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Abstract
The Stochastic Dynamic Damage Locating Vector (SDDLV) method is an output-only damage localiza-
tion method based on both a Finite Element (FE) model of the structure and modal parameters estimated
from output-only measurements in the damage and reference states of the system. A vector is obtained in
the null space of the changes in the transfer matrix computed in both states and then applied as a load
vector to the model. The damage localization is related to this stress where it is close to zero. In previous
works an important theoretical limitation was that the number of modes used in the computation of the
transfer function could not be higher than the number of sensors located on the structure. It would be
nonetheless desirable not to discard information from the identification procedure. In this paper, the
SDDLV method has been extended with a joint statistical approach for multiple mode sets, overcoming
this restriction on the number of modes. The new approach is validated in a numerical application,
where the outcomes for multiple mode sets are compared with a single mode set. From these results,
it can be seen that the success rate of finding the correct damage localization is increased when using
multiple mode sets instead of a single mode set.

1. INTRODUCTION

Vibration based damage localization has become an important issue for Structural Health Monitoring
(SHM) such as bridges, buildings and offshore structures. Sensors installed on the structure collect data
and then the modal parameters (damping ratios, natural frequencies and mode shapes) can be estimated.
Those parameters are meaningful for the monitoring of the structure and damage localization is possible
when updating these changes in a Finite Element (FE) model of the structure.

The SDDLV approach [1] is a vibration based damage localization technique using both finite
element information and modal parameters estimated from output data. The estimates of the modal
parameters are subject to variance errors [2–4]. Based on that uncertainty information, a statistical
extension of the SDDLV method was developed in [5, 6] for deciding if an element is damaged.

In [5, 6], the number of modes used in the computation could not be bigger than the number of
sensors located on the structure. This is a restriction when there are more modes describing the structure
than the available sensors. Here, the SDDLV method is developed with a joint statistical evaluation
using multiple mode sets. It overcomes this limitation. It is demonstrated that the computation of stress
for multiple mode sets increases the information content about the damaged or non-damaged elements
of the structure. Finally, all stress values corresponding to each element are being tested for damage in
an hypothesis test where the computed stresses are evaluated with their joint covariance. To derive such
a test, the computation of the covariance of the resulting stress is necessary. Following [7], the necessary
covariance scheme is developed and extended for a joint statistical evaluation using multiple mode sets
for the same or different Laplace variables.

Assessing the performance of the method is a requirement for showing the benefits of this approach.
A proper criterion for the evaluation of the success rate is proposed based on Monte Carlo simulations.



The SDDLV approach is strongly dependent on the choice of the Laplace variable s where the transfer
function is evaluated. Performance can be highly different in the classical SDDLV approach depending
on the choice of the Laplace variable. Accommodating multiple s variables has been treated in [6].
Still, the choice of the Laplace variable is a complicated part of the procedure, even if past guidelines
push for choosing this variable around the identified modes in the complex plane. That is why, in this
paper, Monte Carlo simulations have been done for many s variables in the complex plane and results
are evaluated on 2D grids. Performance of the proposed approach is tested against the requirement that
such choice should not be critical.

This paper is formulated as follows. In Section 2, the SDDLV method is presented as a vibration-
based damage localization approach. In Section 3, the effect of removing the limiting restriction on
the number of modes will be discussed. In Section 4, the statistical damage localization approach is
derived using multiple mode sets. In Section 5, the new approach is applied on a numerical application
to evaluate the success rate of the localization, and conclusion of the work is presented in Section 6.

2. DAMAGE LOCALIZATION APPROACH (SDDLV)

The Stochastic Dynamic Damage Locating Vector (SDDLV) approach is an output-only damage local-
ization method based on interrogating changes δG(s) in the transfer matrix G(s) of a system in both
reference and damaged states [1]. A vector is obtained in the null space of δG(s) from system identi-
fication results using output-only measurements corresponding to both states. Then this load vector is
applied to the Finite Element (FE) model of the structure for the computation of a stress field over the
structure. Damage localization is related to this stress field where the computed stress is zero or close to
zero in practice [1, 8–10].

In this section, the deterministic computation of the stress field and the aggregation results is sum-
marized, before deriving its statistical evaluation in Section 4.

2.1 Modeling of a mechanical structure

The behavior of a mechanical structure can be described by a linear time-invariant (LTI) dynamic system

MẌ (t)+CdẊ (t)+KX (t) = f (t) (1)

with M, Cd , K ∈ Rd×d are the mass, damping and stiffness matrices respectively, where t indicates
continuous time and X ∈Rd defines displacements of the d Degrees Of Freedom (DOF) of the structure.
The external force f (t) is not measurable and modeled as white noise. Let the dynamic system (1) be
observed at r coordinates. Since f (t) is unmeasured, it can be substituted with a fictive force e(t) ∈
Rr which is acting only in the measured coordinates and that regenerates the measured output. After
replacing x = [X Ẋ ]T with (1) leads to the corresponding continuous-time state-space model{

ẋ = Acx+Bce
y =Ccx+Dce (2)

with state vector x ∈ Rn, output vector y ∈ Rr, the state transition matrix Ac ∈ Rn×n and output matrix
Cc ∈ Rr×n, where n = 2d is the system order and r is the number of outputs. Since input of the system
is replaced by the fictive force e ∈ Rr, the input influence matrix and direct transmission matrix are
Bc ∈ Rn×r and Dc ∈ Rr×r respectively. However, only the system matrices Ac and Cc are relevant from
output-only system identification and the non-identified matrices Bc and Dc will only be needed to obtain
estimates of the transfer matrix. From Stochastic Subspace Identification (SSI) [11], estimates Âc and
Ĉc can be obtained from output only measurements, details are given in [6].



2.2 Computation of damage indicator

The transfer matrix G(s) ∈ Cr×r of system (2) can be derived as

G(s) = R(s)Dc, where R(s) =Cc(sI−Ac)
−1
[

CcAc
Cc

]†[ I
0

]
(3)

for the restriction of the system order to n ≤ 2r which is described in details in [1, 8]. s is a Laplace
variable in the complex plane, I is the identity matrix of size r, 0 is zero matrix, and † denotes the
Moore-Penrose pseudoinverse. The difference of the transfer matrices in both damaged (variables with
tilde) and healthy states is δG(s) = G̃(s)−G(s). The matrices δG(s) and δRT (s) = R̃T (s)−RT (s) have
the same null space [1]. The desired load vector v(s) is obtained from the null space of the δRT (s) from
Singular Value Decomposition (SVD)

δRT (s) =UΣV H =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V1 V2

]H
, (4)

where U,Σ,V ∈Cr×r, Σ2 ≈ 0 and H indicates conjugate transpose. Let nu be the dimension of image U1
and (r−nu) be the dimension of the null space V2, where nu depends on kind and number of damaged
elements [9]. Note that only output data is necessary for the computation of an estimate of v(s). To
compute the stress field, load vector v(s) is applied to the FE model of the structure. This stress is
obtained through a linear relation to v(s) by the matrix Lmodel(s) ∈ Cl×r from FE model of the structure
[1, 5] and satisfies

S(s) = Lmodel(s)v(s). (5)

Theoretically, the stress vectors S(s) indicate damage [1, 9] where entries in S(s) close to zero indicate
potentially damaged elements. However, these stresses are not exactly zero but small in practice because
of modal truncation, model errors and uncertainties from measurements.

2.3 Stress aggregation for robustness

Let the s-values sx, x = 1, . . . ,w be given. To minimize error, they should be chosen in the area of the
identified poles of the system but not too close to them [1,6]. After identification of the system matrices
in both states, the computations of (4)-(5) are repeated for each sx to get the respective stress vectors
S(sx). For multiple s-values, the stress aggregation is obtained for each entry j as follows [6]

S̄ j =
w

∑
x=1
|S j(sx)| (6)

In Section 3, the theoretical limitation on number of modes is discussed and then in Section 4, a new
statistical scheme is proposed using multiple mode sets while considering uncertainties of the results at
the same time.

3. REMOVING THE RESTRICTION ON NUMBER OF MODES

In practice, there may be more modes available from identification than number of sensors on the struc-
ture. It will be meaningful to be able to utilize this information completely from the identification
procedure. In [1], it was not possible to use all modes in that context due to theoretical restrictions,
n ≤ 2r where n = 2m is the system order and r is the number of sensors. Note that m is the number of
conjugated complex mode pairs identified from datasets where m has to satisfy the constraint m≤ r.

In order to remove the restriction on the number of modes, the computation of stress from different
mode sets is investigated. Note that for each mode set the current restriction needs to be satisfied. Now
the computation of stress is developed at multiple mode sets by joint statistical approach which should
increase the information content about damage localization on the structure.



For simplicity of the notation, consider only 2 sets of modes, while the following development can
be easily generalized for arbitrary mode sets. Let M = (i, j) be two sets of modes of the system that
contains mi and m j modes respectively with ni = 2mi and n j = 2m j being the respective model orders.
In order to compute stress, the conditions mi ≤ r and m j ≤ r need to be satisfied. For each mode set,
the system matrices are obtained using SSI performed on the same measurement in the healthy and
damaged states [6]. The “transfer matrix” resultant R(s) in (4) is computed from both states and the
stress vector is obtained separately for the respective load vector. For each mode set i and j, the system
matrices Ai

c, Ci
c and A j

c, C j
c are computed and subsequently “transfer matrix” results Ri(s), R j(s) are also

computed. Then different load vectors are obtained as vi(s) and v j(s) from the same measurement data
for the respective mode sets i and j. They are respectively applied to model for stress computation and
it yields Si(s) = Lmodel(s)vi(s) and S j(s) = Lmodel(s)v j(s). Then both stresses Si(s) and S j(s) are used
for joint stress evaluation.

There is a possibility to use same or different s-values for each of the stress. For simplicity, one
s-value si is used for mode set i and s j for mode set j and then Si(si) and S j(s j) are computed. However,
it can also be easily generalized for several s-values. Now, several stress values are calculated because
of multiple mode sets and hence, robustness of the damage localization can be obtained by aggregating
the stress results.

4. UNCERTAINTIES PROPAGATION AND COVARIANCE COMPUTATION

For the damage localization algorithm, estimates of the system matrices Ac and Cc are obtained in the
damaged and undamaged states from limited data lengths using SSI [6]. The identification of system
matrices are subject to variance errors because of unknown excitation, measurement noise and limited
data length. The uncertainties in the estimates are penalizing the quality and precision of the damage
localization results. For making decisions about damaged elements of the structure, these uncertainties
need to be used to decide whether stress of an element is significantly zero or not. In [5, 6], uncertainty
quantification of the stress vector S(s) in (5) was computed for a single mode set at one or several s-
values. In this section, uncertainty computation of the stress vector SM (s) is derived for two mode sets
M , though it can also be easily generalized to any number of mode sets.

All parameters derived in this method are estimated from measurement data through the computa-
tion of the H matrix, which is the Hankel matrix of the cov-SSI method. Details are given in [5, 7].

Let Σ̂H be the covariance of vec(H) and f be a function of H that is estimated from data. Its
covariance can be approximated by

cov( f (H))≈J f ,H Σ̂HJ T
f ,H . (7)

Note that sensitivity J f ,H = ∂ f (H)/∂vec(H) in the above derivation. From perturbation theory, a
first-order perturbation4 f is defined by4 operator of the function f , which gives

4 f = J f ,Hvec(4H). (8)

With this relationship, the desired sensitivity can be computed from (8) and then it can be used for
covariance computation in (7). The vec(.) defines the column stacking vectorization operator. Since the
Hankel matrix is dependent on datasets, the estimated covariance Σ̂H of the Hankel matrix H estimate
can be propagated to any parameters, particularly to the modal parameters and stress estimate Ŝ(s).

Note that some of the matrices are complex-valued variable in Section 4.1. To deal with uncer-
tainties of the complex-valued matrices, define an equivalent real-valued notation for any matrix Q as
follows

QRe
def
=

[
Real(Q) −Imag(Q)
Imag(Q) Real(Q)

]
,Qre

def
=

[
Real(Q)
Imag(Q)

]



Now, for multiple mode sets i and j, the covariance of the system matrices can be derived as follows

ΣAi
c,Ci

c

def
=

[
JAi

c,H
JCi

c,H

]
ΣH

[
JAi

c,H
JCi

c,H

]T

,ΣA j
c,C

j
c

def
=

[
JA j

c,H
JC j

c ,H

]
ΣH

[
JA j

c,H
JC j

c ,H

]T

(9)

where JAi
c,H , JCi

c,H and JA j
c,H

, JC j
c ,H

are the sensitivity of the system matrices for mode sets i and j
respectively and details are given in [3, 6, 7] for subspace identification.

4.1 Covariance computation of the stress vector S(s)

For stress variance computation, the sensitivity JR(s),(Ac,Cc) of the matrix R(s) in (3) with respect to
the system matrices Ac and Cc was derived in [5, 6]. The covariance of the matrices R(s) and R̃(s) are
computed in the damaged and healthy states of the structure for a chosen s-value. These covariances
are propagated to the load vector v(s) that belongs to the null space of δRT (s) = R̃T (s)−RT (s) and
subsequently propagated to the stress vector S(s).

For multiple mode sets M = (i, j), the sensitivity J M
v(s),δRT of the load vector v(s) with respect to

δRT is computed based on4vM (s)re = J M
v(s),δRT (vec(4δR(s)T ))Mre with [5, Proposition 4] and then it

follows from (5)
4SM (s)re = J M

S(s),δRT (vec(4δRT (s)))Mre ,

where J M
S(s),δRT

def
= (Lmodel(s))ReJ

M
v(s),δRT . The above expression can be derived as in [5, Theorem 5].

For multiple mode sets M , the above expression can be written for covariance computation of SM (s) in
the selection of different mode sets i and j respectively

4SM (s)re = J M
S(s),δRT J M

R̃(s),(Ãc,C̃c)

[
vec(4ÃM

c )
vec(4C̃M

c )

]
−J M

S(s),δRT J M
R(s),(Ac,Cc)

[
vec(4AM

c )
vec(4CM

c )

]
= J̃ M

S(s),(Ãc,C̃c)
J̃ M

(Ãc,C̃c),H̃
vec(4H̃)−J M

S(s),(Ac,Cc)
J M

(Ac,Cc),Hvec(4H)

(10)

withJ̃ M
S(s),(Ãc,C̃c)

def
= J M

S(s),δRT J M
R̃(s),(Ãc,C̃c)

,J̃ M
(Ãc,C̃c),H̃

def
=

[
JÃM

c ,H̃
JC̃M

c ,H̃

]
,J M

S(s),(Ac,Cc)
def
= J M

S(s),δRT J M
R(s),(Ac,Cc)

andJ M
(Ac,Cc),H

def
=

[
JAM

c ,H
JCM

c ,H

]
.

After stacking the real and imaginary parts of the stress vector SM (s) for multiple mode sets M = (i, j),
the total stress vector is derived as follows

S(s) def
=

[
Si(s)re
S j(s)re

]
. (11)

For multiple mode sets M = (i, j), 4Si(s) and 4S j(s) can be derived separately with (10). After
stacking all mode sets accordingly, it follows

4S(s) =

[
J̃ i

S(s),(Ãc,C̃c)
J̃ i

(Ãc,C̃c),H̃

J̃ j
S(s),(Ãc,C̃c)

J̃ j
(Ãc,C̃c),H̃

]
vec(4H̃)−

[
J i

S(s),(Ac,Cc)
J i

(Ac,Cc),H

J j
S(s),(Ac,Cc)

J j
(Ac,Cc),H

]
vec(4H) . (12)

Then covariance of the stress can be defined as cov(vec(S(s))) def
= ΣS(s) and analytically, it yields

ΣS(s) =

[
J̃ i

S(s),(Ãc,C̃c)
J̃ i

(Ãc,C̃c),H̃

J̃ j
S(s),(Ãc,C̃c)

J̃ j
(Ãc,C̃c),H̃

]
ΣH̃

[
J̃ i

S(s),(Ãc,C̃c)
J̃ i

(Ãc,C̃c),H̃

J̃ j
S(s),(Ãc,C̃c)

J̃ j
(Ãc,C̃c),H̃

]T

+

[
J i

S(s),(Ac,Cc)
J i

(Ac,Cc),H

J j
S(s),(Ac,Cc)

J j
(Ac,Cc),H

]
ΣH

[
J i

S(s),(Ac,Cc)
J i

(Ac,Cc),H

J j
S(s),(Ac,Cc)

J j
(Ac,Cc),H

]T

.

(13)



The covariance expression (13) yields a new statistical approach for damage localization using multiple
mode sets based on a statistical test for each element t of the structure. In this approach, all stress com-
ponents in St corresponding to an element t are being tested in a hypothesis test, where computed stress
values are related to their joint covariance (13). Since an estimate of the stress vector St is asymptotically
Gaussian distributed, a statistical evaluation is derived for each element t in a χ2

t -test as

χ
2
t = ST

t Σ
−1
t St . (14)

5. APPLICATIONS

5.1 Test case

The damage localization method has been applied to a mass-spring chain system as shown in Figure
1. The total number of Degrees Of Freedom (DOF) of the structure is 6. The damaged element in the
model is simulated by decreasing stiffness by 10 % of its original value. For damaged and undamaged
states, the acceleration data length for each set is N = 50,000. Data were generated from collocated
white noise excitation using three sensors at elements 2, 4 and 6 in Figure 1 with sampling frequency
of 50 Hz, 2% damping ratio and 5% white noise were also added to the output data. In this example, 6
modes can be identified from model of the structure using SSI. A subset of 3 modes could be used in the
previous works [6] as the number of modes could not be bigger than the number of output sensors. For
the new method, the identified modes are splitted in two mode sets namely i and j of 3 modes each.

In the application, the outcome of the damage localization results using multiple mode sets are
compared with using only a single mode set. Recall that stress values close to zero indicate potentially
damaged elements. From SSI, all estimated modes were chosen using a stabilization diagram procedure
[12]. Then, the system matrices in both reference and damaged states are computed [6] and for multiple
mode sets, their variance is derived from the same dataset as described in Section 4.

Notice that there is always a possibility to use the same or different s-values for the computation
of stress with the proposed method. Let the Laplace variable si and s j be chosen within the range of the
identified poles for mode sets i and j respectively. Then, real and imaginary parts of the stress vector
and their joint covariance in (13) are computed for these Laplace variables si and s j. Finally, 4 stress
values are computed for each element t including real and imaginary parts of Si

t(si) and S j
t (s j) for mode

set i and j respectively. For each element t, these stress values are aggregated statistically in the χ2
t -test.

5.2 Performance evaluation of damage localization

To analyse the performance of the proposed damage localization method using multiple mode sets, the
results are compared with a single mode set experiment. 500 datasets are generated by Monte-Carlo
simulations to evaluate the success rate of the damage localization. In order to indicate if an element is
potentially damaged or not, the χ2

t value is computed for each element. Successful damage localization
means that the lowest χ2

t value is at the damaged element. The success rate corresponds to the probability
of detection or power of the test. Here, the success rate of the successful damage localization is defined
as the number of occurrences of the smallest χ2

t values at damaged elements.

Figure 1: Mass-spring chain system (6 DOFs)

In order to see the influence of all s-values s = (p,q) ∈ C, a grid map in the complex s-plane has
been proposed. Let real and imaginary parts of the s-value be defined as p and q. Define p = a : b : c
while the discrete range [a, c] = [-3, 1] is chosen by using a step b = 0.5 and then q = d : e : f , when



the discrete range [d, f]= [1, 130] is selected by step e = 2. The range of s-values has been chosen in the
vicinity of the identified poles, λ i

c ∈ C in Table 1. The χ2
t -tests for all s-values are evaluated for each

of the 500 datasets in order to evaluate the influence of different s-values. Then performance evaluation
of the method is illustrated in a 3D-bar diagram where x-y axes indicate real-imaginary parts of s-value
and z-axis corresponds to success rate of damage localization.

Table 1: Identified Poles

Mode i 1 2 3 4 5 6
λ i

c ∈ C (−0.25,12.8) (−0.74,37.4) (−1.16,58.3) (−1.56,77.8) (−1.96,98.2) (−2.13,106.6)

In Section 5.3, the damage localization results are demonstrated in all elements computed at one
s-value for one data set. Then, success rate of the damage localization results has been computed using
a single mode set in Monte-Carlo simulation for 500 data set in Section 5.4. Finally, the success rate of
the damage localization results is illustrated with the new proposed method using multiple mode sets in
Section 5.5.

5.3 Localization of results in all elements at one s-value

The localization tests at all elements are computed using one of the Monte-Carlo datasets only in both
damaged and healthy states. Recall that the damage position is inferred by the stress value closest to
zero. For a single mode set, the computation of all stresses is done at s1 = (−2,51) ∈ C. In Figure
2(a), all stress values corresponding to healthy and damaged elements are presented, while the smallest
stress value is correctly located in the damaged element at bar 4. In Figure 2(b), the estimated stress
cannot correctly indicate the damage position, due to modal truncation and variance errors. Considering
uncertainties, the damage position is correctly found at the smallest χ2

t values at element 4 in Figure
2(c). It can be seen that χ2

t in Figure 2(c) shows similar results as the theoretical result in Figure 2(a).
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Figure 2: Localization using a single mode set: stress computation and statistical evaluation at s1 =
(−2,51) ∈ C -three sensors, 5% output noise, 10% stiffness reduction at bar 4.

5.4 Success rate of the damage localization using a single mode set

In this section, the damage localization results are illustrated in Figure 3 and Figure 4 for both single
mode sets i and j comprising the first and last three modes respectively. All these computations are done
at Laplace variables, s = (p,q) ∈ C (i.e. recall p = 1 : 0.5 :−3 and q = 1 : 2 : 130) which are located in
the vicinity of the identified poles (see Table 1). For the first 3 modes, in Figure 3, the success rate of the
damage localization for the statistical χ2

t -test is satisfactory only in the interval of the Laplace variables,
s = (p,q) ∈ C with p = 1 : 0.5 : −3 and q = 8 : 2 : 64. After that, it is almost flat and cannot indicate
the damage position due to modal truncation error in the region s = (p,q) ∈ C where p = 1 : 0.5 : −3



and q = 66 : 2 : 130. Note that the considered modes in this example are in the interval [1,62] on the
imaginary line (see Table1).

Similarly, for the last 3 modes, it can be seen in Figure 4 that the success rate of damage localization
for the statistical χ2

t -test is high enough in the area of the last two identified poles. In this case, in Figure
4, the good s-values are located in the interval [102,128] on the imaginary line as are the last two
identified poles, while there is no success of damage localization around the first four-identified poles
because of modal truncation errors. Still, there is a slight bump around the fourth mode. So, choosing
the s-value in the vicinity of the identified poles is not always perfect.
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Figure 3: Success rate of the damage localization with statistical evaluation of χ2
t -test using single mode

set i in dependence of s
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Figure 4: Success rate of the damage localization with statistical evaluation of χ2
t -test using single mode

set j in dependence of s

5.5 Success rate of the damage localization using multiple mode sets

In this section, the new statistical approach is presented using multiple mode sets to increase the success
rate of damage localization in the s-plane. Hence, choose the range of the respective s-values si and s j as
(pi,qi)∈C and (p j,q j)∈C where pi = 1 : 0.5 :−3, qi = 1 : 2 : 64, p j = 1 : 0.5 :−3 and q j = 66 : 2 : 128
for the respective mode sets i and j. In the previous section, the success rate of the damage localization
with SDDLV was not successful everywhere in the s-plane because of modal truncation and estimation



errors. It motivates the use of multiple mode sets instead of using a single mode set alone. Therefore,
the computation of stress for damage localization is derived by taking into account the information using
multiple mode sets instead of using a single mode set. The joint stress evaluation derived in Section 4
is performed and its joint covariance is computed for multiple mode sets M = (i, j) containing the first
three and last 3 identified poles (see Table 1).

Recall that the optimal choice of the Laplace variable for each mode set depends on the selected
modes within this set. Suitable s-values have been found to be in the vicinity of the chosen modes. In the
previous experiments, it has been seen that highest success rates of the damage localization are located
in the vicinity of the identified poles (see Figures 3 and 4) for the respective mode sets i and j. The
impact of choice of s-values si and s j has been investigated differently for the respective mode sets. The
following two cases are now considered.
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Figure 5: Case 1- Success rate of the damage localization with statistical evaluation of χ2
t -test using

multiple mode sets i, j in dependence of s [si = (1 : 0.5 :−3,1 : 2 : 64);s j = (1 : 0.5 :−3,83)]
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Figure 6: Case 2- Success rate of the damage localization with statistical evaluation of χ2
t -test using

multiple mode sets i, j in dependence of s [si = (1 : 0.5 :−3,1 : 2 : 64);s j = (1 : 0.5 :−3,106)]

Case 1: the s-value si = (pi,qi) ∈ C has been chosen with pi = 1 : 0.5 : −3 and qi = 1 : 2 : 64 in
the vicinity of mode set i, while s j = (p j,q j) ∈ C is chosen with p j = 1 : 0.5 : −3 and kept fixed at
q j = 83 where it leads to a poor performance for the damage localization in both Figure 3 and Figure 4.
In this case, in Figure 5, the maximum success rate is achieved in the region [si = (1 : 0.5 : −3,22 : 2 :



62);s j = (1 : 0.5 :−3,83)], which is much larger and achieving higher success rate than both satisfactory
region s(1 : 0.5 : −3,20 : 2 : 62) in Figure 3 and s(1 : 0.5 : −3,102 : 2 : 128) in Figure 4. Notice that
the relatively lower rate in region [si = (1 : 0.5 :−3,1 : 2 : 20);s j = (1 : 0.5 :−3,83)] of Figure 5 is still
higher than the very same region in both Figures 3 and 4.

Case 2: the choice of Laplace variable si is similar as in case 1 but s j = (p j,q j) ∈ C has been
chosen with p j = 1 : 0.5 : −3 and kept fixed at q j = 106 such that it corresponds to achieving a good
performance of the damage localization in Figure 4. In this case, it has been seen that the success rate of
the damage localization with the new method has significantly improved the situation everywhere in the
s-plane in Figure 6 compared to all previous results. When considering the statistical uncertainties of the
modal parameters using multiple mode sets, the subsequent stress evaluation can improve the situation
significantly.

6. CONCLUSIONS

In this paper, the damage localization with SDDLV has been extended considering multiple mode sets.
The robustness of damage localization has been obtained by a joint statistical evaluation taking into
account the information from all modes on the structure. The stress computation using multiple mode
sets increases the information content about the damaged or non-damaged elements of the structure.
In the application, several experiments have been carried out to evaluate the success of the damage
localization in dependence of the s-value, where all stress values corresponding to an element are being
tested for damage in a hypothesis test. The proposed method has increased the success rate of the correct
damage localization almost everywhere in the complex s-plane compared to using a single mode set.
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