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Abstract: This paper considers the question of landing an Unmanned Aerial Vehicles (UAV)
using a single monocular camera as the primary exteroreceptive sensing modality. The proposed
control law is based on tracking a single point feature, representing the desired landing point
on a ground plane, along with optical flow computed over the full image. The bearing of the
desired landing point is used as a driving term to force convergence, while the optical flow is
used to provide a damping force that guarantees both obstacle avoidance as well as damping the
convergence of the vehicle to the ground plane ensuring a soft touchdown. A detailed analysis
of the system closed-loop dynamics is undertaken and the response of the system is verified in
simulation.
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1. INTRODUCTION

Autonomous aerial vehicles (UAVs) are a transformative
technology in modern society, providing unparalleled ca-
pability to undertake difficult, dangerous and dull surveil-
lance and monitoring tasks crucial to maintenance of in-
frastructure, agricultural operations and disaster recovery,
to name just a handful of application domains. To perform
a fully autonomous flight, an UAV requires the ability
to take-off, navigate to, and accomplish a given task,
and finally return to base and land. Many tasks require
the vehicle to land, or at least approach and touch, its
destination, and complex or long-lasting missions might
require intermediate landing and taking-off operations
(e.g. battery/fuel refill). Such manoeuvres generally need
to be undertaken in unsurveyed, cluttered environments,
and often where GPS signals are unreliable or unavail-
able. This is especially the case for Vertical Take-Off and
Landing (VTOL) vehicles, such as helicopters and multi-
rotor systems, that are likely to be used in tandem with
ground based vehicles and other technologies, as in Michael
et al. (2012), in extended disaster recovery or other types
of missions. Classical landing control strategies require
estimation of the full state of the vehicle, along with a
model of the landing environment (see for example Flores
and Milam (2006); Geyer and Johnson (2006); Meister
et al. (2009); Andert et al. (2011)). If only a camera is
available for state estimation then the vehicle pose must
be estimated by using visual data (Lee et al., 2012; Davison
et al., 2011; Kaiser et al., 2010; Courbon et al., 2010;
Milford et al., 2011; Blösch et al., 2010) An alternative
approach is to use the natural properties of optical flow
to provide a strong visual cue for obstacle avoidance and

landing regulation (Srinivasan et al., 2000; Koenderink and
van Doorn, 1987; Hérissé et al., 2008; Chahl et al., 2004;
Srinivasan et al., 2000; Ruffier and Franceschini, 2004).
Optical flow is also a powerful cue for terrain following
(Humbert et al., 2005; Ruffier and Franceschini, 2005)
and obstacle avoidance Geyer and Johnson (2006); Green
and Oh (2008); Beyeler et al. (2009). A good review of
prior work in robotics applications that exploit optical flow
is given by McCarthy et al. (2012). A key advantage of
control strategies that are based on optical flow is that
they also also deal well with dynamic environments such
as a moving landing surface (Hérissé et al., 2010, 2012) in
contrast to approaches that require modeling of the envi-
ronmental motion (Marconi et al., 2002). A disadvantage
of control algorithms based on optical flow and visual data
in general is the complexity of providing rigourous stability
analysis of the closed loop system, especially in the case
where the system has non-trivial dynamics, as is the case
with flying vehicles.

In this paper, we propose a landing control algorithm
for a VTOL UAV based on visual data obtained from a
monocular camera coupled with the usual suite of sensors
present in a standard Inertial Measurement Unit (IMU)
that is common on all modern UAVs. We provide a
detailed analysis of the closed-loop response of the system
and prove asymptotic stability of the pose to the desired
landing point, corresponding to a smooth touch down.
We first consider the case where there are no obstacles
and propose a reformulation of the controller formerly
developed by Hérissé et al. (2010, 2012) to include a
target landing point. The proposed control consists of a
driving term that acts as a constant force driving the



vehicle in the direction of the observed target point, based
on the bearing measurement of the target, coupled with
a damping proportional to optical flow measured over
the whole ground plane. The natural tradeoff between
velocity and distance inherent in optical flow ensures a
stable soft touchdown of the closed-loop system. We then
consider obstacles present in the flying space by including
additional damping terms associated with divergence of
the optical flow derived from the obstacle. To simplify
the mathematical formulation of the problem, the ground
plane is assumed to be flat and obstacles are modeled as
spheres in space. The goal of this paper is to provide a
detailed theoretic analysis of the system response rather
than tackle some of the practical issues of implementation.
To this end the visual target observation and optical flow
measurements are abstracted and written in terms of the
vehicle state for the purposes of the analysis. Simulations
of the closed-loop dynamics are provided to demonstrate
the performance of the proposed algorithm.

The content is organized as follows: Section 2 describes the
landing task; the differential equations representing the
motion model for small-scale VTOLs and the modelling
of the environment. Section 3 proposes a control law
for the landing task in obstacle-free environments and
provides a detailed stability analysis. Section 4 considers
the case where there are obstacles in space and provides
an analysis for the proposed control. Section 5 reports
on some simulation results for both obstacle-free and
cluttered environments. The paper concludes with some
final comments in Section 6.

2. SYSTEM AND ENVIRONMENT MODELLING

In this section we introduce the model used throughout
the document to describe the vehicle dynamics and the
environment.

Consider a Vertical-Take-Off-and-Landing (VTOL) UAV
vehicle equipped with an Inertial Measurement Unit
(IMU) and suitable filtering algorithms to provide reliable
estimates of attitude and rotational velocities, as well as
a camera, an exteroceptive passive sensor whose output is
rich in information. We assume that the vehicle is equipped
with vision processing capability to identify a point-feature
target and compute optical flow over the full image (Horn
and Schunck, 1981).

A complete model of a VTOL aircraft includes gyroscopic
and aerodynamics effects, as well as aerodynamic dis-
turbances. In order to simplify the analysis, we neglect
all second order terms (Mahony and Hamel, 2004). The
neglected aerodynamics forces are dissipative and do not
significantly effect the closed-loop response. Rotational
dynamics of small-size VTOL vehicles are usually faster
than translational ones, leading to a hierarchical control
design methodology. The natural time-scale separation
between the translational dynamics (slow time-scale) and
the orientation dynamics (fast time-scale) allows one to de-
sign decoupled position and orientation controllers (Khalil,
2002; Hérissé et al., 2012). The high-gain attitude control
effectively dominates the attitude dynamics of the vehicle
and allow one to consider a pure translational model

ξ̇ = v
mv̇ = mge3 − TRe3 ,

(1)

in which ξ and v represent the UAV position and velocity
respectively, both expressed in an inertial frame with
the third direction aligned with the gravitational field,
m represents the mass of the VTOL-UAV (supposed
constant), g is the magnitude of the gravity force acting
on the vehicle and e3 is the third canonical basis vector.
The variable T represents the thrust magnitude and R
is the rotation matrix representing the orientation of the
body-fixed frame with respect to the inertial frame. The
high-gain attitude control assumption means that the
rotation R can be viewed as a control input and we write
u = −TRe3 to represent the resulting control input to the
translational dynamics of the system

ξ̇ = v
mv̇ = mge3 + u .

(2)

In order to develop the dynamics equation of image points,
in the following we suppose that the frame representing
the position and orientation of the camera in the world
frame is rigidly attached to the body-fixed frame, such
that the linear transformation relating them degenerates
to the identity matrix and their dynamics are the same.
Projections of world points on the image surface are points,
usually called point features or features, whose dynamics
depend on the geometry of the image surface and on the
physical parameters of the camera. A common choice in
the aerial robotics field is to model the dynamics of the
point features by using the spherical projection model for
a calibrated camera as shown by Ma et al. (2004). Consider
a reference frame attached to the camera. If P̄ is a generic
point in the 3-D space, we denote with P the vector
connecting the centre of the camera reference frame to
the point P̄ and with p the unit vector representing the
direction of P , i.e. its projection on a sphere of unit radius,
that represents the spherical image surface. The expression
of the vector p and its derivative are

p =
P

|P |
, ṗ = − πp

|P |
v , (3)

where 1

πp = (I3 − pp>) (4)

is the projector in the space tangent to the spherical image
surface at point p, having the following properties

p>πp = πp p = 0 , (5)

πpπp = πp . (6)

We will assume that the desired landing point P̄L is
contained locally in a planar surface whose normal η is
known or can be estimated from image features (see, for
instance, Ma et al. (2004)). In general, the normal direction
cannot be easily determined unless a good knowledge of
the environment is available. There are, however, certain
special cases where it is relatively straightforward to
extract it, such as the situation where the target lies on
a flat ground. In this case η is obviously the gravitational
direction e3 and can be directly provided the IMU sensor.

A soft landing manoeuvre consists in progressively re-
ducing the distance between the vehicle and the desired
landing point, ensuring it reaches the zero value with zero
speed. The environment enforces a physical constraint on
1 The symbol I3 represents the identity matrix of dimension 3 by 3.



the vehicle height: it has to be all time strictly positive.
Indeed, the desired landing point will always lie on the
boundary of the admissible region of the space, an assev-
eration that requires careful consideration in the stability
analysis.

We approximate the cluttered environment by a collection
of fixed spherical objects. For a given obstacle, let P̄o
denote the closest point on the surface of the obstacle
to the camera. Let Po be the vector from camera to P̄o
and define d0 = |Po| to be the distance from camera
to the obstacle. The vector po denotes the projection of
Po onto the spherical image surface, po = Po/do. Note
that po is orthogonal to the tangent plane of the spherical
obstacle. We assume that the de-rotated optic-flow Φ is
computed at all points in the image. The divergence of
the optic flow is a scalar field that can be computed from
the optic field using either differentials of the flow or a
vector convolution. Locally around p0 in the image the
divergence of the optical flow is related to the scaled rate
of change of distance

do we need some reference here?

divΦ(po) = −2
ḋo
do
. (7)

In the same manner, denoting the flow over the projection
of the ground plane spherical image by D ⊂ S2 one can
show that

v

h
= Λ

∫
D

Φ(p)dp

for a matrix Λ > 0 that can be computed from knowledge
of the size of D (Hérissé et al., 2012) and where h
is the distance from the camera to the landing surface
plane in the normal direction η. We will again use the
expression v/h in the control analysis rather than writing
the dependence on the optic flow field directly. A key
aspect of the optic flow measurements is that the resulting
measurements always depend inversely on distance to the
observed as well as depending linearly on the camera
velocity. This singularity in the velocity leads to much
of the nice properties of optic flow as a cue for obstacle
avoidance, but also causes significant complications in the
analysis.

We will assume further that an obstacle-free path to the
landing point exists and that the landing point is visible at
all times during the evolution of the closed-system. Clearly
this assumption will fail in highly cluttered environments
and some further hybrid control laws, switching between
different target points, or adding feed forward driving
terms would need to be considered to overcome this in
practice. Considering this issue is beyond the scope of the
present paper as we concentrate on the fundamental non-
linear complexity of the problem. For the same reasons,
although we recognise that real obstacles are not spherical
and a practical implementation of these ideas will need to
address these issues, we will not discuss this further in the
present paper.

3. LANDING IN OBSTACLE-FREE ENVIRONMENTS

In this section, we consider the landing task in an obstacle-
free environment. The proposed solution represents a vari-

ant of the controllers formerly developed by Hérissé et al.
(2010, 2012), that were proportional-integral nonlinear
controllers, based on optical-flow data only. Here, we avoid
the integration of the always noisy optical-flow measure-
ments, by substituting it by the spherical image point of
the landing point. The advantage in avoiding the integral
component may become relevant in real applications where
the noise in the optical flow measurement is not negligible,
e.g. when the limited field of view does not allow to
properly average the corrupted measurements, leading to
a diverging integral term.

Note that, given any desired landing point, one can use a
simple change of coordinates and rewrite the system as if
the landing point was the origin of the 3-D space. Then, we
assume that the desired landing point is P̄L = (0, 0, 0)>.

Theorem 1. Consider the system (2) subjected to the
control input

uL = −mge3 −mk
(
v

h
+

ξ

|ξ|

)
(8)

then, for any initial condition such that h(0) > 0 and for
some k > 0 the following assertions hold

(1) h(t)>0 ,∀t (implying that the dynamics of the closed-
loop system are well defined ∀t);

(2) h(t) and ḣ(t) converge to zero asymptotically;
(3) v(t) converges to zero asymptotically;
(4) ξ(t) converges to zero asymptotically;
(5) the control law (8) is bounded ∀t.

The proof of the theorem is given in Appendix A.2.

It is worth noticing that, if we assume that the normal
direction to the plane is known, the proposed control
input can be computed by using IMU data, Optical Flow
measurement and the image of the desired landing point.

4. LANDING AMONG OBSTACLES

Navigation and control of vehicles in cluttered environ-
ments is a central topic in the area of field robotics. Several
solutions have been developed in the literature to cope
with this problem. The most familiar approach is certainly
the so-called artificial potential fields from Khatib (1986)
where the key idea consists in building artificial repulsive
force fields that depend linearly on the inverse of the
distance to the sensed obstacles. The main problems 2 of
the approach that arise are due to the presence of local
minima that can entrap the robot, preventing it from the
convergence to the desired position (a problem related to
the geometry of the environment and to the incomplete
knowledge of it), as discussed by Borenstein and Koren
(1989), and to the need of measuring the distance to the
obstacles, since the typical sensor suite embarked consists
of an inertial measurement unit (IMU), and a camera
providing video data.

The key challenge here considered is to slightly modify
the control strategy in order to avoid obstacles while
performing the landing task using the minimal sensor suite
carried by the vehicle. In particular, we exploit optical flow
measurement to address the problem of a unified control

2 Details on drawbacks of these techniques and possible solutions
have been described by Adeli et al. (2011).



task incorporating obstacle avoidance.
At first glance, one can exploit the optical-flow measure-
ments for obstacle avoidance purposes by adding to the
nominal controller (8) a dissipative term

kDDipi = kD
ḋi
di
pi, di = |Pi|

for each obstacle, where Di = ḋi/di is proportional to
the measured optical-flow divergence (7). Those terms act
along the directions pi of the obstacles, and adding them
to the landing control input one gets

u = uL + uD, where uD = kD

n∑
i=1

Dipi, KD > 0 . (9)

Since the derivative of the distance, i.e. ḋi = −v>pi, is the
projection of the velocity vector along the direction pi, it
is negative when the vehicle approaches the obstacle. The
following storage function (also exploited in the proof of
Th. 1, see eq. (A.8)),

L = k|ξ|+ |v|
2

2
,

shows, via its time derivative

L̇ = −k |v|
2

h
− kD

N∑
i=1

|p>i v|2

d
≤ 0,

that the control input uD acts as a dissipative term, whose
intensity can be modulated by means of the gain kD. The
vehicle will slow down in the unwanted direction, while
preserving its motion in the rest of the space. Being uD
the sum of pure dissipative terms, it is hard to ensure by
means of the control input (9) that there is no contact with
the obstacles. To overcome this issue, one can suggest the
design of a repulsive field around each obstacle i, derived
from the following function:

φi(di) =

{
kR(di(t) (γi(t)− 1) + di(0)) , di < di(0)

0, di ≥ di(0)
(10)

where kR is a small positive gain (kR � k) and γi is given
by an integral of the term Di

γi(t) =

∫ τ

0

ḋi(τ)

di(τ)
dτ = ln

(
di(t)

di(0)

)
(11)

Choosing the following expression of the repulsive force:

Fi(di) = kRγipi . (12)

It follows that near the obstacle the term γi is negative
and hence the force (even small) is actually driving the
vehicle away from the obstacle neighborhood. For n visible
obstacles in the environment, we design the obstacle-
avoidance control input by summing all the contributions,
generated by using eq. (12) for each obstacle:

uR = kR

n∑
i=1

γi pi. (13)

By defining the control action u as u = uL + uD + uR we
get the following result:

Theorem 2. Consider the system (2) under the control
input

u = uL + uD + uR. (14)

Assume the environment is populated by n (n ≥ 1)
spherical obstacles and that the desired point is reachable
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Fig. 1. Trajectories in the 3-D space (x-y-h) for different
initial conditions. Black lines correspond to zero ini-
tial velocities. Red lines correspond to initial velocity
V (0) = (−1, 0,−1)>.

from any initial point ξ(0) in the admissible space. Assume
there is no contact between the obstacles and the landing
plane and choose kR of (13) small with respect to k
enough. Then, for any initial conditions such that h(0) > 0

(1) All solutions converge to Ea ∪ Eu. With Ea = (0, 0)
and

Eu =

{
(ξ∗, 0) s.t. k

ξ∗

|ξ∗|
= kR

n∑
i=1

pi(ξ
∗)γi(ξ

∗)

}
;

(2) The point Ea is a locally attractive fixed point;
(3) Any point of Eu is an unstable equilibrium. More

precisely, for any (ξ∗, 0) ∈ Eu and for any neigh-

bourhood U of (ξ∗, 0), there exists (ξ̃, Ṽ ) ∈ U such

that the trajectories of the system starting from (ξ̃, Ṽ )
converges to Ea.

The proof is reported in Appendix A.3.

5. SIMULATION RESULTS

Here we show some simulation results obtained using the
landing controller described in sec. 3, and its extension
for the cluttered environment case, as described in sec. 4.
All simulations are conducted including the rotational
dynamics of the vehicle as well as some additive noise
in the measurements of the optical flow and the bearing
direction of the obstacles. To show the behaviour of the
system under the control law (8), we chose a set a of
different initial conditions both for position and velocity
vectors.

Fig. 1 represents trajectories in the 3-D space resulting
from those initial conditions. The environment is symmet-
ric and we chose to confine the evolutions of the system
in the subspace y > 0. Moreover, we chose initial condi-
tions that are symmetric with respect to the y-h plane
to visually separate trajectories resulting from different
initial velocities. Indeed, initial conditions with x(0) > 0
correspond to zero initial speed and their evolutions are
drawn in black (starting position are marked with a star
symbol). As might be expected from the symmetry of the
system, the UAV is driven along straight lines directly to
the landing point.

On the other hand, red lines (and their relative starting
points, marked with red circles) represent the evolutions of
the system corresponding to v(0) = (−1, 0, 1)>, i.e. when
the initial conditions are such to drive the vehicle away
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Fig. 2. Trajectories in the 3-D space (x-y-h) for different
initial conditions, case with multiple obstacles. Black
lines correspond to zero initial velocities. Red lines
correspond to initial velocity V (0) = (−1, 0,−1)>.

from the landing point and towards the ground plane.
Consider the trajectory resulting from initial condition
ξ(0) = (−5, 0,−0.2)> (leftmost in Fig. 1). As h approaches
zero, the control input grows and compensates the initial
speed. The vertical speed approaches zero and the vehicle
slowly slides in the direction of the landing point. The
system shows an analogous behaviour when initial con-
ditions are such that the initial height is close to zero,
as can be seen by looking at the trajectory starting from
ξ(0) = (5, 0, 0.2)> (rightmost in Fig. 1). In those cases, the
convergence to the landing point may require a big amount
of time and the small value of the height may prevent the
use of the proposed control in real systems.

The addition of the repulsive action and damping terms
to the control input, (recall eq. (14)), modifies all the
trajectories. Simulations results for this case are shown in
Fig. 2. The initial conditions are the same as the previous
case. The control strategy is in some sense conservative,
since it modifies even those trajectories which would not
collide with the obstacles in any case. This fact can be
easily noticed by comparing Fig. 1 and Fig. 2.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we addressed the problem of landing a
VTOL-UAV in obstacle-free or cluttered environments.
The proposed control law exploits measurements given by
a camera attached to the vehicle as well as an IMU, a
common sensor suite for an unmanned aerial vehicle. The
simulation results shows the effectiveness of the control
law in all the environments. Here we considered spherical
objects, placed at a non-zero height from the ground.
Considering non-spherical objects involves the estimate
of the normal to their surface, and would be a useful
extension towards a real-world implementation of the
algorithm. We also plan to prosecute the work towards
the implementation on a real small-scale UAV.
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Hérissé, B., Russotto, F.X., Hamel, T., and Mahony, R.
(2008). Hovering flight and vertical landing control
of a vtol unmanned aerial vehicle using optical flow.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 801–806.

Horn, B.K.P. and Schunck, B.G. (1981). Determining
optical flow. Artificial Intelligence, 17, 185–203.

Humbert, J.S., Murray, R.M., and Dickinson, M.H. (2005).
Pitch altitude control and terrain following based on bio-
inspired visuomotor convergence. In AIAA Conference
on Guidance, Navigation and Control.

Kaiser, M.K., Gans, N.R., , and Dixon, W.E. (2010).
Vision-based estimation for guidance, navigation, and
control of an aerial vehicle. IEEE Transactions on
aerospace and electronic systems, 46(3), 1064–1077.

Khalil, H.K. (2002). Nonlinear Systems. Prentice-Hall.



Khatib, O. (1986). Real-time obstacle avoidance for
manipulators and mobile robotics. The International
Journal of Robotics Research, 5(1), 90–98.

Koenderink, J. and van Doorn, A. (1987). Facts on optic
flow. Journal of Biological Cybernetics.

Lee, D., Ryan, T., and Kim, H.J. (2012). Autonomous
landing of a vtol uav on a moving platform using image-
based visual servoing. In IEEE International Conference
on Robotics and Automation, 971–976.
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Appendix A

A.1 Preliminary technical lemmas

All time-dependent functions involved in the statements of
these lemmas are assumed to be defined on [0,+∞) and
continuous. The state variable x belongs to Rn, with n a
positive integer. Also, o(t) denotes any bounded vector-
valued function whose norm tends to zero when t tends to
infinity.

Lemma 3. Consider the system

ẋ = −k(t)x+ p(t) . (A.1)

If k(t) is positive (∀t) and tends to infinity, and if |p(t)|
is bounded, then (any solution) x(t) (to this system)
converges to zero.

Proof. The lemma’s assessment is obvious after observing
that, by replacing the time index t by the new time-scale

index s(t) :=
∫ t
0
k(τ)dτ (note that s tends to infinity if

and only if t also tends to infinity), the considered system
rewrites as

d

ds
x = −x+ o(s)

with o(s) := p(t)
k(t) . This is a stable linear system perturbed

by a vanishing additive perturbation.

Lemma 4. Consider the system

ẋ = −k(t)( (1 + o(t))x+ p(t) ) . (A.2)

If k(t) is positive (∀t) and tends to infinity, and if |p(t)| is
bounded, then |x(t)| is bounded.

Proof. Again the proof of this lemma is quite simple
after using the same change of time-scale index as for the
previous lemma. This yields

d

ds
= −(1 + ō(s))x− p̄(s) ,

with ō(s) = o(t) and p̄(s) = p(t). Since (1 + ō(s)) tends to
1, this is basically a linear system perturbed by a bounded
additive perturbation.

Lemma 5. Consider the system

ẋ = −k(t)( (1 + o(t))x+ p(t) ) , (A.3)

If k(t) is positive (∀t) and tends to infinity, and if |p(t)|,
|ṗ(t)|, and k(t)o(t) are bounded. Then, (x(t) + p(t)) con-
verges to zero as t goes to infinity.

Proof. Define y := x+ p, then

ẏ =−k(t)([1 + o(t)]x+ p) + ṗ

=−k(t)[1 + o(t)]y + k(t)o(t)p+ ṗ .

and a direct application of Lemma 3 yields the desired
result.

Lemma 6. Consider two positive functions α(t) and β(t)
such that

lim
t→∞

t∫
0

α(s) ds = +∞ , lim
t→∞

β(t) = 1 ,

then

lim
t→∞

t∫
0

α(s)β(s) ds = +∞.

Proof. There exists a time t∗ such that β(t) > β0 >
0, ∀ t > t∗. Therefore, when t > t∗ one has

t∫
0

α(s)β(s) ds >

t∗∫
0

α(s)β(s) ds + β0

t∫
t∗

α(s) ds ,

with the last term in the right-hand side of the inequality
converging, by assumption, to infinity.

A.2 Proof of Theorem 1

Given the control (8) applied to the system (2), the
equation of the closed-loop system is

ξ̈ = −k

(
ξ̇

h
+

ξ

|ξ|

)
= −k

(
ξ̇

h
+ α

ξ

h

)
, (A.4)



with

α(t) =
h(t)

|ξ(t)|
, α(t) ∈ (0, 1], ∀t. (A.5)

Proof of item 1: The vehicle is initially above the target,
i.e. h(0) > 0. Given an (any) initial condition (ξ(0), v(0)),
as long as h(t) does not reach zero, the solution to the
above equation is well defined and unique. Let us first show
that h(t) cannot reach zero in finite time. By definition h
is the third component of ξ. Therefore, in view of (A.4),
the time-evolution of h is given by

ḧ = −k

(
ḣ

h
+ α

)
. (A.6)

Integration of both sides of this equality yields

ḣ(t) = ḣ(0)− k ln

(
h(t)

h(0)

)
− k

t∫
0

α(s) ds . (A.7)

This relation is valid as long as h(t) 6= 0. Now, consider
the following positive function

L = k |ξ|+ |v|
2

2
, (A.8)

whose time-derivative along a solution to System (A.4) is

L̇ = −k |v|
2

h
≤ 0 . (A.9)

One deduces from the previous two relations that |ξ| (h)

and |v| (≥ |ḣ|) are uniformly bounded with respect to the
initial condition, as long as the solution to the system is
defined, i.e. as long as h remains positive. If we assume
that h reaches zero at the finite time-instant Ts > 0, then

the term ln

(
h(t)

h(0)

)
appearing in the equality (A.7) tends

to infinity when t tends to Ts, whereas all other terms
involved in this equality remain bounded. This assumption
thus yields a contradiction. Therefore h is never equal to
zero, and the solution to System (A.4) is well defined and
unique for t ∈ [0,∞).

Proof of item 2: Using the following change of variables

z(t) = h(t) exp

(
ḣ

k

)
, (A.10)

one gets ż(t) = −α(t) z(t), a first order differential equa-
tion whose solution is

z(t) = z(0) exp

− t∫
0

α(τ)dτ

 . (A.11)

In order to study the evolution of (h, ḣ), we can consider
two different cases, depending on the sign of the initial
vertical velocity.

Case 1: ḣ(0) < 0. Let us show that ḣ(t) < 0, ∀t.
We make a proof by contradiction and assume that there
exists t∗ such that ḣ(t∗) = 0 and ḧ(t∗) ≥ 0. Then,

according to (A.6), ḧ(t∗) < 0. A clear contradiction.

Case 2: ḣ(0) ≥ 0. If ḣ(t) were always positive, or equal
to zero, then, according to (A.10), z(t) would be non-
decreasing. This contradicts relation (A.11) which implies
that z(t) is strictly decreasing. Therefore there exists a

time instant T such that ḣ(T ) < 0, and we are brought
back to Case 1 with T taken as the new origin of time.

By considering these two cases, we have shown that ḣ(t) is
strictly negative after a finite time. Let us now show that
h(t) and ḣ(t) converge to zero. Since h(t) is positive and
decreases after a finite time-instant, it converges to some
limit hm which is either positive or equal to zero. Recall
that the boundedness of ξ has already been proven so that
ξM := supt∈[0,+∞)|ξ(t)| is a positive finite number. Let us

assume that hm is positive, then α(t) >
hm
ξM

= αm > 0,

∀t. Relation (A.11) then implies

z(0) e−αmt > z(t) ≥ z(0) e−t ,

and thus the convergence of z(t) to zero. This in turn

implies the convergence of h(t) to zero, since |ḣ(t)| (≤
|v(t)|) is bounded. From this contradiction, one deduces
that hm = 0 and thus that h(t) converges to zero.

Finally, using the fact that kα(t) is bounded and that
k/h(t) tends to infinity, the application of Lemma 3 to

the equation (A.6) establishes the convergence of ḣ(t) to
zero.

Proof of item 3: We first show that the ratio |v|h is bounded.
To this aim let us consider the equation governing the
evolution of this ratio, as deduced from (A.4)

d

dt

(
|v|
h

)
= −k

h

([
1 +

ḣ

k

]
|v|
h

+ cos(β)

)
. (A.12)

with β the angle between v and ξ, so that cos(β) = vT ξ
|v||ξ| .

Using the fact that k/h tends to infinity and that ḣ/k

tends to zero, the boundedness of |v|h is simply obtained
by applying Lemma 4 to this equation. From there, the
convergence of v to zero just follows from the convergence,
previously proven, of h to zero.

Proof of item 4: Since

d

dt

(
ξ

|ξ|

)
=

(
I − ξξ>

|ξ|2

)
v

|ξ|
,

and since |v||ξ| (≤ |v|h ) tends to zero, the time-derivative of
ξ
|ξ| tends to zero, and is thus bounded. Consider now the

dynamics of the ratio between ξ̇(t) and h(t)

d

dt

(
ξ̇

h

)
= −k

h

([
1 +

ḣ

k

]
ξ̇

h
+

ξ

|ξ|

)
, (A.13)

The application of Lemma 5 to this equation yields( ξ̇
h

+
ξ

|ξ|
)
(t) = o(t) . (A.14)

Pre-multiplying both members of the above equality by
h ξ>, one obtains the equation

d

dt
|ξ|2 + ᾱ(t)|ξ|2 = 0

with

ᾱ(t) := 2α(t)

(
1− ξ(t)>

|ξ(t)|
o(t)

)
.

whose solution must satisfy



|ξ(t)|2 = |ξ(0)|2 exp

− t∫
0

ᾱ(s) ds

 . (A.15)

Since h and ḣ converge to zero, one deduces from (A.7)
that the integral of α tends to +∞. Therefore, by applica-
tion of Lemma 6, the integral of ᾱ also tends to +∞. The
convergence of ξ to zero then follows from the previous
equality.

Proof of item 5: The boundedness of the control uL
given by (8) simply follows from the previously proven
boundedness of v/h.

A.3 Proof of Theorem 2

Proof of item 1: Consider the following Lyapunov func-
tion:

L = k|ξ|+ 1

2
|v|2 +

n∑
i=1

φi , (A.16)

whose derivative is

L̇ = −|v|
2

2
− kD

n∑
i=1

ḋ2i
di
. (A.17)

Let’s divide the analysis in two cases, related to the
behaviour along the vertical axis and let define hε, the
value of h that characterises the height of the nearest
obstacle to the ground.

Case 1: h ≥ hε,∀t. Then L̇ = 0 implies that the velocity
vector is null, and the equilibrium (ξ, v) = (ξ∗, 0) 6= (0, 0)

is a solution of the implicit equation ξ̈∗ = 0. This implies

k
ξ∗

|ξ∗|
= kR

n∑
i=1

γipi . (A.18)

Case 2: h < hε. In the hypothesis that the minimum height
of the obstacles is such that their residual influence on the
vehicle dynamics is negligible, then (ξ, 0) is converging to
the landing point (0, 0). This case is similar to consider
the neighbourhood of the landing point itself, then one
can rely on the same arguments used for the next item.

Proof of item 2: To show that Ea is a locally attractive
point, consider the dynamics of the system in the neigh-
borhood of the landing point i.e. when h < hε. Recall-
ing eq. (10), one knows that the terms γi are negative
or null. By neglecting the effect of the dissipative term
due to uD it is straightforward to verify that the inner
product η>pi > 0 and hence the projected dynamics are
approximately

ḧ = −k

(
ḣ

h
+ α′

)
, where α′ =

h

|ξ|
+
kR
k

n∑
i=1

η>pi|γi|

(A.19)
Thus the same arguments used in the proof of Th. 1 apply
and one can conclude that h converges to zero.

Proof of item 3: To show the instability of the set Eu we
compute the linearization of the error dynamics around
the point (ξ∗, 0) ∈ Eu.

Let χ = (ξ, ξ̇)>, and recall that in this case, the full system
dynamics are

ξ̈ = −k

(
ξ̇

h
+

ξ

|ξ|

)
+ kD

N∑
i=1

Dipi + kR

N∑
i=1

γipi . (A.20)

Then, by computing the partial derivatives of ξ̇, ξ̈ with
respect to the components of the state vector χ, and by

setting πξ∗ =
(
I3 − ξ∗

|ξ∗|
ξ∗>

|ξ∗|

)
, one gets

χ̇=

 03 I3

−k
πξ∗
|ξ ∗ |

−
n∑
i=1

µi

(
πpiγi

di
+
pip

>
i

di

)
−
I3

h
− ko

n∑
i=1

pip
>
i

di

χ.
Recalling eq. (A.18), and taking the norm of the equilib-
rium point, it follows that:∣∣∣∣∣

n∑
i=1

γipi

∣∣∣∣∣ =
k

kR

By choosing kR small enough, it is straight forward to
verify that there exists an obstacle j ∈ {1, . . . , n} such
that:

lim
kR→0

∣∣∣∣∣
n∑
i=1

γipi

∣∣∣∣∣ = |γjpj | = +∞

Since the obstacles are assumed to be scattered in the
environment, the above limit is approximately valid even
if kR is only chosen small enough with respect to k and
consequently the problem considered is similar to the issue
when only a single obstacle is present in the environment.
Without loss of generality, define p = pj , γ = γj , and
d = dj and examine the linearization of the system
dynamics.

Since the second element of the second row of the matrix
above is negative, to prove the instability of the system in
the set Eu, consider the first element of the second row

−k πξ
∗

|ξ∗|
− kR

(
πpγ

d
+
pp>

d

)
. (A.21)

Note that ξ∗

|ξ∗| = ±p, according to the sign of γ (recall

eq. (A.18)), and consider a rotation matrix Q, such that
p = Qe3 one gets

−
(

k

|ξ∗|
+
kRγ

d

)
πe3 −

kR
d
e3e
>
3 .

If the vehicle is approaching the obstacle, γ is negative and
from (A.18), it results kRγ = −k, then one gets

−k
(

1

|ξ∗|
− 1

d

)
πe3 −

kR
d
e3e
>
3 , (A.22)

whose eigenvalues are{
−k
(

1

|ξ∗|
− 1

d

)
,−k

(
1

|ξ∗|
− 1

d

)
,−kR

d

}
. (A.23)

The first two of them are positive in the neighborhood of
the obstacle, since d < |ξ∗|, thus the matrix is unstable.


