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Abstract 

After a brief review of vibration based damage identification methods, three different 

algorithms for damage identification are applied to the case of the benchmark Z24 bridge in 

this paper. Data-driven as well as model-based methods are discussed, including input-

output algorithms for taking into account the effect of environmental and/or operational 

sources on the variability of damage features. A further class of data-driven methods that use 

finite element information is finally introduced as a possible future development. 

 

1 INTRODUCTION 

The structural health monitoring process involves the definition of proper ‘damage 

indicators’ that can be estimated based on data recorded by a network of sensors. Periodically 

repeating the estimation of features extracted from the data allows to detect their variation in 

time and to obtain indications of possible anomalies linked to damage. Most of the different 

vibration based damage identification methods proposed in literature can be classified as 

data-driven or model-based. Data-driven methods extract damage features relying solely on 

the recorded response and are hence attractive for adoption within real-time damage 

identification but the absence of a numerical model of the system often hampers the 

estimation of damage severity. Model-based methods rely on the updating of significant 

parameters of a finite element (FE) model on the basis of vibration measurements. They are 

usually less attractive for real-time damage identification, due to the computational cost of 

the updating process but the availability of a FE model allows for an estimation of damage 

severity and may provide useful information regarding the remaining service life of the 

structure. In recent years, a third group of damage identification methods has begun to 

emerge. It includes data-driven methods that use FE information to define the damage 

indicators without model updating thus combining the possibility of automated damage 

identification with model-based features. While having appealing theoretical properties, 

many of the combined methods are still in an early phase of development hence herein they 
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will be just presented: their application to a real case such as the Z24 bridge is subject of 

future investigations. Changes in operational conditions related to loading (e.g. traffic 

intensity or wind speed), environmental conditions (e.g. temperature or humidity) or to the 

conditions of acquisition of responses (e.g. finite number of samples, measurement noise) 

may induce statistical variability of the damage features, which is often mistakenly attributed 

to damage. A number of approaches have been proposed for incorporating or discarding this 

variability, mainly classified in two categories: output-only methods relying solely on 

response measurements and input-output methods aiming at modeling the relationship 

between the response and the extracted features with respect to measured operational 

conditions. In this paper, a data-driven damage localization method, a model-based damage 

identification algorithm and an input-output method able to take into account the statistical 

variability of the damage features will be applied to the real case of the bridge Z24.  

2 METHODS FOR VIBRATION BASED DAMAGE IDENTIFICATION 

Data-driven method are inverse methods that use models based on experimental response 

data recorded on the structure instead of physical models. Damage-sensitive features are 

extracted from data and their changes used to identify damage in the structures so the damage 

parameter D in these methods is the variation of the damage feature d between the inspection 

I and the reference R configurations: I RD d d  . With respect to model-based methods the 

main advantages of data-driven methods are that they do not require a finite element model 

and may be applied with a limited number of available signals (both responses and 

excitations). Depending on the signal-processing tool used to extract the damage features, 

data-driven methods can be classified in Fourier-based methods, Time series methods and 

Time-variant methods. In Time-invariant Fourier-based methods, Fourier analysis is used as 

the primary signal-processing tool and time-invariant models are defined to follow the 

structural behavior. In these methods, damage features are usually defined in terms of modal 

parameters (mainly frequencies, modal shapes and/or their derivatives or combinations of 

both frequencies and modal shapes, e.g. flexibilities) or in terms of Operational Shapes 

retrieved from Frequency Response Functions. An extensive review is reported in [1]. Time-

series methods use statistical tools for developing mathematical models describing one or 

more measured random signals and analyzing their observed and future behavior. A more 

detailed description of this family of methods can be found in [2]. Time-variant methods 

develop time-variant models that allow to identify sudden changes in the system 

characteristics. They can be classified into three major groups: time-dependent models using 

models with time-dependent coefficients (Kalman filter), time–frequency methods that 

analyse time variations of the spectral quantities using, for example, the Wigher-Ville 

distribution and time–scale methods that decompose the signal based on a priori chosen 

functions, e.g. wavelets. A review of these methods can be found in reference [3].  

In model-based methods, damage is identified through the updating of a finite element (FE) 

model ([4]-[6]). The basic premise is that structural damage results in a reduction of stiffness. 

The experimental data used for damage assessment through FE model updating most often 

consist of modal characteristics, which are extracted from measured response time histories 

using modal analysis techniques. Several types of modal data can be used. Most basically, 

model updating can be performed based only on natural frequencies or eigenvalues which are 

known to be affected by changes in structural stiffness, and can be measured fairly 

accurately. The model parameterization is usually limited to the following linear 

parameterization of the stiffness matrix: 
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K(θ) = K0 + ∑ θjKj
N
j  (1) 

where each Kj is the contribution of a single substructure to the global stiffness matrix and θj 

is a scaling representative of its effective stiffness. The measured data and computed data are 

confronted in a cost function F(θ). Many alternative formulations are possible, but most often 

it is expressed as a weighted least squares fit between predictions and data: 

F(θ) =
1

2
η(θ)TW η(θ)  (2) 

where η is the vector containing the residuals between predicted and measured data (natural 

frequencies, model shapes, etc) and W is a weighting matrix. In most practical applications, a 

diagonal weighting matrix is chosen, so that the cost function becomes a sum of squared 

residuals. The optimal value θ* of the parameter vector is determined through the solution of 

a non-linear least-squares problem:  

θ∗ = arg θ min F(θ) (3) 

Local gradient-based optimization methods are most often used to solve the optimization 

problem. For modal data such as natural frequencies and mode shapes, the gradient can be 

efficiently calculated analytically, avoiding the use of finite differences. Model updating is 

thus an inverse problem and is often prone to ill-posedness and ill-conditioning. Accounting 

for uncertainties due to measurement and modeling errors is therefore essential [6].  

A critical issue relating to vibration-based SHM pertains to the susceptibility to the varying 

environmental conditions [7]. Available methodologies for incorporating or discarding the 

operational variability from models and indicators of structural response are primary 

classified into two classes: i) output-only methods (unsupervised learning) aiming to 

eliminate the influence of operational factors on the basis of vibration response 

measurements and/or extracted features [8] and ii) input-output methods (supervised 

learning) modeling the relationship between the measured vibration data and/or the extracted 

features with respect to measured operational conditions [9]. In the former category methods 

such as the Principal Component Analysis (PCA) [10] or its nonlinear ramifications (kernel 

PCA, Factor Analysis) and others have been employed for solving the problem by searching 

and discarding patterns, which reveal the influence of the unobserved input variables. The 

supervised learning alternative typically involves formulation of a regression problem. 

Information on the inputs may be extracted by deploying a small number of sensors tracking 

environmental agents or traffic/train crossing loads, along with the array of vibration sensors 

monitoring structural response.  

3 DAMAGE IDENTIFICATION ON THE Z24 BRIDGE BENCHMARK  

The aforementioned methods for damage identification are now illustrated for the benchmark 

case of the Z24 bridge [11] which was located in the canton Bern near Solothurn, Switzer-

land. It was part of the road connection between the villages of Koppigen and Utzenstorf, 

over-passing the A1 highway between Bern and Zürich. It was a classical post-tensioned 

concrete two-cell box-girder bridge with a main span of 30 m and two side spans of 14 m 

(Figure 1). The bridge was built as a freestanding frame with the approaches backfilled later. 

Both abutments consisted of triple concrete columns connected with concrete hinges to the 

girder. Both intermediate supports were concrete piers clamped into the girder. An extension 

of the bridge girder at the approaches provided a sliding slab.  
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The bridge, which dated from 1963, was demolished at the end of 1998, because a new 

railway adjacent to the highway required a new bridge with a larger side span. To monitor the 

bridge dynamics over a one-year timespan, 16 accelerations were measured on the bridge at 

different points and in different directions. Every hour, a sequence of 65536 acceleration 

samples, taken at the 16 sen-

sors, was collected. Some ac-

celerometers showed a consid-

erable drift and a few of them 

failed during operation. Since 

the aim of the long-term moni-

toring test was quantifying the 

environmental variability of the 

bridge dynamics, all quantities 

considered of possible im-

portance for the bridge dynam-

ics were monitored. Since tem-

perature was known to have a 

key influence on the dynamics 

of civil engineering structures, 

the bridge’s thermal state was 

monitored in particular detail. In order for the subsequent progressive damage tests to be sig-

nificant, it was made sure that they were relevant for the safety of the bridge and that the 

simulated damage occurred frequently. Figure 2 provides an overview of all progressive 

damage tests and illustrates two of them in detail. Before and after each applied damage sce-

nario, the bridge was subjected to a forced and an ambient operational vibration test. With a 

measurement grid consisting of a regular 3 × 45 grid on top of the bridge deck and a 2 × 8 

grid on each of the two pillars, 291 degrees of freedom have been measured: all displace-

ments on the pillars, and mainly vertical and lateral displacements on the bridge deck. 

 

 
Figure 2. Chronological overview of applied damage scenarios (left), settlement system used for damage 

scenarios 3 - 6 (right top) and cutting of tendons for scenarios 15 - 17 (right bottom). [12]. 

Figure 1: Front (top) and top view (bottom) of the Z24 bridge [11] 
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3.1 Damage identification on the Z24 by the data driven Interpolation Method 

The Interpolation Damage Detection Method is a method of damage localization based on the 

use of a smooth function to interpolate the deformed shape of the structure. Specifically a 

damage feature is defined in terms of the variation, between a reference and an inspection 

configuration, of the error related to the use of an interpolating cubic spline function. The 

method does not need a physical model of the structure but merely response data recorded on 

the structure. In reference [13] a more detailed description of the IDDM is reported that, in its 

original version, was applied to Operational Deformed Shapes. Herein the extension of the 

method for the use with modal shapes is applied [14]. The damage feature is defined as the 

interpolation error  E z  computed as the sum, over the n identified modes, of the ‘modal 

interpolation errors’: 

         
2n

i i

R S

i 1

E z z z 


  
   (4) 

where 
 i

R  and 
 i

S  are the magnitudes of respectively the i-th identified modal shape and 

its spline interpolation. An increase of E(z) in the inspection configurations with respect to 

the reference one at a certain location z, highlights a localized reduction of smoothness at z 

hence a loss of stiffness. Herein the method has been applied to detect the location of damage 

for the scenario inflicted to the Z24 bridge on August 18 (Figure 2) that is the settlement of 

the foundation of one of the supporting piers (at 95 mm). The modal shapes of the bridge 

deck identified from output-only (acceleration) data for the undamaged and for the damaged 

configuration by Reynders et al. [15] have been used. Figure 3 shows the results obtained 

considering in equation (4) respectively a total number of 1 and 5 modes. The threshold is 

calculated as   1T E EE z        being E  and E  respectively mean and standard 

deviation of the variation of the damage feature at all the instrumented locations. For the 

application reported herein only the components of the modal shapes along the central axis of 

the deck have been considered. The damage feature exhibits values higher than zero both at 

the damaged location and in other not damaged locations but the definition of the threshold 

allows discarding almost all the false alarms. At the increase of the number of modes the 

localization of damage becomes more refined (see Figure 3, right). Similar results have been 

obtained considering 3 and 4 modes. On the contrary it must be noted that if the contribution 

of mode 9 is added, the correct location of damage is still found but two false alarms appear 

at the ends of the girder. 

  
Figure 3. Values of the damage feature E along the bridge girder considering 1 mode (left) and 5 modes 

(right).               damage parameter               threshold                    damage location  
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3.2 Damage identification on the Z24 by model updating 

For model-based damage identification, the bridge has been modeled with a beam model (6 

degrees of freedom in each node) [11]. The girder was modeled with 82 beam elements; 44 

beam elements were used to model the piers, columns and abutments. The concrete was con-

sidered to be homogenous; the initial values for the Young’s modulus and shear modulus 

were taken as 37.5 GPa and 16 GPa, respectively. The principal axes of the piers were rotated 

to model the skewness of the bridge, and the width of the piers was taken into account by 

constraint equations. Mass elements were used for the cross girders and foundations.  

Both concentrated translational mass and rotary inertial components were considered. In or-

der to account for the influence of the soil, springs were included at the pier and column 

foundations, at the end abutments and around the columns. 

Before and after each progressive damage test, a forced and ambient vibration test had been 

performed on the bridge in order to experimentally characterize the evolution of the natural 

frequencies and mode shapes. A total of 291 degrees of freedom were measured during each 

test. From the measured acceleration data, the modal characteristics were identified using ref-

erence-based stochastic [16] or combined [17] subspace identification. 

In order to perform damage identification, the Young’s modulus and shear modulus of the 

bridge deck were parameterized so as the make them vary along the length of the bridge in a 

piecewise linear way, with 7 unknown coefficients.  

This makes a total of 14 updating variables. They have been tuned to minimize the difference 

between the identified modal characteristics and the modal characteristics computed with the 

finite element model as quantified by the least-squares cost function given by equation (3).  

Modal updating has been performed both in the undamaged condition, and after the pier set-

tlement of 95 mm (see Figure 4).  

The updating has been performed both with the limited set of 6 modes obtained from the am-

bient vibration tests, and with a more elaborate set of 9 modes, obtained from the forced vi-

bration test.  

Comparing the identified stiffness in undamaged and damaged conditions (Figure 5, [15]) 

shows that a considerable loss of stiffness was identified after the pier settlement. 

 

Figure 4. Identified bending stiffness (a) and torsional stiffness (b) of the bridge deck, as obtained from modal 

updating in the undamaged condition, and after a pier settlement of 95 mm., using forced vibration data [15]. 
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3.3 A framework incorporating influence of environmental parameters 

As an example of the supervised approach defined in section 2 for including the operational 

variability in the identification of damage features, Spiridonakos et al. [18], [19] propose the 

formation of a functional representation between inputs and outputs, tracking the behavior of 

the structure under study for a 

wide range of operational 

conditions. The algorithm relies on  

the expansion of appropriately 

selected structural features, such 

as modal characteristics of the 

healthy structure, onto a 

polynomial chaos basis (PCE) 

which conforms to the probability 

space of the measured influencing 

agents. Following the training 

phase, estimated statistical 

properties, such as the prediction 

error, may serve as condition indicators for the monitored system warning of irregular 

behavior or revealing evidence of a damaged/deteriorated system. For the Z24 case, the 

temperatures measured at six locations at the center of the middle span along with the air 

temperature serve as input variables, while the first four natural frequencies serve as outputs.  

These are estimated through 

Stochastic Subspace 

Identification (SSI). The 

dependence of natural frequency 

estimates on the temperature is 

reported in Figure 5 indicating a 

bilinear temperature – natural 

frequency dependence, which is 

more influential than the effect of 

damage (discernable in the 

second mode). Independent 

Component Analysis (ICA) is 

implemented, for transforming 

the correlated input (temperature) 

measurements into independent 

latent variables. Additionally, in 

order to come up with a reduced 

order damage indicator the ICA 

method is again employed, 

inferring a reduced number of 

salient output quantities. The ICA-transformed input and output variable sets are fed into the 

PCE tool for identifying a model of their inter-relation. The estimation set comprises 1500 

values from the first eight months of the monitoring period, while the remaining values are 

used for validation. A single input latent variable is enough for representing the temperature 

measurements, and the same applies for the natural frequency set. In Figure 6 the PCE-ICA 

prediction is plotted against the “true” value, derived from actual measurements. In the lower 

 
Figure 5. First four natural frequency estimates vs. temperature. 

Figure 6. Extracted (measured) feature variable plotted against the 

ICA-PCE estimates (top) and the extracted damage index relying on 

the PCE prediction error - damage occurrence is noted via the black 

vertical line. 
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plot of Figure 6, a single damage index is delivered, defined as the error between 

measurement and prediction. Prior to the occurrence of damage (noted via a black vertical 

line), the error lies within prescribed thresholds, apart from isolated outliers. In the period 

following the point where the 1
st
 damage occurs a persistent offset is manifested, serving as 

evidence of damage initiation and progression. 

4 FURTHER DAMAGE LOCALIZATION METHODS: COMBINED DATA-

DRIVEN AND MODEL-BASED  

Besides the methods presented in this paper, a third group of methods for damage 

localization and quantification has started to develop in recent years that lies between the 

data-driven and model-based approaches. This class is based on data-driven features from 

measurements of the reference and damaged states, which are confronted to a FE model of 

the investigated structure to define damage indicators for the elements of the FE model, 

without updating its parameters. These methods try to unite advantages of both data-driven 

and model-based methods: 

 Data-driven features are used as in data-driven approaches, together with some information 

from a FE model in addition. This leads to damage indicators that are strongly related to the 

measurements, but that are also built on the basis of physical information, lying beyond the 

geometry defined by the sensor positions. Furthermore, the application to arbitrary 

structural types is possible as with model-based methods, without limitations regarding type 

(e.g. as beam or plate-like). 

 The requirements on the accuracy of the FE model are less strict than for model-based 

methods, since the parameters of the reference FE model are not updated. The analysis with 

respect to the FE model is less profound compared to an updating approach. 

 Possible ill-posedness as in the updating problem is avoided by dividing the problems of 

damage localization and quantification into two separate steps.  

A careful definition of the data-to-model distance measure and its statistical evaluation are 

required. Two methods are briefly sketched in the following as examples.  

1) The damage locating vector (DLV) approach systematically interrogates changes in the 

structural flexibility in order to locate damages. In its generalization to output-only data [20], 

a vector is estimated in the null space of the transfer matrix difference between reference and 

damaged states, which is entirely obtained from the data. The theory shows that when 

applying this vector as a virtual load to the FE model of the structure, the resulting stress over 

the damaged elements is zero. From this property, a damage indicator is defined for each of 

the elements of a model, and damage is located where the indicator is zero. Since the 

indicator is a random variable computed from measurements, it is compared to zero in a 

statistical test [21]. Once damage is located, it can be quantified in the damaged elements. 

2) Statistical fault isolation methods with a background in automatic control offer a 

theoretical framework for damage localization, where the problem is formulated as follows: 

given measurements from a reference and a damaged state, together with a structural 

parametrization from a FE model, which of the parameters have changed? The conceptual 

difference to FE model updating is that the information on the value of the parameter change 

is not asked for in the first step, only the information if a parameter has changed, which is 

carried out by statistical hypothesis testing. In particular, such a localization method is based 

on a residual function that denotes the distance of a data-driven reference model to newly 

collected data [22]. This data-based residual is then tested for a change along directions that 

are defined by the model-based sensitivities of structural parameters using a statistical χ
2
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test–parameters associated with the damaged region result in large values of the test. Once 

damage is located, it can be quantified by estimating the absolute parameter change only in 

the damaged elements [23]. While having appealing theoretical properties, many of the 

combined methods are still in the beginning of their development. Numerical examples and 

applications on structures in the lab show promising results (see references above). The next 

step should involve application studies on structures in the field such as Z24 Bridge. 

5 CONCLUSIONS 

In this paper three vibration based approaches to damage assessment at different levels 

(detection, localization and quantification) have been applied to the case studyof the Z24 

bridge. A model-based approach based on the updating of a FE model in the damaged state 

allowed the quantification of the extent of damage (in terms of reduction of the bending and 

torsional stiffness) beyond the detection of its presence and location. A data-driven approach 

enabled the correct localization of damage but not its quantification while a framework able 

to take into account environmental variability was employed for damage detection only based 

on modal frequencies. Generally speaking, data-driven methods are able to capture the loss of 

stiffness, not of strength, and are therefore inadequate for predicting the remaining service 

life of the structure. On the other side model-based methods are hardly compatible with real 

time on line damage identification algorithms hence for adoption within an automated moni-

toring system for which data-driven method are more attractive due to the lower computa-

tional effort related to the estimation of the damage parameters. In terms of the methods ap-

plicable in accounting for the influence of environmental and operational conditions, it 

should be noted that the majority of these methods are formulated in the context of detection 

(previously mentioned stage (1)). The incorporation of spatial information (such as mode 

shapes) as well as a link to model-based approaches would be beneficial for progressing to 

stages (2) and (3) of the damage assessment procedure. 
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