Chronos* degrades the completion time of the second
job by 17% compared to Chronos. Note that with Chronos, recovery tasks that belong to the second job would not be
able to preempt any of the running tasks due to their later submission time. However, we observed 100% locality for
recovery tasks with Chronos* thanks to its aggressive slot allocation strategy by also allowing the recovery tasks to
preempt the tasks from the same job.

7. Discussion

The reliability of Hadoop systems depends in part on how well they tolerate failures. There are two major factors in
achieving a better fault tolerance: failure detection and failure handling. Failure detection timeout plays an important
role in the fault tolerance mechanism as it directly impacts the first factor, failure detection. However, this is out
of scope of this work. With Chronos, we target to achieve better handling of the failures. We observe throughout
our experiments that we achieve this by mainly reducing the waiting time for the recovery tasks. Although, failure
detection timeout has a direct impact for the failure detection, this does not hold for the failure handling case. To note
that, reduction in the waiting time is equal to the time between the failure detection and completion time of the current
running tasks. Hence, failure detection timeout only indicates the start for the waiting time of the recovery tasks
while the duration of the currently running tasks marks the finish time. By analyzing the traces collected from three
different research clusters [12], we observe that the average execution time of map and reduce tasks is 124 seconds
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and 901 seconds, respectively. Thus, having long running tasks, despite the failure injection and detection times,
is common in Hadoop clusters. Therefore, Hadoop is vulnerable to incur serious performance degradations under
fail-stop failures [10, 22, 23]. Our results demonstrate that Chronos recovers to a correct scheduling behavior within
a couple of seconds only and reduces the job completion times (i.e., improves the performance of MapReduce jobs).
The performance improvement is due to two main factors: the reduction in the waiting time to launch recovery tasks
and the improved locality of recovery tasks. The reduction in waiting time varies according to the status and the
progress speed of running tasks when detecting the failure. However, as shown in many studies, recently Hadoop
cluster is shared by multiple different MapReduce applications (i.e., differ in their complexity and thus in the average
execution time of their tasks [6], [21]. As a result, there is a significant potential for improving the performance of
jobs using Chronos. Moreover, we observe that Chronos does not only improve the performance of the high-priority
jobs but also eases the execution of the low-priority jobs. This stems from the fact that performance improvements
of high priority jobs in Chronos result in an earlier release of slots and therefore tasks belonging to low priority jobs
are launched earlier and fewer tasks are competing with them for resources. On the other hand, network is normally
the most scarce resource in today’s data-centers [24]. By launching local recovery tasks, Chronos reduces the extra
cost for data transferring of these sensitive tasks. Therefore, Chronos not only eliminates the waiting time but also
improves the recovery tasks’ execution times by launching them locally.

8. Related Work

Scheduling in MapReduce. There exists a large body of studies on exploring new objectives (e.g., fairness, job
priority) when scheduling multiple jobs in MapReduce and improving their performance. Isard et al. introduced
Quincy [19], a fair scheduler for Dryad, which treats scheduling as an optimization problem and uses min-cost flow
algorithm to achieve the solution. Quincy uses the kill mechanism to set the cluster according to the configuration in
the solution. Zaharia et al. introduced a delay scheduler [6], a simple delay algorithm on top of the default Hadoop
Fair scheduler. Delay scheduling leverages the fact that the majority of the jobs in production clusters are short,
therefore when a scheduled job is not able to launch a local task, it can wait for some time until it finds the chance
to be launched locally. More recently, Venkataraman et al. have proposed KMN [25], a MapReduce scheduler that
focuses on applications with input choices and exploits these choices for performing data-aware scheduling. KMN
also introduces additional map tasks to create choices for reduce tasks. This in turn results in less congested links
and better performance. Although these scheduling policies can improve the MapReduce performance, none of them
is failure-aware, leaving the fault tolerance mechanism to the MapReduce system itself, and thus are vulnerable to
incurring uncertain performance degradations in case of failures. Moreover, Chronos can complement these policies
to enforce correct operation and to further improve their performance under failures.

Failure recovery in MapReduce. Due to failure being one of the characteristics of MapReduce environments, several
studies have been dedicated to explore and improve the performance of MapReduce systems under failures. Dinu et
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al. [10] have demonstrated a large variation in Hadoop job completion time in the presence of failure. In particular,
because Hadoop uses the same functionality to recover from TaskTracker failure regardless the cause/type of such
failures (i.e., permanent failure in case of node failure or temporary failure in case of TCP connection failure due to
network contention). Ruiz et al. have proposed RAFT [22], a family of fast recovery algorithms upon failures. RAFT
introduces checkpointing algorithms to preserve the work upon failures. However, an experimental study is performed
only with a single job scenario. Dinu et al. have proposed RCMP as a first-order failure resilience strategy instead of
data replication [26]. RCMP performs efficient job recomputation upon failures by only recomputing the necessary
tasks. However, RCMP only focuses on I/O intensive pipelined jobs, which makes their contribution valid for a small
subset of MapReduce workloads. Our work is different in the targeting environment, as we focus on shared Hadoop
clusters with multiple concurrent jobs.

Exploring and exploiting task preemption in MapReduce. There have been a few studies on introducing work-
conserving preemption techniques to MapReduce environments. Wang et al. [27] exploited the fact that long running
reduce tasks may lead to starvation of short jobs. Thus, they introduced a technique for reduce task preemption in order
to favor short jobs against long jobs. Similar to our pause and resume approach, they preserve the state of a reduce task
upon pause and restore this necessary task state upon resume. However, the preemption technique is limited to reduce
tasks and there is no overhead study regarding the preemption technique. Moreover, they leverage the preemption
only for fairness while we can leverage Chronos for different scheduling objectives. Liu et al. introduced PDCS [28],
Preemptive Deadline Constraint Scheduler, which aims at minimizing the completion time of jobs under deadlines. To
do so, PDCS employs the kill primitive of Hadoop in order to allocate slots for the tasks that belong to near deadline
jobs. Although PDCS can reduce the deadline misses in the job pool, it incurs a significant amount of wasted work
due to leveraging the kill primitive. Pastorelli et al. [29] have proposed a preemption technique with a pause and
resume mechanism to enforce the job priority levels for the job execution. For the pause and resume mechanism,
they leverage the already available POSIX signals such as SIGSTP and SIGCONT. These signaling mechanisms can
suspend the running tasks since tasks in Hadoop are Unix processes running in JVMs. Although these mechanisms
can simplify the preemption, it brings the shortcoming that a suspended task can only be launched on the same
machine on which it was paused before. Therefore, their preemption technique is not work-conserving at all times
since suspended tasks will start their execution from scratch if the job scheduler assigns them on a different node
than they were paused before. In addition, they only use a simple scheduler which fetches the task eviction policies
from a static configuration file for evaluating their system. Actually, this work supports our work in demonstrating the
importance of preemption to leverage job scheduling in Hadoop. Ananthanarayanan et al. [30] introduced Amoeba
to support a lightweight checkpointing mechanism for reduce tasks with the aim of achieving better elasticity for
resource allocation. Also, this preemption technique ignores the map task preemption as [27]. However, we observe
that having long running map tasks is also common and it is necessary to consider them for better resource allocation
or performance depending on the preemption objective. In contrast, Chronos introduces both map and reduce task
preemption and leverages it to make Hadoop schedulers failure-aware.

Data-aware task scheduling. Several research efforts have been made with the aim of having better locality for
achieving higher performance [31, 5, 32]. Ibrahim et al. have proposed Maestro [31], a replica-aware map scheduler
for Hadoop that tries to increase locality in map phase and also yields better balanced intermediate data distribution
for shuffle phase. Ananthanarayanan et al. introduced Scarlett [5], a system that employs a popularity-based data
replication approach to prevent machines that store popular content from becoming bottlenecks, and to maximize
locality. Chronos also aims at maximizing locality but it mainly focuses on recovery tasks that belong to different
jobs.

9. Conclusion

Hadoop has emerged as a prominent tool for Big Data processing in large-scale clouds. Failures are inevitable in
large-scale systems, especially in shared environments. Consequently, Hadoop was designed with hardware failures
in mind. In particular, Hadoop handles machine failures by re-executing all the tasks of the failed machine. Unfortu-
nately, the efforts to handle failures are entirely entrusted to the core of Hadoop and hidden from Hadoop schedulers.
This may prevent Hadoop schedulers from meeting their objectives (e.g., fairness, job priority, performance) and can
significantly impact the performance of the applications.
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We address this issue through the design and implementation of a new scheduling strategy called Chronos.
Chronos is conductive to improving the performance of MapReduce applications by enabling an early action upon
failure detection. Chronos tries to launch recovery tasks immediately by preempting tasks belonging to low priority
jobs, thus avoiding the uncertain time until slots are freed. Moreover, Chronos strongly considers the local execution
of recovery tasks. The experimental results indicate that Chronos results in almost optimal locality execution of re-
covery tasks and improves the overall performance of MapReduce jobs by up to 55%. Chronos achieves that while
introducing very little overhead.

Thanks to these encouraging results, we plan to further investigate the potential benefits of the work-conserving
preemption technique. In particular, Hadoop schedulers are still relying on wait or kill primitive to ensure the QoS
requirements of several users; thus an interesting direction to explore is how to ensure QoS requirements without wast-
ing the cluster resources. Moreover, we are currently exploring a new scheduling policy that relies on our preemption
technique for improving the energy efficiency of Hadoop clusters.
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