
HAL Id: hal-01343275
https://hal.inria.fr/hal-01343275

Submitted on 8 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Necessity of Accounting for Resiliency in SFC
Ghada Moualla, Thierry Turletti, Mathieu Bouet, Damien Saucez

To cite this version:
Ghada Moualla, Thierry Turletti, Mathieu Bouet, Damien Saucez. On the Necessity of Accounting
for Resiliency in SFC. First International Workshop on Programmability for Cloud Networks and
Applications (PROCON), Sep 2016, Wuerzburg, Germany. �hal-01343275�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49359636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01343275
https://hal.archives-ouvertes.fr


On the Necessity of Accounting for Resiliency in SFC

Ghada Moualla∗, Thierry Turletti∗, Mathieu Bouet†, Damien Saucez∗

∗ Inria Sophia Antipolis – France
† Thales Communications & Security – France

Abstract—When deploying network service function
chains the focus is usually given on metrics such as the
cost, the latency, or the energy and it is assumed that the
underlying cloud infrastructure provides resiliency mecha-
nisms to handle with the disruptions occurring in the physical
infrastructure. In this position paper, we advocate that while
usual performance metrics are essential to decide on the
deployment of network service function chains, the notion of
resiliency should not be neglected as the choice of virtual-to-
physical placement may dramatically improve the ability of
the service chains to handle with failures of the infrastructure
without requiring complex resiliency mechanisms.

I. INTRODUCTION

To provide the services demanded by their customers,
network providers must continually purchase, deploy, and
reconfigure middle-boxes, which results in high CAPEX
and OPEX and leads to long product cycles to provide
these services with a strong dependence on specialized
hardware. To provision more rapidly new services while
reducing costs, Network Functions Virtualization (NFV)
was proposed [1] and extended by Service Function
Chaining (SFC) that combines multiple network functions
in specific orders. NFV and SFC leverage virtualization to
deploy services on commodity hardware hence reducing
costs but raising the new challenge of how to provide
efficiency and resiliency into software with shared and
error-prone hardware resources [2].

To realize service chains, the placement of the virtual
functions onto the physical infrastructure becomes critical
as it plays a major role in the performance and robustness
of the chain. However, while tremendous efforts have been
realized on placing functions to reduce costs and improve
performances [3], robustness is often neglected under the
cover that the orchestrator can cope with failures. With this
paper, we advocate that accounting for robustness when
placing functions can significantly improve robustness of
the chain without increasing the load of the orchestrator.
To that aim, we study a reference chain and demonstrate
with an exhaustive study how placement in the physical
infrastructure can influence the overall robustness of the
system even when the virtual chain itself is supposed to
be robust to failures.

II. RELATED WORK

Knowing that with virtualization the failure of a host
propagates to all its Virtual Machines (VMs), robust
placements of the VMs for critical services need to be
considered carefully. Aware of this problem, Machida et
al. propose an algorithm for the placement of redundant

VMs based on affinity and anti-affinity rules to minimize
the number of hosts needed to ensure a given level of
redundancy [4].

Alternatively, Jayasinghe et al. present a placement
algorithm that takes an application description with con-
straints and a datacenter description and translates them
into tree models [5]. Their solution places VMs on
physical machines by grouping VMs and placing groups
on server clusters, then checking if the individual VM
requirements are met. Also, this work does not discuss
the robustness issue.

Furthermore, Mehraghdam et al. formalize service
chaining requests using context-free language and present
a mixed integer quadratic programming placement strat-
egy [6]. In their evaluation, they maximize link available
bandwidth and minimize latency and number of hosts but
do not account for robustness.

Schöller et al. describe a deployment function that
takes an abstract service description including placement
and resiliency requirements as input and focusing on
delay between redundant instances [7]. This deployment
function is based on OpenStack using availability zones.
Finally, Oechsner and Ripke discuss the topic of VM
placement in the context of NFV deployment [8]. They
utilize a placement mechanism with a resilience pattern
mapped to OpenStack in order to provide an automatic de-
ployment of resilient components in cloud environments.
The considered use-case is to place a redundant active-
backup pair of VMs with the requirement of placing
instances close enough to ensure the end-to-end delay,
but far enough apart to guarantee a certain level of
availability. Their heuristic takes as an input the avail-
ability of the components of the physical infrastructure,
the delay between them, the maximum delay between the
redundant instances, and the minimum availability of the
joint component.

In the light of the current research, we present a general
discussion on the necessity of considering resiliency while
placing virtual functions and show that the choice of the
placement may have a dramatic impact on the ability of
the system to be robust to failures.

III. SERVICE FUNCTION CHAIN ROBUSTNESS

A. Reference environment

To illustrate the impact of the network functions place-
ment on the resiliency of a chain, we consider the ref-
erence chain presented in Fig. 1 and composed of two
equal sub-chains of 3 functions such that when a flow
must be processed by the chain, it can be processed by



f1 f2 f3

f1 f2 f3

Figure 1. Reference chain.

f1

f1

f2

f2

f3

f3

(a) Not robust

f1
f2

f3

f1

f3
f2

(b) Robust

Figure 2. Examples of mapping and their robustness to one failure.

either sub-chain. The sub-chain that processes a flow is
selected by the cloud infrastructure (e.g., load balancer).
This reference chain is general as it is at the same time
robust and fragile. Robust as processing can be done by
any of sub-chain and fragile as if an element in one sub-
chain fails, the whole sub-chain is disrupted. This situation
is common when flow state is mandatory. We assume that
the system that decides the sub-chain to be used is able
to determine if a sub-chain is working properly or not
while selecting the sub-chain of a flow and that it functions
properly.

Fig. 2 shows an example where the placement of
the chain in the physical infrastructure can impact the
robustness of the chain to one single failure (node or link).
To study the impact of the placement of functions onto
the physical infrastructure, we consider all placements of
the reference chain onto the redundant tree1 presented in
Fig. 3. This topology is intentionally simple, contrary to
more connected datacenter topologies such as fat tree,
BCube etc., to clearly outline the impact of placement
on the service robustness. As the number of potential
placements is combinatorial, we randomly sampled the
set of all solutions to take a total of 16,718 different
placements2.

To assess the topological properties of the different
placements, we consider three usual metrics: (i) the num-
ber of physical hosts and (ii) the number of Top-of-the-
Rack (ToR) switches of the physical infrastructure involved
in the placement, that indicate how the placement shares
the load and how it is distributed in the infrastructure,
and (iii) the number of virtual functions per host that
indicates how processing virtualization is leveraged by the
placement.

Considering the topology as a graph, we can identify
two categories of failures: the failure of a node (i.e., a
computing host or a switch) or the failure of an edge (i.e.,

1As the purpose is to motivate the robustness problem in service
function chaining, we do not apply any constraint (e.g., bandwidth) on
the placement.

2All the code and placements used in this paper are available at https:
//team.inria.fr/diana/files/2016/05/procon16.zip

Figure 3. Reference topology.

a link). To assess the robustness of the placement against
failures, we independently considered these two categories
and exhaustively tested every combination of n-failures
of elements of the category (i.e., n nodes or n links).
A placement is considered as n-robust if a flow can be
processed by the service chain for any failure of n physical
elements of the network. However, by construction of our
chain, there exists always at least one case where the chain
is not robust: if several failures happen simultaneously
(i.e., n ≥ 2). For this reason, we rather consider the
probability of the chain to fail in case of n simultaneous
failures when failures are independent and equiprobable.

B. Robustness analysis

Overall, no strong linear correlation exists between
topological and placement properties in terms of robust-
ness. Nevertheless, the probability that the chain fails is
weakly correlated with the number of functions deployed
on one physical host (correlation is 0.68) as it is sufficient
that at least one function of each sub-chain is deployed
on the same host to break the chain in case of one single
failure. This conclusion is confirmed by Fig. 4 that shows
the empirical cumulative distribution function of having
a chain disruption in case of node failures. We consider
the failure of a node in the topology in general (i.e.,
including switches and computing hosts) and the cases
accounting only for the failure of a computing host. Fig. 4
indicates that the robustness of the chain is less sensitive
to the failure of computing hosts than to the failure of
switches. This is because each host is connected to the
network without redundancy via a ToR switch. Therefore,
the failure of one single ToR switch breaks the entire chain
even if it is deployed on different physical hosts. On the
contrary, to disrupt the chain with the failure of a host, it
is necessary that at least one function of each sub-chain
is deployed on the same physical host.

Similar conclusions can be drawn while considering link
failures instead of node failures (see Fig. 5) where we
distinguish failures of inter-switch links and host-switch
links. We can observe that despite the redundancy of the
topology, backbone link failures impact the robustness
of the chain, particularly the failure of inter-switch links
as actually losing the connectivity of ToR switches may
impair the chain, regardless of the computing redundancy.

As illustrated by Fig. 4 and Fig. 5, the overall robust-
ness behaviour is the same regardless of the number of
simultaneous failures except that the likelihood of having
a chain disruption increases with the number of failures.



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P[failure| one failure]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

hosts

nodes

(a) 1 failure

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P[failure| two failures]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

hosts

nodes

(b) 2 simultaneous failures

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P[failure| three failures]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

hosts

nodes

(c) 3 simultaneous failures

Figure 4. Probability of chain disruption in case of node failure.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
P[failure| one failure]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

inter-switch links

host-switch links

(a) 1 failure

0.00 0.02 0.04 0.06 0.08 0.10 0.12
P[failure| two failures]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

inter-switch links

host-switch links

(b) 2 simultaneous failures

0.00 0.02 0.04 0.06 0.08 0.10 0.12
P[failure| three failures]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

inter-switch links

host-switch links

(c) 3 simultaneous failures

Figure 5. Probability of chain disruption in case of link failure.

IV. DISCUSSION

In this paper, we advocate that the choice of the
placement of virtual functions constituting chains onto a
physical infrastructure should not neglect the robustness
of the chain as while some placement may offer good
performance, they may be very fragile to failures of a
physical component. In Sec. III-B we exhaustively studied
the impact on the robustness of the placements of a
reference chain in a tree topology. We have seen that even
though a chain is logically robust, if robustness is not
accounted while deciding the placement it may be broken
by a single failure.

One may argue that the failure of physical infrastructure
elements is not an issue as recovery mechanisms are
implemented by the orchestrator. What we answer is that
if these mechanisms are mandatory to make the system
truly resistant, they remain slow as they require VM
migrations. On the contrary, a wise selection of placement
permits to be robust to usual simple failures of the physical
infrastructure without having to trigger migrations and
thus reducing the stress on the orchestrator that would then
be used only for complex situations. We plan on building
new mechanisms for deploying service function chains
with the use of not only the usual performance metrics,
but also the resiliency metrics in order to minimize the
probability of the service being disrupted.

ACKNOWLEDGEMENTS

This work is funded by the French ANR under the
REFLEXION project (ANR-14-CE28-0019).

REFERENCES

[1] ETSI, NFVISG, “Network Functions Virtualisation (NFV)
Architectural Framework,” ETSI GS NFV, vol. 2, no. 2, 2013.

[2] ETSI, ISGNFV, “ETSI GS NFV-REL 001 V1. 1.1: Network
Functions Virtualisation(NFV); Resiliency Requirements,”
2015.

[3] Y. Li and M. Chen, “Software-Defined Network Function
Virtualization: A Survey,” IEEE Access, vol. 3, pp. 2542–
2553, 2015.

[4] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual
machine placement for fault-tolerant consolidated server
clusters,” in 2010 IEEE Network Operations and Manage-
ment Symposium - NOMS 2010, April 2010, pp. 32–39.

[5] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, and I. Whalley,
“Improving performance and availability of services hosted
on iaas clouds with structural constraint-aware virtual ma-
chine placement,” in IEEE SCC, 2011.

[6] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and
placing chains of virtual network functions,” in Cloud Net-
working (CloudNet), 2014 IEEE 3rd International Confer-
ence on. IEEE, 2014, pp. 7–13.

[7] M. Schöller, M. Stiemerling, A. Ripke, and R. Bless, “Re-
silient deployment of virtual network functions,” in 2013
5th International Congress on Ultra Modern Telecommuni-
cations and Control Systems and Workshops (ICUMT), Sept
2013, pp. 208–214.

[8] S. Oechsner and A. Ripke, “Flexible support of vnf place-
ment functions in openstack,” in Network Softwarization
(NetSoft), 2015 1st IEEE Conference on, April 2015, pp.
1–6.


