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Abstract 
Cloud computing has evolved as a popular computing infrastructure for many applications. With (big) data 
acquiring a crucial role in eScience, efforts have been made recently exploring how to efficiently develop and 
deploy scientific applications on the unprecedentedly scalable cloud infrastructures. We review recent efforts in 
developing and deploying scientific computing applications in the cloud. In particular, we introduce a taxonomy 
specifically designed for scientific computing in the cloud, and further review the taxonomy with four major kinds 
of science applications, including life sciences, physics sciences, social and humanities sciences, and climate and 
earth sciences. Due to the large data size in most scientific applications, the performance of I/O operations can 
greatly affect the overall performance of the applications. We notice that, the dynamic I/O performance of the 
cloud has made the resource provisioning an important and complex problem for scientific applications in the 
cloud. We present our efforts on improving the resource provisioning efficiency and effectiveness of scientific 
applications in the cloud. Finally, we present the open problems for developing the next-generation eScience 
applications and systems in the cloud and conclude this chapter. 
 
 

1 Introduction 
The development of computer science and technology widens our view to the world. As a result, the 
amount of data observed from the world to be stored and processed has become larger. Analysis of 
such large-scale data with traditional technologies is usually time-consuming and requires a large-
scale system infrastructure, and therefore can hinder the development of scientific discoveries and 
theories. eScience offers scientists with the scope to store, interpret, analyse and distribute their data 
to other research groups with the state-of-the-art computing technologies. eScience plays a 
significant role in every aspect of scientific research, starting from the initial theory-based research 
through simulations, systematic testing and verification to the organized collecting, processing and 
interpretation of scientific data. Recently, cloud computing is becoming a popular computing 
infrastructure for eScience. In this chapter, we review the status of cloud-based eScience applications 
and present a taxonomy specifically designed for eScience in the cloud. 
 
eScience is an important type of big data applications. eScience is also considered as the “big-data 
science”, which includes broad scientific research areas, from the areas that are close to our everyday 
life (e.g., biological study), areas concerning the planet that we live on (e.g., environmental science), 
to areas related to the outer space (e.g., astronomy studies to find the origins of our universe). 
Although the term of eScience has only been used for about a decade, the study of eScience problems 
started much earlier. In the early days, scientists were not able to efficiently realize the value of 
scientific data due to the lack of technologies and tools to capture, organize and analyse the data. 
Technological advances such as new computing infrastructures and software protocols have brought 
great opportunities for eScience projects in various fields [16, 38, 31, 51]. For example, Grid 
computing has greatly advanced the development of eScience. Many eScience applications are 
becoming data-driven. For example, with the development of modern telescope, the Large Synoptic 
Survey Telescope (LSST) [69] obtains 30 trillion bytes of image data of the sky every day. Currently, 
almost all major eScience projects are hosted in the grid or cluster environments [81]. With 
aggregated computational power and storage capacity, grids are able to host the vast amount of data 
generated by eScience applications and to efficiently conduct data analysis. This has enabled 
researchers to collaboratively work with other professionals around the world and to handle data 
enormously larger in size than before. 
 
In the recent few years, the emergence of cloud computing has brought the development of eScience 
to a new stage. Cloud computing has the advantages of scalability, high capacity and easy accessibility 
compared to grids. Recently, many eScience projects from various research areas have been shifting 
from grids to cloud platforms [43, 44, 39]. It breaks the barrier of doing eScience without a self-owned 



large-scale computing infrastructure. In this chapter, we review the current status of scientific 
applications in the cloud, and propose a taxonomy to clearly classify the related projects, according to 
the infrastructure, ownership, application, processing tools, storage, security, service models and 
collaboration aspects. We find that, for scientific applications in the cloud, resource provisioning is a 
major concern for the monetary cost and performance optimizations of the applications. In this 
chapter, we briefly introduce our initial efforts on the resource provisioning problems of scientific 
workflows in the cloud. 
 
Both eScience and cloud computing are rapidly developing and becoming more mature. It is timely to 
examine the efforts and future work for scientific computing in the cloud. This chapter focuses 
especially on eScience projects in the cloud. Due to the pay-as-you-go service model of the cloud, 
monetary cost and performance are two important concerns for eScience applications in the cloud. In 
this chapter, we introduce our existing studies on cloud resource provisioning to optimize the cost 
and performance for eScience in the cloud. We compare the advantages and weaknesses against 
eScience in the grid to discuss the obstacles and opportunities of eScience services in the cloud. 
 
The rest of this chapter is structured as follows. Section 2 introduces the background of eScience 
history and grid-based and cloud-based eScience. Section 3 gives the taxonomy and reviews the 
current status of eScience in the cloud. Section 4 introduces some of our efforts on optimizing the 
resource provisioning problems of scientific applications in the cloud. Lastly, we discuss the open 
problems for scientific computing on the cloud in Section 5 and summarize this chapter in Section 6. 
 
 

2 Background 
In this section, we briefly discuss some history remarks on scientific computing development, 
particularly for eScience. Next, we focus our review on the grid based scientific computing, and 
introduce cloud computing. 
 

2.1 History Remarks 
Computer infrastructures have long been adopted to host scientific data sets and computations. 
eScience is a new science paradigm that uses distributed computing infrastructures for computation, 
simulation and analysis. In addition, the scientists can make use of high speed network to access huge 
distributed and shared data collected by sensors or stored in database. Computing infrastructures 
allow scientists around the world to share knowledge and resources, and to build close scientific 
collaborations.  
 

Table 1Development stages of the scientific computing. 

Stage Data Generated Research Period Infor. Tech. 

Manual By hand Ad-hoc Paper and pencil 

(Semi-) Automated With the help of 
machinery 

Short-term Computer 
assisted 

Large-scale Sensing From satellites and 
sensors around the world 

Real-time Cluster and grid 

 
The term eScience was first introduced in 1999 and was further interpreted by more researchers since 
then [18]. During the development of eScience, it has gone through roughly three stages. Table 1 
shows the major development stages that scientific computing has gone through. We review the 
history in the following dimensions. 
 
Dimension 1: the evolution of science. We observed that technology (particularly information 
technology) is one of the main driving factors in pushing science forward. From the perspective of 
experimental methods, eScience first used manual measurements: meaning the measurements were 
taken by hand, not using machinery or electronics to fulfil the function. Then with the development of 
technology, machinery such as computers and metering instruments were used to help in the 
measurements, but with manual operations still involved. This stage is called the semi-automated 



stage. After this stage, machinery took a greater part in the measurements and eScience evolved to 
the automated stage where machines took almost all the work with the least of human involvement. 
Technologies such as high performance computers, sensor networks and various experimental 
software make the eScience measurements evolve to the large-scale sensing stage [1]. 
 
Take the research in Meteorology for example, in the early stage (classified to manual stage), 
researchers use thermometer, barometer and hygrometer to measure the temperature, air pressure, 
water vapour and write down the records. In the 19th century (classified to semi-automated stage), 
breakthroughs occur in meteorology after observing the development of networks. The 
meteorological data collected in local meteorological observatories are transmitted through networks 
and then are gathered together by different spatial scales to study the various meteorological 
phenomena. Since the 20th century (classified to automated stage), with the adoption of radars, 
lasers, remote sensors and satellites into the meteorological research, collecting data of a large area is 
no longer a challenging problem and special instruments together with the automation of computers 
can automatically fulfil the measuring tasks. At the end of the 20th century (classified to large-scale 
sensing stage), large scale observation experiments are performed. The experiments relied on 
satellites, meteorological rockets, meteorological observatories on the ground around the world, 
automatic meteorological stations, airplanes, ships, buoy stations and constant level balloons. These 
instruments were combined to form a complete observing system to automatically measure the 
meteorological variables world-wide. 
 
Dimension 2: the length of research period. eScience has gone through ad-hoc stage when research 
was done just for a specific problem or task, and not for other general purposes. Later, in the short-
term plan stage, researchers made plans in priori for their problems about what to do in what time, 
so that a project of a short term could be kept on schedule. In real-time stage, the research is subject 
to real-time constraints, such as the experimental data are collected in real-time and the system 
needs to give out results also in real-time. This evolution on research period also require the 
experimental methods to be more efficient, and the support of high technology as we will discuss 
next.  
 
Dimension 3: technology. eScience has gone through paper and pencil stage when no machinery was 
involved in our research and human work with paper and pencil was the only tool for science. When 
computers appeared, eScience was able to move to the computer assisted stage when computers 
played a great role in helping with complex calculations and solving logical problem. With the 
scientific problems getting more complicated and traditional computers not sufficient for the 
computing power required, cluster and grid are coming to scientists' vision and help them solving 
many data-intensive or compute-intensive problems within reasonable time which is not possible on 
traditional computers. 
 
We summarize our findings in the three dimensions. Initially, scientists only deal with specific 
problems using manual methods such as doing theoretical calculation using paper and pencil at early 
days. As problems getting more complicated, more planning is needed for the research and semi-
automated and automated methods are also required in the research during this time. Computers are 
used and when problem scale gets larger, and new technologies such as clusters and grids are applied 
for solving the problems faster. New challenges from sciences have risen. We have witnessed the 
recent challenges including a large-scale of scientific data (big data) and the requirement of real-time 
processing. 
 

2.2 Grid-based eScience 
Current major eScience projects are mostly hosted in the grid or HPC cluster environments. With 
aggregated computational power and storage capacity, grids have been considered an ideal candidate 
for scientific computing for decades. There are many labs around the world working on grid based 
projects, such as GridPP in UK, XSEDE in US, CNGrid in China, France Grilles in France, D-Grid in 
Germany and Kidney-Grid in Australia. In the following, we present some details about the grid 
infrastructure in UK, USA and China. 
 



In UK, particle physicists and computer scientists have been collaboratively working on the GridPP 
project, aiming at providing distributed computing resources across the UK for particle physicists 
working on the Large Hadron Collider experiments at CERN [81]. These organizations include all of the 
UK universities and institutions that are working as members of this project. At the end of 2011, the 
project has contributed a large number of resources (29,000 CPUs and 25 Petabytes of storage) to the 
worldwide grid infrastructure.  
 
The Grid Infrastructure Group (GIG) along with eleven resource provider sites in the United States 
have initiated an eScience grid computing project called TeraGrid. In 2007, TeraGrid provided more 
than 250 Teraops of computation resources, more than 30 Petabytes of data storage resources and 
over 100 databases of different disciplines for many researchers. The resources had grown to 2 
Petaflops of computing capability and over 60 Petabytes storage in the late 2009. In 2011, after the 
termination of TeraGrid project, National Science Foundation (NSF) funded another high-performance 
project named XSEDE (Extreme Science and Engineering Discovery Environment) as a follow-up of 
TeraGrid. 
 
China National Grid (CNGrid) has quickly grown to serve more than 1400 users including both 
research institutes and commercial companies, providing more than 380 Teraflops of computation 
resources and more than 2 Petabytes of shared data storage resources. Since 2009, this project has 
built three Petaflop-level supercomputers, in which Tianhe-1 was ranked the fastest supercomputer 
in the top 500 supercomputers in 2010 [10]. 
 
Besides nation-wide initiatives, volunteer computing projects have taken place to build grid platforms 
with public donation of computing resources. For example, SETI@home [11] is such a volunteer 
computing project employing the BOINC software platform to search for extra-terrestrial signals with 
the spare capacity on home and office computers. 
 
The strength of grid computing has attracted many scientific applications. 

 First, since governments are very concerned about the research on grid and frontier scientific 
research, most of the grid-based projects are funded by national funding. Resourceful 
funding offers good chances to boost eScience in the grid. 

 Second, sharing the vast computational and storage resources from grids becomes possible. 

 Third, the tools and software developed on grid can benefit more research groups besides 
the developers themselves. This strength can save a lot of development time for the projects 
developed on the grids. 

 
While the grid is the dominant infrastructure for eScience, it faces a number of limitations. First, due 
to the limitation of its structure, grid is not able to provide the elasticity required by most scientific 
projects which are pursuing cost efficiency. Second, it is not easy to get access to grid resources for 
everyone because a program getting access to grid resources needs to be authorized on the project's 
behalf and resources would then be distributed to this project as a whole. Since grids are mostly 
national-wide initiatives, getting the authorization is very hard for most small-scale projects. Third, 
while Grid offers access to many heterogeneous resources, many applications need very specific and 
consistent environments. 
 

2.3 Cloud Computing 
According to the definition of the National Institute of Science and Technology (NIST), cloud 
computing is  

 
“The delivery of computing as a service rather than a product, whereby shared resources, software, 
and information are provided to computers and other devices as a utility (like the electricity grid) over 
a network (typically the Internet)” [61]. 
 
Cloud computing comes into popularity in the early 2000's. Officially launched in 2006, Amazon Web 
Service (AWS) is the first utility computing platform that provides computation resources as services 
to external customers. Many other cloud service providers, including Microsoft Azure, Google Cloud 



Platform and Rackspace, have come into the market since then. Open-source systems and research 
projects are developed to facilitate the use of cloud. For example, Eucalyptus allows deploying AWS-
compatible private and hybrid cloud computing environments. The OpenNebula toolkit is designed for 
building private and hybrid clouds with different cloud model and flexibility from Eucalyptus. 
 
Cloud computing bares many similarities and differences with grid computing. In the year 2008, 
Foster et al. [34] has compared clouds and grids mainly from a technological perspective. Compared 
to the grid, cloud has better scalability and elasticity. 
 

 When developing applications on the grid infrastructure, it is not easy to scale up or down 
according to the change of data scale. In cloud, with the use of virtualization, clients can 
scale up or down as they need and pay only for the resources they used. 

 Virtualization techniques also increase the computation efficiency as multiple applications 
can be run on the same server, increase application availability since virtualization allows 
quick recovery from unplanned outages with no interruption in service and improves 
responsiveness using automated resource provisioning, monitoring and maintenance. 

 Cloud has easier accessibility compared to grid. Users can access to commercial cloud 
resources through log in and use the resources as they need as long as they could pay with a 
credit card. In this case, even small-scale scientific projects can also have the chance to use 
powerful clusters or supercomputers on their compute-intensive or data-intensive projects. 

 
Scalable data analytics for big data applications in the cloud has become a hot topic. Due to the large 
volumes of input data, many data analytics tasks usually take a long time to finish the data processing. 
However, in many big data applications such as weather analytics, the input data must be analysed in 
a cost- and time-effective way to discover the value of the data. The easy accessibility and good 
scalability of the cloud make it a perfect match for serving scalable (big) data analytics applications. 
More and more eScience applications are beginning to shift from grid to cloud platforms [22, 76]. For 
example, the Berkeley Water Centre is undertaking a series of eScience projects collaborating with 
Microsoft [43, 44, 39]. They utilized the Windows Azure cloud to enable rapid scientific data browsing 
for availability and applicability and enable environmental science via data synthesis from multiple 
sources. Their BWC Data Server project is developing an advanced data synthesis server. Computer 
scientists and environmental scientists are collaborating to build new tools and approaches to benefit 
regional and global scale data analysis efforts [43, 44]. 
 
 

3 Taxonomy and Review of eScience Services in the Cloud 
There have been various cloud computing techniques for eScience. We need a taxonomy to reflect 
the interplay between eScience and cloud computing. The taxonomy in this section gives a clear 
classification of cloud computing techniques used in eScience services from several perspectives, 
including the computation infrastructure for eScience applications, the ownership of cloud 
infrastructures, the eScience application types, the processing tools used for eScience applications, 
the storage model, the security insurance method, service models of the cloud and the collaboration 
goal between different research groups. Figure 1 summarizes our taxonomy. Some are mainly from 
eScience's perspective, and some are mainly from cloud computing's perspective. 
 

3.1 Infrastructure 
The infrastructure of cloud provides access to compute and storage resources for eScience 
applications in an on-demand fashion. Cloud shares some similarities with Grid while at the same time 
is modified to overcome the limitations of Grid. Roughly, we can classify the infrastructure into three 
kinds: grid, grid with virtualization (i.e., a hybrid approach), and cloud. 
 



 

 
 

Figure 1 Taxonomy of eScience in the Cloud 

One characteristic of Grid is that it assigns resources to users in the unit of organizations and each 
individual organization holds full control of the resources assigned to it. However, such a coarse-
grained resource assignment is not efficient. There are efforts in Grid to use virtualization to address 
the deficiency issue. Nimbus scientific cloud is one such effort that provides a virtual workspace for 
dynamic and secure deployment in the Grid. Virtualization hides from users the underlying 
infrastructures which are usually heterogeneous hardware and software resources, and provides the 
users with fine-grained resource management capabilities. 
 
As for cloud infrastructures, several national cloud initiatives have also been announced to provide 
on-demand resources for governmental purposes [42], such as the US Cloud Storefront [9], the UK G-
Cloud [8], and the Japanese Kasumigaseki [7] cloud initiatives. Many industry players also dive in the 
cloud business and provide users with seemingly infinite public cloud resources. With the popularity 
of cloud, many eScience applications have been deployed in the general public cloud infrastructures 
such as Amazon EC2, Windows Azure to benefit from its high performance, scalability and easy-access 
[43, 44, 39, 64, 32, 57]. 
 
There have been a number of studies comparing the performance of cloud with other infrastructures. 
The NG-TEPHRA [57] project performed a volcanic ash dispersion simulation on both grid and cloud, 
using the East Cluster at Monash University and the Amazon EC2 computing resources separately. 
Experiments show efficient results on both platforms and the EC2 results have shown very small 



differences in their standard deviation, indicating the consistent QoS of the cloud. Cloudbursting [39] 
implemented its satellite image processing application with three different versions: an all-cloud 
design on Windows Azure, a version that runs in-house on Windows HPC clusters and a hybrid 
cloudbursting version that utilizes both in-house and cloud resources. The hybrid version achieves the 
best of the previous two versions, namely the development environment of a local machine and the 
scalability of the cloud. Their experimental results showed that the application is benefiting from the 
hybrid design, both on execution time and cost. 
 
From the existing studies, we find that the performance comparison between cloud and HPC is 
application dependent. Due to the scheduling and communication overhead, the applications 
involving large and frequent data transfer over multiple computation nodes usually perform worse on 
the cloud than on HPC clusters which are equipped with high bandwidth network. In contrast, the 
advantage of cloud is its high scalability. Users can easily and quickly scale up and down their 
applications as needed, without wasting too much money. Applications such as Cloudbursting [39] 
can benefit from this characteristic of the cloud. 
 

3.2 Ownership 
The ownership of cloud infrastructures can be classified as the following types: private, public, hybrid 
and federated. They have different levels of security and ownership scope. 
 
Private clouds are infrastructures operated only by a single organization for internal use. The security 
level of private clouds is the highest among the four types. eScience applications which have high 
security requirements or possess highly sensitive data can be deployed on private clouds. 
OpenNebula is the first open-source software supporting private clouds deployment and is widely 
used by industry and research users [59]. 
 
In contrary, public clouds are more open, with their application, storage and other resources available 
to the public on the pay-as-you-go basis. 
 
A federated cloud, also known as community cloud, is a logical combination of two or more clouds 
from either private, public or even federated clouds. In this combination, the two or more clouds 
often have similar goals in security, compliance and jurisdiction. Many countries have built federated 
clouds to support the research and education purpose of their own country. The EGI Federated Cloud 
Task Force [2] is a federation of academic private clouds to provide services for the scientific 
community. It has been used by a wide areas of eScience applications, including Gaia (a global space 
astrometry mission [35]) and the Catania Science Gateway Framework (CSGF) [3]. 
 
A hybrid cloud utilizes cloud resources from both private and public clouds. The benefit of hybrid 
clouds in an off-loading manner. While the workload is bursting and the private cloud can no longer 
support users' requirements, users can then request resources from the public cloud to sustain the 
performance and scalability. 
 

3.3 Application 
Cloud computing techniques have been applied to various eScience applications. We have surveyed a 
lot of eScience papers and summarized them in the following four categories based on their areas of 
expertise: Life sciences [51, 56], Physical sciences [28, 37], Climate and Earth sciences [32, 43] as well 
as Social sciences and Humanities [23, 49]. 
 
We note that those application categories can overlap with each other. There is no absolute boundary 
between categories. Still, different categories have their own requirements on the cloud. The first 
three categories, i.e., life sciences, physical sciences and climate and earth sciences, are more 
focusing on extending their works to large-scale datasets and thus require the cloud platform to deal 
with large-scale data analysis efficiently. The fourth category, i.e., social science and humanities, is 
more focusing on collaboration and thus requires the cloud platform to be easy for sharing. 
 



Another observation is that, the development of eScience projects is ad-hoc. Some applications are 
developed on Amazon EC2 cloud [24], some on Windows Azure [39] while some others on both cloud 
platforms to verify their design [53]. 
 
However, it is not clearly explained why certain cloud platforms should be chosen over others in those 
projects. For example, MFA [24] is a Life Science project developed with the cloud services provided 
by Amazon. Its aim is to investigate whether utilizing MapReduce framework is beneficial to perform 
simulation tasks in the area of Systems Biology. The experiments on a 64 node Amazon MapReduce 
cluster and a single node implementation have shown up to 14 times performance gain, with a total 
cost of on-demand resources of $11. MODIS-Azure [43] is a Climate and Earth science application 
deployed on Windows Azure to process large scale satellite data. The system is implemented with the 
Azure blob storage for data repository and Azure queue services for task scheduling. However, 
neither of the two projects has technically explained their choice of cloud platforms. To compare the 
performance on different cloud platforms, a Physical science project Inversion [53] was deployed on 
both Amazon EC2 and Windows Azure with symmetry structures. 
 
All these examples indicate that, it can be a challenging problem on how to choose cloud platforms 
for eScience applications. Due to the current ad-hoc implementation in specific cloud providers, the 
lessons learned during the implementation of one project may not be applicable to other projects or 
other cloud providers. 
 

3.4 Processing Tools 
From the perspective of processing tools, we have witnessed deployment of classic workflow systems 
in the cloud, new cloud oriented programming models such as MapReduce and DryadLINQ, and 
hybrid of such newly proposed tools and models. 
 
Scientific workflows have been proposed and developed to assist scientists to track the evolution of 
their data and results. Many scientific applications use workflow systems to enable the composition 
and execution of complex analysis on distributed resources [27]. Montage is the example of a widely 
used workflow for making large-scale, science-grade images for astronomical research [37]. Workflow 
management systems (WMSes) such as Pegasus [70] and Kepler [72] are developed to manage and 
schedule the execution of scientific workflows. WMSes rely on tools such as Directed Acyclic Graph 
Manager (DAGMan) [12] and Condor [45] to manage the resource acquisition from the cloud and 
schedule the tasks of scientific workflows to cloud resources for execution. The application owners 
have to separately deploy and configure all the required software such as Pegasus and Condor on the 
cloud platforms to make their applications run. Such re-implementation and re-design work requires 
good effort from the application owners and should be avoided. Recently, the container techniques 
such as Docker [4] have been emerging to address this issue.  
 
Emerging cloud oriented programming models have great promotion for the development of cloud 
computing. MapReduce is a framework proposed by Google in 2004 [26] for processing highly 
distributable problems using a large number of computers. This makes this framework especially 
suitable for eScience application users who may not be experts in parallel programming. We have 
observed the emergence of eScience applications adopting MapReduce framework for data-intensive 
scientific analyses [31]. 
 
Due to the large data size of many eScience applications, new data processing models, such as in-situ 
[73] and in-transit processing [17], have been proposed to reduce the overhead of data processing. 
An eScience workflow typically includes two parts, namely the simulation part which simulates the 
scientific applications to generate raw data and the analysis part which analyses the raw data to 
generate findings. The in-situ processing model co-locates the simulation and analysis parts on the 
same machine to eliminate data movement cost, while in the in-transit processing model, the 
simulation output data are staged to the analysis node directly through interconnect to avoid 
touching the storage system. 
 

3.5 Storage 



Data is centric to eScience applications. With the development of science, the hypothesis to data has 
evolved from empirical description stage, theoretical modelling stage, computational simulation stage 
to the fourth paradigm today, the data-intensive scientific discovery stage. Due to the vast data size, 
knowledge on the storage format of scientific data in the cloud is very important. Facing the massive 
data sets, there are two major ways for data storage: data can be stored as files in file systems or in 
databases. 
 
Many distributed file systems have been proposed to provide efficient and reliable access to large-
scale data using clusters of commodity hardware [36, 63]. For example, distributed and reliable file 
systems such as Hadoop Distributed File System (HDFS) are the primary storage system used by 
Hadoop applications which utilize the MapReduce model for large dataset processing. OpenStack 
Swift [60] is a distributed storage system for unstructured data at large scale. It currently serves the 
largest object storage clouds, such as Rackspace Cloud Files and IBM Sftlayer Cloud. To efficiently 
organize and store the massive scientific datasets, scientific data formats such as NetCDF [55] and 
HDF5 [68] have been widely used to achieve high I/O bandwidth from parallel file systems. The 
scalable and highly efficient distributed file system models together with the scientific data formats 
provide a promising data storage approach for data intensive eScience applications. 
 
Databases for eScience have been emerging for a number of advantages in query processing 
capability, relatively mature techniques, and data integrity. HBase, a Hadoop project modelled on 
Bigtable, has been applied to many eScience applications such as bioinformatics domains [66]. Some 
array-based databases such as SciDB [19] have also been proposed to satisfy the special requirement 
of array-based eScience applications. SciDB is a scientific database system built from ground up and 
has been applied to many scientific application areas, including astronomy, earth remote sensing and 
environmental studies [5].  
 
Although the data size of most eScience applications is enormous, we have observed that many of the 
eScience data are statically stored. For example, the SciHmm [58] project is making optimizations on 
time and money for the phylogenetic analysis problem. The data involved in this application are 
genetic data, which do not require frequent update and can be viewed as statically stored. Similarly, 
the bioinformatics data in the CloudBLAST [51] project and the astronomy data in the Montage 
Example [28], although may be updated from time to time, are seldom modified once obtained. 
Existing blob-based or distributed storages like Amazon S3 can be an ideal storage system for Science. 
 

3.6 Security 
Security is a big issue to eScience applications, especially for those with sensitive data. On the one 
hand, scientists need to make sure that the sensitive data is secured from malicious attacks. On the 
other hand, they also need to share data between scientific groups (possibly from different nations) 
working on the same project. Thus, how to find a balance point between the two aims is a challenging 
problem. Currently, the security level in the cloud is relatively immature compared to the Grid 
computing platform. One common way to make sure of security in the cloud is through logging in.  
Many eScience applications deployed on the cloud have designed their own way of authentication 
and authorization to further ensure security. Such as in [75], Group Authorization Manager is used to 
grant access permission based on user-defined access control policy. The emerging Open 
authorization (OAuth2.0) protocol is used to support authorization for users to share datasets or 
computing resources. In [74], the Gold security infrastructure is utilized to deal with the 
authentication and authorization of users to keep sensitive data secure. Data owners could specify 
their security preferences for the security infrastructure to control role and task based access. 
 
Unlike in Grid computing, where the authentication and authorization mechanisms are mainly based 
on the public key infrastructure (PKI) protocol [13], many Cloud vendors support multiple security 
protocols such as OAuth2.0. eScience gateway is a commonly adopted approach to reinforce the 
security mechanisms. 
 

3.7 Service Models 



There are different levels of computing services offered by the cloud (i.e., IaaS, IaaS with tools, PaaS 
and SaaS). The IaaS model is the most basic cloud service model, where cloud providers only offer 
physical infrastructures such as virtual machines and raw storage to users. Amazon EC2 is such an 
example [32, 57, 54]. To enable the execution of scientific applications in IaaS clouds, a number of 
domain-specific supporting software and tools need to be installed. In order to save scientists' effort 
of installation, platforms providing IaaS level services but with additional tools and software, have 
been proposed. Nimbus [37] and Eucalyptus are examples of this kind. In the PaaS model, cloud 
providers provide a computing platform typically equipped with operating system, programming 
language execution environment and database. Users of PaaS cloud can simply develop their 
applications on the platform without the effort and cost of buying and managing the underlying 
hardware and software layers. Typical examples of this type include Windows Azure, Google's App 
Engine. In the SaaS model, cloud providers provide a computing platform installed with application 
software. Cloud providers are in charge of the software maintenance and support. One example is 
Altair SaaS [6] which provides high-performance computing (HPC) workload management and 
scheduling services for applications such as scientific simulations. 
 
Due to the pay-as-you-go pricing feature of the cloud services, monetary cost is an important 
consideration of eScience in the cloud. MFA [24] reported a 14 times speedup for their metabolic flux 
analysis on Amazon cloud with a $11 cost, which includes the EC2 cost, EMR cost and S3 storage cost. 
SciHmm [58] aims to reduce monetary cost of scientists via deciding the most adequate scientific 
analysis method for the scientists a priori. It reported the cost for the parallel execution of SciHmm on 
the Amazon EC2 cloud and showed that it is acceptable for most scientists (US $47.79). Due to the 
large scale of data and long running jobs, eScience applications have to carefully manage the cloud 
resources used to optimize their monetary cost. However, this resource management problem is not 
trivial and requires both domain expertise and knowledge on cloud computing. A lot of on-going 
studies have concentrated on the monetary cost optimizations for scientific workflows [78, 77, 47, 41, 
28]. In Section 4, we present our experiences on cloud resource provisioning problems to optimize the 
monetary cost and performance of eScience in the cloud. 
 

3.8 Collaboration 
Another important usage of cloud for eScience applications is to realize collaboration. The 
collaboration between the groups includes two different focuses: sharing storage and/or sharing 
computation. Sharing storage is the sharing mechanism of scientific data and analysis results between 
different research groups working on the same project. Sharing computation is to share the idle 
computing resources of one group to the others such that the resource utilization rate of all the 
collaborating groups can be highly improved. Collaboration between these groups is very important 
to the success of the projects. With the development of Internet and the popularity of social 
networks, some previous studies have leveraged cloud computing techniques and social network APIs 
to provide a collaboration platform for eScience researchers [67, 21]. 
 
The Life science project CloudDRN [50] moves medical research data to the cloud to enable secure 
collaboration and sharing of distributed data sets. It relies on authentication and authorization to 
ensure security. Also, many applications in Social Science and Humanities have shown increasing 
collaboration. The SoCC [67] project leverages social network platform for the sharing of resources in 
scientific communities. They provide a PaaS social cloud framework for users to share resources and 
support creating virtual organizations and virtual clusters for collaborating users. The SCC [21] project 
is also leveraging social network and cloud computing to enable data sharing between social network 
users. 
 
 

4 Our Expeditions on Resource Provisioning for eScience in the Cloud 
From our survey on existing scientific applications, we find that resource provisioning is an important 
problem for scientific applications in the cloud. In this section, we present our existing studies on this 
direction. We can easily classify the resource provisioning problems using our taxonomy. We study 
the problems in public IaaS clouds for scientific workflows. Workflows in physical sciences (e.g., 
Montage and Ligo) and biological sciences (e.g., Epigenomics) are studied. The Pegasus workflow 



management system is used to run the scientific workflows in the cloud. Distributed file systems are 
used to store the large-scale scientific data and workflow tasks share cloud computation resources for 
monetary cost optimization. 
 

4.1 Motivation 
Scientists often use scientific workflows to analyse and understand scientific data. Scientific 
workflows involve complex computational processes, often requiring accessing a large amount of 
data. Montage workflow [52] is an example in astronomical study for generating sky mosaics in the 
scale of hundreds of GBs. CyberShake [40] is a data-intensive workflow for characterizing earthquake 
hazards. CyberShake workflows are composed of more than 800,000 tasks and have input data larger 
than 200TBs. Another example is the Epigenomics workflow [40], which is a biological application that 
studies the set of epigenetic modifications on human cells. All these example workflows involve 
managing and processing very large data sets, such as the sky image data and human genetic data. 
 
Due to the pay-as-you-go characteristic of the cloud, many real-world scientific workflows are 
currently deployed and executed in IaaS clouds [14]. Although the scalability and elasticity of the 
cloud have brought great opportunities for the workflows, many research problems also arise. 
Resource provisioning is one important problem for the monetary cost and performance 
optimizations of scientific workflows in IaaS clouds. Since cloud providers usually offer multiple 
instance types with different prices and computational capabilities, we need to carefully decide the 
types of instances that each task of a workflow executes on to optimize the performance and 
monetary cost. However, making the resource provisioning decisions is non-trivial, involving the 
complexities from cloud, workflows, and users. 
 

 
Figure 2 Execution time variances of running Montage workflows on Amazon EC2. 

The resource provisioning for workflows in IaaS clouds is a complex problem, from the following three 
aspects. 
 
Diverse cloud offerings. The IaaS clouds usually offer a large number of instance types. For example, 
Amazon EC2 provides more than 20 types of instances (only counting the latest generation) for the 
users [15]. Different types of instances usually have diversified capabilities and prices. For example, 
Amazon EC2 offers storage optimized instances to provide very high random I/O performance for I/O-
intensive applications. If we consider multiple clouds, the situation is even worse since the cloud 
providers usually adopt different cloud offerings. For example, Amazon EC2 adopts hourly pricing 
scheme while Google Compute Engine charges users by minute. 
 
The dynamics in cloud performance and prices make the problem even more complex. Most existing 
resource provisioning approaches for scientific workflows in IaaS clouds [47, 33, 30] assume that the 
execution time of each task in the workflow is static on a given VM type. However, this assumption 
does not hold in the cloud. The cloud environment is by design a shared infrastructure. The 
performance of cloud resources, such as I/O and network, is dynamic due to interferences between 
users [62]. We have observed remarkable dynamics in the I/O and network performances from 
Amazon EC2 [80]. Figure 2 shows the quantiles of the normalized execution time of the Montage 



workflows in different scales running on Amazon EC2 for 100 times each. The execution time of the 
three workflows varies significantly. The variances are mainly from the interferences from disk and 
network I/O. In fact, scientific workflows may process input data of a large size. Due to the significant 
performance variance of scientific workflows in IaaS clouds, the deterministic notions of 
performance/cost constraints are not suitable, and a more rigorous notion is required. 
 
On another hand, the cloud is an economic market and has dynamic prices [71]. Amazon EC2 offers 
spot instances, whose prices are determined by market demand and supply. Most existing 
optimization approaches for scientific workflows in IaaS clouds [47, 48] adopt static notions of 
performance and cost, which are not suitable for performance and cost optimizations in the dynamic 
cloud environment. Effective optimization techniques and more rigorous QoS notions are in need to 
capture the cloud dynamics. 
 

 
Figure 3 Workflow structure of Ligo, Montage and Epigenomics. 

Complex workflow structures and characteristics. Workflows can have very different and complex 
structures. For example, Figure 3 shows the DAG structure of Ligo, Montage and Epigenomics 
workflows. We can easily observe from the figure that, the structure of Montage is the most 
complicated in the three workflows while Ligo and Epigenomics workflows have higher parallelism 
compared to Montage. Within a single workflow, the characteristics of tasks also vary. For example, in 
the Montage workflow, some tasks are computation-intensive (i.e., most of the task execution time is 
spent on CPU computations) and some are I/O-intensive (i.e., most of the task execution time is spent 
on I/O operations). There are also different application scenarios of workflows. For example, the 
workflows can be continuously submitted to the cloud and the optimizations are made for each 
workflow individually [48, 20]. Users can also group the workflows with similar structure but different 
input parameters as an ensemble, and submit QoS and optimization requirements for the entire 
ensemble. We need an effective system that is capable of simplifying the optimizations of different 
kinds of tasks and workflows. We should also consider how to make use of the different workflow 
structures for cost and performance optimizations. 
 
Various user requirements. Scientists submit their workflow applications to the IaaS clouds usually 
with some predefined optimization objectives and QoS requirements. For example, one may desire to 
finish a workflow execution with a minimum monetary cost before a predefined deadline while 
another one may desire to execute a workflow as fast as possible with a given budget. Users may also 
define skyline optimization objectives, e.g., minimizing both of the monetary cost and the execution 
time of workflows. The users' requirements are also evolving. For example, a user may want to 
minimize the execution time of a workflow on a cloud C1 with a predefined budget. On the other 
scenario, she may consider running the workflow on multiple clouds besides C1. At this point, the 
optimal solution depends on the offerings of the multiple clouds and the network performance across 
clouds. Existing optimization algorithms are specifically designed for certain optimization problems 
and are usually not extensible or flexible to various evolving user requirements. Different resource 
provisioning schemes result in significant monetary cost and performance variations. Figure 4 shows 
the normalized average cost of running Montage workflow with deadline constraint using different 
instance configurations on Amazon EC2. We consider seven scenarios: the workflow is executed on a 
single instance type only (m1.small, m1.medium, m1.large and m1.xlarge), on randomly chosen 



instance types, and using the instance configurations decided by Autoscaling [48] and by a 
optimization engine proposed in this chapter (denoted as Deco). Although the configurations 
m1.small and m1.medium obtain low average cost, they cannot satisfy the performance constraint of 
the workflow. Among the configurations satisfying the deadline constraint, Deco obtains the lowest 
monetary cost. The cost obtained by Deco is only 40% of the cost obtained by the most expensive 
configuration (i.e., m1.xlarge). 
 

 
Figure 4 Average cost of running Montage workflows under different instance configurations on Amazon EC2. 

 

4.2 Our Solution 
To address the above challenges, we design a flexible and effective optimization system to simplify 
the optimizations of monetary cost and performance for scientific workflows in IaaS clouds. Figure 5 
shows our overall design. Specifically, we propose a probabilistic scheduling system called Dyna [80] 
to minimize the cost of workflows while satisfying the probabilistic performance guarantees of 
individual workflows predefined by the user. We also abstract the common monetary cost and 
performance optimizations of workflows as transformation operations, and propose a 
transformation-based optimization framework named ToF [78] for the monetary cost and 
performance optimizations of workflows. Finally, we propose a declarative optimization engine 
named Deco [79], which can automatically generate resource provisioning plan for various workflow 
optimization problems, considering the cloud performance dynamics. We introduce the details of the 
three projects in the following subsections. 
 

 
Figure 5 Overall Design. 

4.2.1 Effective Monetary Cost Optimizations for Workflows in IaaS Clouds 
Cloud dynamics, including the price and performance dynamics, can greatly affect the resource 
provisioning result of workflows in IaaS clouds. In this project, we consider a typical scenario of 
providing software-as-a-service for workflows in the IaaS clouds. We denote this model as workflow-



as-a-service (WaaS). We propose a dynamics-aware optimization framework called Dyna, to improve 
the effectiveness of monetary cost optimizations for WaaS providers. Compared with existing 
scheduling algorithms or systems [48], Dyna is specifically designed to capture the cloud performance 
and price dynamics. The main components of Dyna are illustrated in Figure 6. 
 

 
Figure 6 Overview of the Dyna system. 

When a user has specified the probabilistic deadline requirement for a workflow, WaaS providers 
schedule the workflow by choosing the cost-effective instance types for each task in the workflow. 
The overall functionality of the Dyna optimizations is to determine the suitable instance configuration 
for each task of a workflow so that the monetary cost is minimized while the probabilistic 
performance requirement is satisfied. We formulate the optimization process as a search problem, 
and develop a two-step approach to find the solution efficiently. The instance configurations of the 
two steps are illustrated in Figure 6. We first adopt an A*-based instance configuration approach to 
select the on-demand instance type for each task of the workflow, in order to minimize the monetary 
cost while satisfying the probabilistic deadline guarantee. Second, starting from the on-demand 
instance configuration, we adopt the hybrid instance configuration refinement to consider using 
hybrid of both on-demand and spot instances for executing tasks in order to further reduce cost. After 
the two optimization steps, the tasks of the workflow are scheduled to execute on the cloud 
according to their hybrid instance configuration. At runtime, we maintain a pool of spot instances and 
on-demand instances, organized in lists according to different instance types. Instance 
acquisition/release operations are performed in an auto-scaling manner. For the instances that do not 
have any task and are approaching multiples of full instance hours, we release them and remove 
them from the pool. We schedule tasks to instances in the earliest-deadline-first manner. When a task 
with the deadline residual of zero requests an instance and the task is not consolidated to an existing 
instance in the pool, we acquire a new instance from the cloud provider, and add it into the pool. In 
our experiment, for example, Amazon EC2 poses the capacity limitation of 200 instances. If this cap is 
met, we cannot acquire new instances until some instances are released. 
 
The reason that we divide the search process into two steps is to reduce the solution space. For 
example, consider searching the instance configuration for a single task, where there are n on-
demand types and m spot instance types. If we consider spot and on-demand instances together, the 

number of configurations to be searched is (
𝑛
1

) × (
𝑚
1

) while in our divide-and-conquer approach, the 

complexity is reduced to (
𝑛
1

) + (
𝑚
1

). In each search step, we design efficient techniques to further 

improve the optimization effectiveness and efficiency. In the first step, we only consider on-demand 
instances and utilize the pruning capability of A⋆ search to improve the optimization efficiency. In the 
second step, we consider the hybrid of spot and on-demand instances as the refinement of the 
instance configuration obtained from the first step. We give the following example to illustrate the 
feasibility of the two-step optimization.  
 



EXAMPLE 1. Consider the instance configuration for a single task. In the A*-based instance 
configuration step, the on-demand instance configuration found for the task is < (0, 0.1, 𝐹𝑎𝑙𝑠𝑒) >. In 
the refinement step, the on-demand instance configuration is refined to < (0,0.01, 𝑇𝑢𝑟𝑒),
(0, 0.1, 𝐹𝑎𝑙𝑠𝑒) >. Assume the expected execution time of the task on type 0 instance is 1 hour and the 
spot price is lower than $0.01 (equals to $0.006) for 50% of the time. The expected monetary cost of 
executing the task under the on-demand instance configuration is $0.1 and under the hybrid instance 
configuration is only $0.053 ($0.006 × 50% + $0.1 × 50%). Thus, it is feasible to reduce the expected 
monetary cost by instance configuration refinement in the second step. 
 
Evaluation results. We compare Dyna with the state-of-the-art algorithm [48] (denoted as Static) on 
three different workflow applications shown in Figure 3 and find that Dyna saves monetary cost over 
Static by 15{73% when the probabilistic deadline requirement is 96%. Although the average execution 
time of Dyna is longer than Static, it can guarantee the probabilistic deadline requirements under all 
settings. 
 
4.2.2 Transformation-based Optimizations for Workflows in IaaS Clouds 
Due to the diversified cloud offerings and complex workflow structures and characteristics, resource 
provisioning for scientific workflows in IaaS clouds is a complicated optimization problem. To address 
the complexity issues, we propose a transformation-based optimization framework called ToF to 
simplify workflow optimizations effectively. In ToF, we abstract the common operations in the 
monetary cost and performance optimizations of scientific workflows as transformations and design a 
cost model to guide the selection of transformations effectively. 
 
Table 2 Details of the six transformation operations. The formulation 𝑉𝑖(𝑡0, 𝑡1) stands for an instance of type i 

and the task on this instance starts at 𝑡0 while ends at 𝑡1. 

Name Category Description Formulation 

Merge Main Merge multiple tasks to the same 
instance to fully utilize partial 
hours. 

ℳ(𝑉𝑖(𝑡0, 𝑡1), 𝑉𝑖(𝑡2, 𝑡3))
→ 𝑉𝑖(𝑡0, 𝑡3) 

Demote Main Assign a task to a cheaper instance 
type. 

𝒟(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑗(𝑡2, 𝑡3), 𝑤ℎ𝑒𝑟𝑒 𝑖 > 𝑗 

Move Auxiliary Delay a task to execute later. 𝒱(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑖(𝑡2, 𝑡3), 𝑤ℎ𝑒𝑟𝑒 𝑡3

= 𝑡2 + (𝑡1 − 𝑡0) 
Promote Auxiliary Assign a task to a better instance 

type. 
𝒫(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑗(𝑡2, 𝑡3), 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗 

Split Auxiliary Stop a running task at some 
checkpoint and restart it later. 

𝒮(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑖1(𝑡0, 𝑡2), 𝑉𝑖2(𝑡3, 𝑡4) 
Co-scheduling Auxiliary Assign two or more tasks to the 

same instance for execution. 
𝒞(𝑉𝑖(𝑡0, 𝑡1), 𝑉𝑖(𝑡2, 𝑡3))
→ 𝑉𝑖(min(𝑡0, 𝑡2) , max (𝑡1, 𝑡3)) 

 
We have developed six basic transformation operations, namely Merge, Split, Promote, Demote, 
Move and Co-scheduling. These basic transformations are simple and lightweight. Moreover, they can 
capture the current cloud features considered in this chapter. They are the most common operations 
and widely applicable to workflow structures. For example, the operations of all the comparison 
algorithms used in the experiments can be represented using those transformations. However, we do 
not claim they form a complete set. Users can extend more transformation operations into the 
transformation set. Adding a transformation operation requires the modifications including adding 
the cost model and transformation implementation on the instance DAG. 
 
Based on their capabilities in reducing monetary cost, we categorize the transformation operations 
into two kinds, namely main schemes and auxiliary schemes. A main scheme can reduce the 
monetary cost while an auxiliary scheme simply transforms the workflows so that the transformed 
workflow is suitable for main schemes to reduce cost. By definition, Merge and Demote are main 



schemes, and the other four operations are auxiliary schemes. Table 2 summarizes the definition and 
categorization for the six operations. 
 

 
Figure 7 Use cases of the six transformation operations shown in the instance-time chart. 

Some examples of transformation are illustrated in Figure 7. We illustrate the transformation 
operations with an instance-time chart, where the x axis represents time and y axis represents the 
instance. An instance-time chart is similar to Gantt chart, with the box width as the execution time 
and with dependencies between boxes. The height of the boxes stand for prices of instances. During 
the transformation, we maintain the structural dependency among tasks even after transformations. 
 
We develop simple yet effective cost models to estimate the cost and the time changes for applying 
one transformation operation on the instance DAG. Since an auxiliary scheme does not directly 
reduce the cost, we estimate the potential cost saving of the main schemes after applying the 
auxiliary scheme. As for the time estimation, the changes of execution time need to be propagated to 
all the tasks with dependencies on the vertices affected by the transformation operation. This article 
estimates the worst case for the change of execution time, since worst-case analysis usually can have 
simplified estimation process. For details on cost model, readers can refer to the paper [80]. 
 
In one optimization iteration, we first estimate the (potential) cost reduction of each operation which 
satisfies the deadline constraint, using the cost models. Second, we select and perform the operation 
with the most cost reduction. All selected transformations form the optimization sequence. 
 

 
Figure 8 Example of applying transformation operations on a three node structured workflow. 

Figure 8 shows an example of a simple structured workflow with three tasks. The deadline of the 
workflow is 120 minutes and the execution time of Tasks 0, 1 and 2 on the assigned instance types are 



30, 30 and 40 minutes respectively. In the first iteration, we first check the operations in main 
schemes and find that no one can reduce cost. We then check the operations in auxiliary schemes and 
select the Move operation to perform as it can introduce the most cost reduction. In the next 
iteration, Merge from the main schemes is selected and performed, after which no operation can 
further reduce the cost of the workflow. After applying the Move and Merge operations, the charging 
hours of executing this workflow is reduced from three to two. 
 
Evaluation results. We demonstrated the accuracy of our cost model estimation and compared ToF 
with the state-of-the-art algorithm [48] on the Montage and Ligo workflows. ToF outperforms the 
state-of-the-art algorithm by 30% for monetary cost optimization, and by 21% for the execution time 
optimization. Please refer to our previous work [78] for experimental details. 
 
4.2.3 A Declarative Optimization Engine forWorkflows in IaaS Clouds 
WMSes [29, 46, 65] are often used by scientists to execute and manage scientific workflows. Those 
workflow management systems often have dependent software tools such as Condor and DAGMan 
[12], and require specific skills to implement the specific optimization algorithms in the cloud. All 
those software packages are interplayed with the resource provisioning problem in the cloud. It is 
desirable to abstract these complexities from users and shorten the development cycle. In this 
chapter, we develop a declarative resource provisioning engine named Deco and integrate it into a 
popular WMS named Pegasus for executing scientific workflows in IaaS clouds. Figure 9 presents a 
system overview of Deco and its integration in the Pegasus WMS. 
 

 
Figure 9 System Overview of Deco with integration in Pegasus. 

Table 3 Workflow and cloud specific built-in functions and keywords in WLog. 

Function/Keyword Remark 

goal Optimization goal defined by the user. 

cons Problem constraint defined by the user. 

var Problem variable to be optimized. 

 
In order to schedule the workflows in the cloud, users can alternatively choose from several 
traditional schedulers provided by Pegasus and our proposed Deco. For example, Pegasus provides a 
Random scheduler by default, which randomly selects the instance to execute for each task in the 
workflow. With Deco, we model the resource provisioning problem as a constrained optimization 
problem. Users can specify various optimization goals and constraints with WLog programs. WLog is a 
declarative language extended from ProLog, with special extensions for scientific workflows and the 
dynamic clouds. Table 3 gives several examples of such extensions and explains their functionality. 



 
Deco allows users to use probabilistic notions to specify their optimization requirements in the 
dynamic clouds. We model the dynamic cloud performance with probabilistic distributions, which is 
transparent to users. Deco automatically translates a WLog program submitted by users to 
probabilistic intermediate representation (IR) and interpret it using the WLog interpreter. We traverse 
the solution space to find a good solution for the optimization problem. For each searched solution, 
we evaluate it with the probabilistic IR, which requires a lot of computation [25]. To effectively and 
efficiently search for a good solution in a reasonable time, we implement a GPU-accelerated parallel 
solver to leverage the massive parallelism of the GPU. After the optimization process, Deco returns 
the found resource provisioning plan (indicating the selected execution site for each task in the 
workflow) to Pegasus for generating the executable workflow.  
 
Evaluation results. We use Deco to solve three different workflow optimization problems. 
Specifically, we formulate a workflow scheduling problem (single workflow and single cloud), a 
workflow ensemble optimization problem (multiple workflows and single cloud) and a workflow 
migration problem (multiple workflow and multiple clouds). These use cases have covered a large 
part of resource provisioning problems for scientific workflows. Our experimental results show that, 
Deco is able to obtain better optimization results than heuristic based methods in all use cases. 
Specifically, Deco can achieve more effective performance/cost optimizations than the state-of-the-
art approaches, with the monetary cost reduction by 30-50%. The optimization overhead of Deco 
takes 4.3-63.17 ms per task for a workflow with 20-1000 tasks. 
 
 

5 Open Problems 
Previous sections have reviewed the status and the observations in building eScience applications and 
systems in the cloud. Despite the fruitful results along this research direction, we clearly see that 
there are still many open problems to be addressed in order to fully unleash the power of cloud 
computing for eScience. We present the open problems for developing the next-generation eScience 
applications and systems in the cloud. Those open problems are rooted at the interplay between 
eScience requirements and cloud computing features.  
 
Data Lock-In: There is no standardization between different cloud platforms, such as different clouds 
use different data storage formats. For example, data stored in Amazon S3 cannot be easily used by 
the jobs running on the Windows Azure platform due to different APIs, data storage techniques such 
as encryption technique and security protocols. On the other hand, due to the fact that eScience 
projects usually involve a large amount of data for scientific research, such as the genome sequence 
data and seismographic data, data transfer cost between different cloud platforms is substantial. It 
requires further research on reducing the network data transfer in terms of both performance and 
monetary cost. 
 
Performance Unpredictability: Some eScience applications have rather rigid performance 
requirements. Performance unpredictability is a critical problem for running those applications in the 
cloud, due to the interference among concurrent applications running in the same cloud. This 
problem is particularly severe for disk I/O and network traffic, especially for data-intensive eScience 
applications. The other factor of performance unpredictability is VM failures or unreliability. In [44], 
the authors issued a total of 10,032 VM unique instance start events on Windows Azure cloud and 
only 8,568 instances started once during their lifetimes while the others had encountered various 
unknown problems during their run and were restarted by the Azure infrastructure for many times. 
 
Data Confidentiality and Auditability: Current commercial clouds are essentially open to public and 
are consequently exposing themselves to more attacks. For eScience applications, the data involved 
could be relevant to the homeland security of a country, such as the geographical data of the country, 
or even the security of human beings, such as the human genome data. So protecting these sensitive 
data from unauthorized or even malicious access is an important ongoing research topic. 
 



Lacking of eScience Common System Infrastructure: As we discussed in the previous section, the 
efforts of implementing eScience projects on the cloud are quite ad-hoc. For example, the Montage 
workflow, an astronomy toolkit, is commonly used to discuss the pros and cons of using cloud 
computing for scientific applications [28, 37] and such physical science systems built in the cloud are 
specifically designed to better fit the cloud for scientific workflow applications. Thus, such 
developmental experiences may not be useful to scientific applications in other areas. In order to save 
the development cycle and better exploit the experiences of current systems, we need a holistic 
platform which enables various research fields can build their systems upon and offers opportunities 
for application specific optimizations. 
 
Resource Management on Future Clouds: With the presence of new cloud service models and new 
technologies, the resource management problem is becoming more important and complex in the 
future clouds. The high-speed Internet connection makes hybrid cloud resources available and 
perform as if they are physically located close to the users. However, to enable such cost-efficient and 
low-latency services to users, we need to design a fine-grained and extensive resource management 
system providing different ways of measuring and allocating resources. As the cloud gets popular, 
cloud autonomics is on its way. As a result, automated resource management systems are also 
required to ease the users from tedious system configurations, monitoring and management. 
 

6 Conclusion 
Scientific computing is an emerging and promising application in the big data era. Recently, we 
witness many scientific applications have been developed and executed on the cloud infrastructure, 
due to its elasticity and scalability. In this chapter, we develop a taxonomy and conduct a review on 
the current status of eScience applications in the cloud. Due to the pay-as-you-go pricing feature of 
the cloud, we find that resource provisioning is an important problem for scientific applications in the 
cloud. We present our experiences on improving the effectiveness of monetary cost and performance 
optimizations for scientific workflows in IaaS clouds. Finally, we propose the open problems in this 
area and call for more support from the cloud community and more investment and efforts from 
other communities. 
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