
HAL Id: hal-01346745
https://hal.inria.fr/hal-01346745

Submitted on 19 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Taxonomy and Survey of Scientific Computing in the
Cloud

Amelie Chi Zhou, Bingsheng He, Shadi Ibrahim

To cite this version:
Amelie Chi Zhou, Bingsheng He, Shadi Ibrahim. A Taxonomy and Survey of Scientific Computing
in the Cloud. Big Data: Principles and Paradigms, Morgan Kaufmann, 2016, eScience and Big Data
Workflows in Clouds: A Taxonomy and Survey, 978-0-12-805394-2. �hal-01346745�

https://hal.inria.fr/hal-01346745
https://hal.archives-ouvertes.fr

A Taxonomy and Survey of Scientific Computing in the
Cloud

Amelie Chi Zhou, Bingsheng He, Shadi Ibrahim

Abstract
Cloud computing has evolved as a popular computing infrastructure for many applications. With (big) data
acquiring a crucial role in eScience, efforts have been made recently exploring how to efficiently develop and
deploy scientific applications on the unprecedentedly scalable cloud infrastructures. We review recent efforts in
developing and deploying scientific computing applications in the cloud. In particular, we introduce a taxonomy
specifically designed for scientific computing in the cloud, and further review the taxonomy with four major kinds
of science applications, including life sciences, physics sciences, social and humanities sciences, and climate and
earth sciences. Due to the large data size in most scientific applications, the performance of I/O operations can
greatly affect the overall performance of the applications. We notice that, the dynamic I/O performance of the
cloud has made the resource provisioning an important and complex problem for scientific applications in the
cloud. We present our efforts on improving the resource provisioning efficiency and effectiveness of scientific
applications in the cloud. Finally, we present the open problems for developing the next-generation eScience
applications and systems in the cloud and conclude this chapter.

1 Introduction
The development of computer science and technology widens our view to the world. As a result, the
amount of data observed from the world to be stored and processed has become larger. Analysis of
such large-scale data with traditional technologies is usually time-consuming and requires a large-
scale system infrastructure, and therefore can hinder the development of scientific discoveries and
theories. eScience offers scientists with the scope to store, interpret, analyse and distribute their data
to other research groups with the state-of-the-art computing technologies. eScience plays a
significant role in every aspect of scientific research, starting from the initial theory-based research
through simulations, systematic testing and verification to the organized collecting, processing and
interpretation of scientific data. Recently, cloud computing is becoming a popular computing
infrastructure for eScience. In this chapter, we review the status of cloud-based eScience applications
and present a taxonomy specifically designed for eScience in the cloud.

eScience is an important type of big data applications. eScience is also considered as the “big-data
science”, which includes broad scientific research areas, from the areas that are close to our everyday
life (e.g., biological study), areas concerning the planet that we live on (e.g., environmental science),
to areas related to the outer space (e.g., astronomy studies to find the origins of our universe).
Although the term of eScience has only been used for about a decade, the study of eScience problems
started much earlier. In the early days, scientists were not able to efficiently realize the value of
scientific data due to the lack of technologies and tools to capture, organize and analyse the data.
Technological advances such as new computing infrastructures and software protocols have brought
great opportunities for eScience projects in various fields [16, 38, 31, 51]. For example, Grid
computing has greatly advanced the development of eScience. Many eScience applications are
becoming data-driven. For example, with the development of modern telescope, the Large Synoptic
Survey Telescope (LSST) [69] obtains 30 trillion bytes of image data of the sky every day. Currently,
almost all major eScience projects are hosted in the grid or cluster environments [81]. With
aggregated computational power and storage capacity, grids are able to host the vast amount of data
generated by eScience applications and to efficiently conduct data analysis. This has enabled
researchers to collaboratively work with other professionals around the world and to handle data
enormously larger in size than before.

In the recent few years, the emergence of cloud computing has brought the development of eScience
to a new stage. Cloud computing has the advantages of scalability, high capacity and easy accessibility
compared to grids. Recently, many eScience projects from various research areas have been shifting
from grids to cloud platforms [43, 44, 39]. It breaks the barrier of doing eScience without a self-owned

large-scale computing infrastructure. In this chapter, we review the current status of scientific
applications in the cloud, and propose a taxonomy to clearly classify the related projects, according to
the infrastructure, ownership, application, processing tools, storage, security, service models and
collaboration aspects. We find that, for scientific applications in the cloud, resource provisioning is a
major concern for the monetary cost and performance optimizations of the applications. In this
chapter, we briefly introduce our initial efforts on the resource provisioning problems of scientific
workflows in the cloud.

Both eScience and cloud computing are rapidly developing and becoming more mature. It is timely to
examine the efforts and future work for scientific computing in the cloud. This chapter focuses
especially on eScience projects in the cloud. Due to the pay-as-you-go service model of the cloud,
monetary cost and performance are two important concerns for eScience applications in the cloud. In
this chapter, we introduce our existing studies on cloud resource provisioning to optimize the cost
and performance for eScience in the cloud. We compare the advantages and weaknesses against
eScience in the grid to discuss the obstacles and opportunities of eScience services in the cloud.

The rest of this chapter is structured as follows. Section 2 introduces the background of eScience
history and grid-based and cloud-based eScience. Section 3 gives the taxonomy and reviews the
current status of eScience in the cloud. Section 4 introduces some of our efforts on optimizing the
resource provisioning problems of scientific applications in the cloud. Lastly, we discuss the open
problems for scientific computing on the cloud in Section 5 and summarize this chapter in Section 6.

2 Background
In this section, we briefly discuss some history remarks on scientific computing development,
particularly for eScience. Next, we focus our review on the grid based scientific computing, and
introduce cloud computing.

2.1 History Remarks
Computer infrastructures have long been adopted to host scientific data sets and computations.
eScience is a new science paradigm that uses distributed computing infrastructures for computation,
simulation and analysis. In addition, the scientists can make use of high speed network to access huge
distributed and shared data collected by sensors or stored in database. Computing infrastructures
allow scientists around the world to share knowledge and resources, and to build close scientific
collaborations.

Table 1Development stages of the scientific computing.

Stage Data Generated Research Period Infor. Tech.

Manual By hand Ad-hoc Paper and pencil

(Semi-) Automated With the help of
machinery

Short-term Computer
assisted

Large-scale Sensing From satellites and
sensors around the world

Real-time Cluster and grid

The term eScience was first introduced in 1999 and was further interpreted by more researchers since
then [18]. During the development of eScience, it has gone through roughly three stages. Table 1
shows the major development stages that scientific computing has gone through. We review the
history in the following dimensions.

Dimension 1: the evolution of science. We observed that technology (particularly information
technology) is one of the main driving factors in pushing science forward. From the perspective of
experimental methods, eScience first used manual measurements: meaning the measurements were
taken by hand, not using machinery or electronics to fulfil the function. Then with the development of
technology, machinery such as computers and metering instruments were used to help in the
measurements, but with manual operations still involved. This stage is called the semi-automated

stage. After this stage, machinery took a greater part in the measurements and eScience evolved to
the automated stage where machines took almost all the work with the least of human involvement.
Technologies such as high performance computers, sensor networks and various experimental
software make the eScience measurements evolve to the large-scale sensing stage [1].

Take the research in Meteorology for example, in the early stage (classified to manual stage),
researchers use thermometer, barometer and hygrometer to measure the temperature, air pressure,
water vapour and write down the records. In the 19th century (classified to semi-automated stage),
breakthroughs occur in meteorology after observing the development of networks. The
meteorological data collected in local meteorological observatories are transmitted through networks
and then are gathered together by different spatial scales to study the various meteorological
phenomena. Since the 20th century (classified to automated stage), with the adoption of radars,
lasers, remote sensors and satellites into the meteorological research, collecting data of a large area is
no longer a challenging problem and special instruments together with the automation of computers
can automatically fulfil the measuring tasks. At the end of the 20th century (classified to large-scale
sensing stage), large scale observation experiments are performed. The experiments relied on
satellites, meteorological rockets, meteorological observatories on the ground around the world,
automatic meteorological stations, airplanes, ships, buoy stations and constant level balloons. These
instruments were combined to form a complete observing system to automatically measure the
meteorological variables world-wide.

Dimension 2: the length of research period. eScience has gone through ad-hoc stage when research
was done just for a specific problem or task, and not for other general purposes. Later, in the short-
term plan stage, researchers made plans in priori for their problems about what to do in what time,
so that a project of a short term could be kept on schedule. In real-time stage, the research is subject
to real-time constraints, such as the experimental data are collected in real-time and the system
needs to give out results also in real-time. This evolution on research period also require the
experimental methods to be more efficient, and the support of high technology as we will discuss
next.

Dimension 3: technology. eScience has gone through paper and pencil stage when no machinery was
involved in our research and human work with paper and pencil was the only tool for science. When
computers appeared, eScience was able to move to the computer assisted stage when computers
played a great role in helping with complex calculations and solving logical problem. With the
scientific problems getting more complicated and traditional computers not sufficient for the
computing power required, cluster and grid are coming to scientists' vision and help them solving
many data-intensive or compute-intensive problems within reasonable time which is not possible on
traditional computers.

We summarize our findings in the three dimensions. Initially, scientists only deal with specific
problems using manual methods such as doing theoretical calculation using paper and pencil at early
days. As problems getting more complicated, more planning is needed for the research and semi-
automated and automated methods are also required in the research during this time. Computers are
used and when problem scale gets larger, and new technologies such as clusters and grids are applied
for solving the problems faster. New challenges from sciences have risen. We have witnessed the
recent challenges including a large-scale of scientific data (big data) and the requirement of real-time
processing.

2.2 Grid-based eScience
Current major eScience projects are mostly hosted in the grid or HPC cluster environments. With
aggregated computational power and storage capacity, grids have been considered an ideal candidate
for scientific computing for decades. There are many labs around the world working on grid based
projects, such as GridPP in UK, XSEDE in US, CNGrid in China, France Grilles in France, D-Grid in
Germany and Kidney-Grid in Australia. In the following, we present some details about the grid
infrastructure in UK, USA and China.

In UK, particle physicists and computer scientists have been collaboratively working on the GridPP
project, aiming at providing distributed computing resources across the UK for particle physicists
working on the Large Hadron Collider experiments at CERN [81]. These organizations include all of the
UK universities and institutions that are working as members of this project. At the end of 2011, the
project has contributed a large number of resources (29,000 CPUs and 25 Petabytes of storage) to the
worldwide grid infrastructure.

The Grid Infrastructure Group (GIG) along with eleven resource provider sites in the United States
have initiated an eScience grid computing project called TeraGrid. In 2007, TeraGrid provided more
than 250 Teraops of computation resources, more than 30 Petabytes of data storage resources and
over 100 databases of different disciplines for many researchers. The resources had grown to 2
Petaflops of computing capability and over 60 Petabytes storage in the late 2009. In 2011, after the
termination of TeraGrid project, National Science Foundation (NSF) funded another high-performance
project named XSEDE (Extreme Science and Engineering Discovery Environment) as a follow-up of
TeraGrid.

China National Grid (CNGrid) has quickly grown to serve more than 1400 users including both
research institutes and commercial companies, providing more than 380 Teraflops of computation
resources and more than 2 Petabytes of shared data storage resources. Since 2009, this project has
built three Petaflop-level supercomputers, in which Tianhe-1 was ranked the fastest supercomputer
in the top 500 supercomputers in 2010 [10].

Besides nation-wide initiatives, volunteer computing projects have taken place to build grid platforms
with public donation of computing resources. For example, SETI@home [11] is such a volunteer
computing project employing the BOINC software platform to search for extra-terrestrial signals with
the spare capacity on home and office computers.

The strength of grid computing has attracted many scientific applications.

 First, since governments are very concerned about the research on grid and frontier scientific
research, most of the grid-based projects are funded by national funding. Resourceful
funding offers good chances to boost eScience in the grid.

 Second, sharing the vast computational and storage resources from grids becomes possible.

 Third, the tools and software developed on grid can benefit more research groups besides
the developers themselves. This strength can save a lot of development time for the projects
developed on the grids.

While the grid is the dominant infrastructure for eScience, it faces a number of limitations. First, due
to the limitation of its structure, grid is not able to provide the elasticity required by most scientific
projects which are pursuing cost efficiency. Second, it is not easy to get access to grid resources for
everyone because a program getting access to grid resources needs to be authorized on the project's
behalf and resources would then be distributed to this project as a whole. Since grids are mostly
national-wide initiatives, getting the authorization is very hard for most small-scale projects. Third,
while Grid offers access to many heterogeneous resources, many applications need very specific and
consistent environments.

2.3 Cloud Computing
According to the definition of the National Institute of Science and Technology (NIST), cloud
computing is

“The delivery of computing as a service rather than a product, whereby shared resources, software,
and information are provided to computers and other devices as a utility (like the electricity grid) over
a network (typically the Internet)” [61].

Cloud computing comes into popularity in the early 2000's. Officially launched in 2006, Amazon Web
Service (AWS) is the first utility computing platform that provides computation resources as services
to external customers. Many other cloud service providers, including Microsoft Azure, Google Cloud

Platform and Rackspace, have come into the market since then. Open-source systems and research
projects are developed to facilitate the use of cloud. For example, Eucalyptus allows deploying AWS-
compatible private and hybrid cloud computing environments. The OpenNebula toolkit is designed for
building private and hybrid clouds with different cloud model and flexibility from Eucalyptus.

Cloud computing bares many similarities and differences with grid computing. In the year 2008,
Foster et al. [34] has compared clouds and grids mainly from a technological perspective. Compared
to the grid, cloud has better scalability and elasticity.

 When developing applications on the grid infrastructure, it is not easy to scale up or down
according to the change of data scale. In cloud, with the use of virtualization, clients can
scale up or down as they need and pay only for the resources they used.

 Virtualization techniques also increase the computation efficiency as multiple applications
can be run on the same server, increase application availability since virtualization allows
quick recovery from unplanned outages with no interruption in service and improves
responsiveness using automated resource provisioning, monitoring and maintenance.

 Cloud has easier accessibility compared to grid. Users can access to commercial cloud
resources through log in and use the resources as they need as long as they could pay with a
credit card. In this case, even small-scale scientific projects can also have the chance to use
powerful clusters or supercomputers on their compute-intensive or data-intensive projects.

Scalable data analytics for big data applications in the cloud has become a hot topic. Due to the large
volumes of input data, many data analytics tasks usually take a long time to finish the data processing.
However, in many big data applications such as weather analytics, the input data must be analysed in
a cost- and time-effective way to discover the value of the data. The easy accessibility and good
scalability of the cloud make it a perfect match for serving scalable (big) data analytics applications.
More and more eScience applications are beginning to shift from grid to cloud platforms [22, 76]. For
example, the Berkeley Water Centre is undertaking a series of eScience projects collaborating with
Microsoft [43, 44, 39]. They utilized the Windows Azure cloud to enable rapid scientific data browsing
for availability and applicability and enable environmental science via data synthesis from multiple
sources. Their BWC Data Server project is developing an advanced data synthesis server. Computer
scientists and environmental scientists are collaborating to build new tools and approaches to benefit
regional and global scale data analysis efforts [43, 44].

3 Taxonomy and Review of eScience Services in the Cloud
There have been various cloud computing techniques for eScience. We need a taxonomy to reflect
the interplay between eScience and cloud computing. The taxonomy in this section gives a clear
classification of cloud computing techniques used in eScience services from several perspectives,
including the computation infrastructure for eScience applications, the ownership of cloud
infrastructures, the eScience application types, the processing tools used for eScience applications,
the storage model, the security insurance method, service models of the cloud and the collaboration
goal between different research groups. Figure 1 summarizes our taxonomy. Some are mainly from
eScience's perspective, and some are mainly from cloud computing's perspective.

3.1 Infrastructure
The infrastructure of cloud provides access to compute and storage resources for eScience
applications in an on-demand fashion. Cloud shares some similarities with Grid while at the same time
is modified to overcome the limitations of Grid. Roughly, we can classify the infrastructure into three
kinds: grid, grid with virtualization (i.e., a hybrid approach), and cloud.

Figure 1 Taxonomy of eScience in the Cloud

One characteristic of Grid is that it assigns resources to users in the unit of organizations and each
individual organization holds full control of the resources assigned to it. However, such a coarse-
grained resource assignment is not efficient. There are efforts in Grid to use virtualization to address
the deficiency issue. Nimbus scientific cloud is one such effort that provides a virtual workspace for
dynamic and secure deployment in the Grid. Virtualization hides from users the underlying
infrastructures which are usually heterogeneous hardware and software resources, and provides the
users with fine-grained resource management capabilities.

As for cloud infrastructures, several national cloud initiatives have also been announced to provide
on-demand resources for governmental purposes [42], such as the US Cloud Storefront [9], the UK G-
Cloud [8], and the Japanese Kasumigaseki [7] cloud initiatives. Many industry players also dive in the
cloud business and provide users with seemingly infinite public cloud resources. With the popularity
of cloud, many eScience applications have been deployed in the general public cloud infrastructures
such as Amazon EC2, Windows Azure to benefit from its high performance, scalability and easy-access
[43, 44, 39, 64, 32, 57].

There have been a number of studies comparing the performance of cloud with other infrastructures.
The NG-TEPHRA [57] project performed a volcanic ash dispersion simulation on both grid and cloud,
using the East Cluster at Monash University and the Amazon EC2 computing resources separately.
Experiments show efficient results on both platforms and the EC2 results have shown very small

differences in their standard deviation, indicating the consistent QoS of the cloud. Cloudbursting [39]
implemented its satellite image processing application with three different versions: an all-cloud
design on Windows Azure, a version that runs in-house on Windows HPC clusters and a hybrid
cloudbursting version that utilizes both in-house and cloud resources. The hybrid version achieves the
best of the previous two versions, namely the development environment of a local machine and the
scalability of the cloud. Their experimental results showed that the application is benefiting from the
hybrid design, both on execution time and cost.

From the existing studies, we find that the performance comparison between cloud and HPC is
application dependent. Due to the scheduling and communication overhead, the applications
involving large and frequent data transfer over multiple computation nodes usually perform worse on
the cloud than on HPC clusters which are equipped with high bandwidth network. In contrast, the
advantage of cloud is its high scalability. Users can easily and quickly scale up and down their
applications as needed, without wasting too much money. Applications such as Cloudbursting [39]
can benefit from this characteristic of the cloud.

3.2 Ownership
The ownership of cloud infrastructures can be classified as the following types: private, public, hybrid
and federated. They have different levels of security and ownership scope.

Private clouds are infrastructures operated only by a single organization for internal use. The security
level of private clouds is the highest among the four types. eScience applications which have high
security requirements or possess highly sensitive data can be deployed on private clouds.
OpenNebula is the first open-source software supporting private clouds deployment and is widely
used by industry and research users [59].

In contrary, public clouds are more open, with their application, storage and other resources available
to the public on the pay-as-you-go basis.

A federated cloud, also known as community cloud, is a logical combination of two or more clouds
from either private, public or even federated clouds. In this combination, the two or more clouds
often have similar goals in security, compliance and jurisdiction. Many countries have built federated
clouds to support the research and education purpose of their own country. The EGI Federated Cloud
Task Force [2] is a federation of academic private clouds to provide services for the scientific
community. It has been used by a wide areas of eScience applications, including Gaia (a global space
astrometry mission [35]) and the Catania Science Gateway Framework (CSGF) [3].

A hybrid cloud utilizes cloud resources from both private and public clouds. The benefit of hybrid
clouds in an off-loading manner. While the workload is bursting and the private cloud can no longer
support users' requirements, users can then request resources from the public cloud to sustain the
performance and scalability.

3.3 Application
Cloud computing techniques have been applied to various eScience applications. We have surveyed a
lot of eScience papers and summarized them in the following four categories based on their areas of
expertise: Life sciences [51, 56], Physical sciences [28, 37], Climate and Earth sciences [32, 43] as well
as Social sciences and Humanities [23, 49].

We note that those application categories can overlap with each other. There is no absolute boundary
between categories. Still, different categories have their own requirements on the cloud. The first
three categories, i.e., life sciences, physical sciences and climate and earth sciences, are more
focusing on extending their works to large-scale datasets and thus require the cloud platform to deal
with large-scale data analysis efficiently. The fourth category, i.e., social science and humanities, is
more focusing on collaboration and thus requires the cloud platform to be easy for sharing.

Another observation is that, the development of eScience projects is ad-hoc. Some applications are
developed on Amazon EC2 cloud [24], some on Windows Azure [39] while some others on both cloud
platforms to verify their design [53].

However, it is not clearly explained why certain cloud platforms should be chosen over others in those
projects. For example, MFA [24] is a Life Science project developed with the cloud services provided
by Amazon. Its aim is to investigate whether utilizing MapReduce framework is beneficial to perform
simulation tasks in the area of Systems Biology. The experiments on a 64 node Amazon MapReduce
cluster and a single node implementation have shown up to 14 times performance gain, with a total
cost of on-demand resources of $11. MODIS-Azure [43] is a Climate and Earth science application
deployed on Windows Azure to process large scale satellite data. The system is implemented with the
Azure blob storage for data repository and Azure queue services for task scheduling. However,
neither of the two projects has technically explained their choice of cloud platforms. To compare the
performance on different cloud platforms, a Physical science project Inversion [53] was deployed on
both Amazon EC2 and Windows Azure with symmetry structures.

All these examples indicate that, it can be a challenging problem on how to choose cloud platforms
for eScience applications. Due to the current ad-hoc implementation in specific cloud providers, the
lessons learned during the implementation of one project may not be applicable to other projects or
other cloud providers.

3.4 Processing Tools
From the perspective of processing tools, we have witnessed deployment of classic workflow systems
in the cloud, new cloud oriented programming models such as MapReduce and DryadLINQ, and
hybrid of such newly proposed tools and models.

Scientific workflows have been proposed and developed to assist scientists to track the evolution of
their data and results. Many scientific applications use workflow systems to enable the composition
and execution of complex analysis on distributed resources [27]. Montage is the example of a widely
used workflow for making large-scale, science-grade images for astronomical research [37]. Workflow
management systems (WMSes) such as Pegasus [70] and Kepler [72] are developed to manage and
schedule the execution of scientific workflows. WMSes rely on tools such as Directed Acyclic Graph
Manager (DAGMan) [12] and Condor [45] to manage the resource acquisition from the cloud and
schedule the tasks of scientific workflows to cloud resources for execution. The application owners
have to separately deploy and configure all the required software such as Pegasus and Condor on the
cloud platforms to make their applications run. Such re-implementation and re-design work requires
good effort from the application owners and should be avoided. Recently, the container techniques
such as Docker [4] have been emerging to address this issue.

Emerging cloud oriented programming models have great promotion for the development of cloud
computing. MapReduce is a framework proposed by Google in 2004 [26] for processing highly
distributable problems using a large number of computers. This makes this framework especially
suitable for eScience application users who may not be experts in parallel programming. We have
observed the emergence of eScience applications adopting MapReduce framework for data-intensive
scientific analyses [31].

Due to the large data size of many eScience applications, new data processing models, such as in-situ
[73] and in-transit processing [17], have been proposed to reduce the overhead of data processing.
An eScience workflow typically includes two parts, namely the simulation part which simulates the
scientific applications to generate raw data and the analysis part which analyses the raw data to
generate findings. The in-situ processing model co-locates the simulation and analysis parts on the
same machine to eliminate data movement cost, while in the in-transit processing model, the
simulation output data are staged to the analysis node directly through interconnect to avoid
touching the storage system.

3.5 Storage

Data is centric to eScience applications. With the development of science, the hypothesis to data has
evolved from empirical description stage, theoretical modelling stage, computational simulation stage
to the fourth paradigm today, the data-intensive scientific discovery stage. Due to the vast data size,
knowledge on the storage format of scientific data in the cloud is very important. Facing the massive
data sets, there are two major ways for data storage: data can be stored as files in file systems or in
databases.

Many distributed file systems have been proposed to provide efficient and reliable access to large-
scale data using clusters of commodity hardware [36, 63]. For example, distributed and reliable file
systems such as Hadoop Distributed File System (HDFS) are the primary storage system used by
Hadoop applications which utilize the MapReduce model for large dataset processing. OpenStack
Swift [60] is a distributed storage system for unstructured data at large scale. It currently serves the
largest object storage clouds, such as Rackspace Cloud Files and IBM Sftlayer Cloud. To efficiently
organize and store the massive scientific datasets, scientific data formats such as NetCDF [55] and
HDF5 [68] have been widely used to achieve high I/O bandwidth from parallel file systems. The
scalable and highly efficient distributed file system models together with the scientific data formats
provide a promising data storage approach for data intensive eScience applications.

Databases for eScience have been emerging for a number of advantages in query processing
capability, relatively mature techniques, and data integrity. HBase, a Hadoop project modelled on
Bigtable, has been applied to many eScience applications such as bioinformatics domains [66]. Some
array-based databases such as SciDB [19] have also been proposed to satisfy the special requirement
of array-based eScience applications. SciDB is a scientific database system built from ground up and
has been applied to many scientific application areas, including astronomy, earth remote sensing and
environmental studies [5].

Although the data size of most eScience applications is enormous, we have observed that many of the
eScience data are statically stored. For example, the SciHmm [58] project is making optimizations on
time and money for the phylogenetic analysis problem. The data involved in this application are
genetic data, which do not require frequent update and can be viewed as statically stored. Similarly,
the bioinformatics data in the CloudBLAST [51] project and the astronomy data in the Montage
Example [28], although may be updated from time to time, are seldom modified once obtained.
Existing blob-based or distributed storages like Amazon S3 can be an ideal storage system for Science.

3.6 Security
Security is a big issue to eScience applications, especially for those with sensitive data. On the one
hand, scientists need to make sure that the sensitive data is secured from malicious attacks. On the
other hand, they also need to share data between scientific groups (possibly from different nations)
working on the same project. Thus, how to find a balance point between the two aims is a challenging
problem. Currently, the security level in the cloud is relatively immature compared to the Grid
computing platform. One common way to make sure of security in the cloud is through logging in.
Many eScience applications deployed on the cloud have designed their own way of authentication
and authorization to further ensure security. Such as in [75], Group Authorization Manager is used to
grant access permission based on user-defined access control policy. The emerging Open
authorization (OAuth2.0) protocol is used to support authorization for users to share datasets or
computing resources. In [74], the Gold security infrastructure is utilized to deal with the
authentication and authorization of users to keep sensitive data secure. Data owners could specify
their security preferences for the security infrastructure to control role and task based access.

Unlike in Grid computing, where the authentication and authorization mechanisms are mainly based
on the public key infrastructure (PKI) protocol [13], many Cloud vendors support multiple security
protocols such as OAuth2.0. eScience gateway is a commonly adopted approach to reinforce the
security mechanisms.

3.7 Service Models

There are different levels of computing services offered by the cloud (i.e., IaaS, IaaS with tools, PaaS
and SaaS). The IaaS model is the most basic cloud service model, where cloud providers only offer
physical infrastructures such as virtual machines and raw storage to users. Amazon EC2 is such an
example [32, 57, 54]. To enable the execution of scientific applications in IaaS clouds, a number of
domain-specific supporting software and tools need to be installed. In order to save scientists' effort
of installation, platforms providing IaaS level services but with additional tools and software, have
been proposed. Nimbus [37] and Eucalyptus are examples of this kind. In the PaaS model, cloud
providers provide a computing platform typically equipped with operating system, programming
language execution environment and database. Users of PaaS cloud can simply develop their
applications on the platform without the effort and cost of buying and managing the underlying
hardware and software layers. Typical examples of this type include Windows Azure, Google's App
Engine. In the SaaS model, cloud providers provide a computing platform installed with application
software. Cloud providers are in charge of the software maintenance and support. One example is
Altair SaaS [6] which provides high-performance computing (HPC) workload management and
scheduling services for applications such as scientific simulations.

Due to the pay-as-you-go pricing feature of the cloud services, monetary cost is an important
consideration of eScience in the cloud. MFA [24] reported a 14 times speedup for their metabolic flux
analysis on Amazon cloud with a $11 cost, which includes the EC2 cost, EMR cost and S3 storage cost.
SciHmm [58] aims to reduce monetary cost of scientists via deciding the most adequate scientific
analysis method for the scientists a priori. It reported the cost for the parallel execution of SciHmm on
the Amazon EC2 cloud and showed that it is acceptable for most scientists (US $47.79). Due to the
large scale of data and long running jobs, eScience applications have to carefully manage the cloud
resources used to optimize their monetary cost. However, this resource management problem is not
trivial and requires both domain expertise and knowledge on cloud computing. A lot of on-going
studies have concentrated on the monetary cost optimizations for scientific workflows [78, 77, 47, 41,
28]. In Section 4, we present our experiences on cloud resource provisioning problems to optimize the
monetary cost and performance of eScience in the cloud.

3.8 Collaboration
Another important usage of cloud for eScience applications is to realize collaboration. The
collaboration between the groups includes two different focuses: sharing storage and/or sharing
computation. Sharing storage is the sharing mechanism of scientific data and analysis results between
different research groups working on the same project. Sharing computation is to share the idle
computing resources of one group to the others such that the resource utilization rate of all the
collaborating groups can be highly improved. Collaboration between these groups is very important
to the success of the projects. With the development of Internet and the popularity of social
networks, some previous studies have leveraged cloud computing techniques and social network APIs
to provide a collaboration platform for eScience researchers [67, 21].

The Life science project CloudDRN [50] moves medical research data to the cloud to enable secure
collaboration and sharing of distributed data sets. It relies on authentication and authorization to
ensure security. Also, many applications in Social Science and Humanities have shown increasing
collaboration. The SoCC [67] project leverages social network platform for the sharing of resources in
scientific communities. They provide a PaaS social cloud framework for users to share resources and
support creating virtual organizations and virtual clusters for collaborating users. The SCC [21] project
is also leveraging social network and cloud computing to enable data sharing between social network
users.

4 Our Expeditions on Resource Provisioning for eScience in the Cloud
From our survey on existing scientific applications, we find that resource provisioning is an important
problem for scientific applications in the cloud. In this section, we present our existing studies on this
direction. We can easily classify the resource provisioning problems using our taxonomy. We study
the problems in public IaaS clouds for scientific workflows. Workflows in physical sciences (e.g.,
Montage and Ligo) and biological sciences (e.g., Epigenomics) are studied. The Pegasus workflow

management system is used to run the scientific workflows in the cloud. Distributed file systems are
used to store the large-scale scientific data and workflow tasks share cloud computation resources for
monetary cost optimization.

4.1 Motivation
Scientists often use scientific workflows to analyse and understand scientific data. Scientific
workflows involve complex computational processes, often requiring accessing a large amount of
data. Montage workflow [52] is an example in astronomical study for generating sky mosaics in the
scale of hundreds of GBs. CyberShake [40] is a data-intensive workflow for characterizing earthquake
hazards. CyberShake workflows are composed of more than 800,000 tasks and have input data larger
than 200TBs. Another example is the Epigenomics workflow [40], which is a biological application that
studies the set of epigenetic modifications on human cells. All these example workflows involve
managing and processing very large data sets, such as the sky image data and human genetic data.

Due to the pay-as-you-go characteristic of the cloud, many real-world scientific workflows are
currently deployed and executed in IaaS clouds [14]. Although the scalability and elasticity of the
cloud have brought great opportunities for the workflows, many research problems also arise.
Resource provisioning is one important problem for the monetary cost and performance
optimizations of scientific workflows in IaaS clouds. Since cloud providers usually offer multiple
instance types with different prices and computational capabilities, we need to carefully decide the
types of instances that each task of a workflow executes on to optimize the performance and
monetary cost. However, making the resource provisioning decisions is non-trivial, involving the
complexities from cloud, workflows, and users.

Figure 2 Execution time variances of running Montage workflows on Amazon EC2.

The resource provisioning for workflows in IaaS clouds is a complex problem, from the following three
aspects.

Diverse cloud offerings. The IaaS clouds usually offer a large number of instance types. For example,
Amazon EC2 provides more than 20 types of instances (only counting the latest generation) for the
users [15]. Different types of instances usually have diversified capabilities and prices. For example,
Amazon EC2 offers storage optimized instances to provide very high random I/O performance for I/O-
intensive applications. If we consider multiple clouds, the situation is even worse since the cloud
providers usually adopt different cloud offerings. For example, Amazon EC2 adopts hourly pricing
scheme while Google Compute Engine charges users by minute.

The dynamics in cloud performance and prices make the problem even more complex. Most existing
resource provisioning approaches for scientific workflows in IaaS clouds [47, 33, 30] assume that the
execution time of each task in the workflow is static on a given VM type. However, this assumption
does not hold in the cloud. The cloud environment is by design a shared infrastructure. The
performance of cloud resources, such as I/O and network, is dynamic due to interferences between
users [62]. We have observed remarkable dynamics in the I/O and network performances from
Amazon EC2 [80]. Figure 2 shows the quantiles of the normalized execution time of the Montage

workflows in different scales running on Amazon EC2 for 100 times each. The execution time of the
three workflows varies significantly. The variances are mainly from the interferences from disk and
network I/O. In fact, scientific workflows may process input data of a large size. Due to the significant
performance variance of scientific workflows in IaaS clouds, the deterministic notions of
performance/cost constraints are not suitable, and a more rigorous notion is required.

On another hand, the cloud is an economic market and has dynamic prices [71]. Amazon EC2 offers
spot instances, whose prices are determined by market demand and supply. Most existing
optimization approaches for scientific workflows in IaaS clouds [47, 48] adopt static notions of
performance and cost, which are not suitable for performance and cost optimizations in the dynamic
cloud environment. Effective optimization techniques and more rigorous QoS notions are in need to
capture the cloud dynamics.

Figure 3 Workflow structure of Ligo, Montage and Epigenomics.

Complex workflow structures and characteristics. Workflows can have very different and complex
structures. For example, Figure 3 shows the DAG structure of Ligo, Montage and Epigenomics
workflows. We can easily observe from the figure that, the structure of Montage is the most
complicated in the three workflows while Ligo and Epigenomics workflows have higher parallelism
compared to Montage. Within a single workflow, the characteristics of tasks also vary. For example, in
the Montage workflow, some tasks are computation-intensive (i.e., most of the task execution time is
spent on CPU computations) and some are I/O-intensive (i.e., most of the task execution time is spent
on I/O operations). There are also different application scenarios of workflows. For example, the
workflows can be continuously submitted to the cloud and the optimizations are made for each
workflow individually [48, 20]. Users can also group the workflows with similar structure but different
input parameters as an ensemble, and submit QoS and optimization requirements for the entire
ensemble. We need an effective system that is capable of simplifying the optimizations of different
kinds of tasks and workflows. We should also consider how to make use of the different workflow
structures for cost and performance optimizations.

Various user requirements. Scientists submit their workflow applications to the IaaS clouds usually
with some predefined optimization objectives and QoS requirements. For example, one may desire to
finish a workflow execution with a minimum monetary cost before a predefined deadline while
another one may desire to execute a workflow as fast as possible with a given budget. Users may also
define skyline optimization objectives, e.g., minimizing both of the monetary cost and the execution
time of workflows. The users' requirements are also evolving. For example, a user may want to
minimize the execution time of a workflow on a cloud C1 with a predefined budget. On the other
scenario, she may consider running the workflow on multiple clouds besides C1. At this point, the
optimal solution depends on the offerings of the multiple clouds and the network performance across
clouds. Existing optimization algorithms are specifically designed for certain optimization problems
and are usually not extensible or flexible to various evolving user requirements. Different resource
provisioning schemes result in significant monetary cost and performance variations. Figure 4 shows
the normalized average cost of running Montage workflow with deadline constraint using different
instance configurations on Amazon EC2. We consider seven scenarios: the workflow is executed on a
single instance type only (m1.small, m1.medium, m1.large and m1.xlarge), on randomly chosen

instance types, and using the instance configurations decided by Autoscaling [48] and by a
optimization engine proposed in this chapter (denoted as Deco). Although the configurations
m1.small and m1.medium obtain low average cost, they cannot satisfy the performance constraint of
the workflow. Among the configurations satisfying the deadline constraint, Deco obtains the lowest
monetary cost. The cost obtained by Deco is only 40% of the cost obtained by the most expensive
configuration (i.e., m1.xlarge).

Figure 4 Average cost of running Montage workflows under different instance configurations on Amazon EC2.

4.2 Our Solution
To address the above challenges, we design a flexible and effective optimization system to simplify
the optimizations of monetary cost and performance for scientific workflows in IaaS clouds. Figure 5
shows our overall design. Specifically, we propose a probabilistic scheduling system called Dyna [80]
to minimize the cost of workflows while satisfying the probabilistic performance guarantees of
individual workflows predefined by the user. We also abstract the common monetary cost and
performance optimizations of workflows as transformation operations, and propose a
transformation-based optimization framework named ToF [78] for the monetary cost and
performance optimizations of workflows. Finally, we propose a declarative optimization engine
named Deco [79], which can automatically generate resource provisioning plan for various workflow
optimization problems, considering the cloud performance dynamics. We introduce the details of the
three projects in the following subsections.

Figure 5 Overall Design.

4.2.1 Effective Monetary Cost Optimizations for Workflows in IaaS Clouds
Cloud dynamics, including the price and performance dynamics, can greatly affect the resource
provisioning result of workflows in IaaS clouds. In this project, we consider a typical scenario of
providing software-as-a-service for workflows in the IaaS clouds. We denote this model as workflow-

as-a-service (WaaS). We propose a dynamics-aware optimization framework called Dyna, to improve
the effectiveness of monetary cost optimizations for WaaS providers. Compared with existing
scheduling algorithms or systems [48], Dyna is specifically designed to capture the cloud performance
and price dynamics. The main components of Dyna are illustrated in Figure 6.

Figure 6 Overview of the Dyna system.

When a user has specified the probabilistic deadline requirement for a workflow, WaaS providers
schedule the workflow by choosing the cost-effective instance types for each task in the workflow.
The overall functionality of the Dyna optimizations is to determine the suitable instance configuration
for each task of a workflow so that the monetary cost is minimized while the probabilistic
performance requirement is satisfied. We formulate the optimization process as a search problem,
and develop a two-step approach to find the solution efficiently. The instance configurations of the
two steps are illustrated in Figure 6. We first adopt an A*-based instance configuration approach to
select the on-demand instance type for each task of the workflow, in order to minimize the monetary
cost while satisfying the probabilistic deadline guarantee. Second, starting from the on-demand
instance configuration, we adopt the hybrid instance configuration refinement to consider using
hybrid of both on-demand and spot instances for executing tasks in order to further reduce cost. After
the two optimization steps, the tasks of the workflow are scheduled to execute on the cloud
according to their hybrid instance configuration. At runtime, we maintain a pool of spot instances and
on-demand instances, organized in lists according to different instance types. Instance
acquisition/release operations are performed in an auto-scaling manner. For the instances that do not
have any task and are approaching multiples of full instance hours, we release them and remove
them from the pool. We schedule tasks to instances in the earliest-deadline-first manner. When a task
with the deadline residual of zero requests an instance and the task is not consolidated to an existing
instance in the pool, we acquire a new instance from the cloud provider, and add it into the pool. In
our experiment, for example, Amazon EC2 poses the capacity limitation of 200 instances. If this cap is
met, we cannot acquire new instances until some instances are released.

The reason that we divide the search process into two steps is to reduce the solution space. For
example, consider searching the instance configuration for a single task, where there are n on-
demand types and m spot instance types. If we consider spot and on-demand instances together, the

number of configurations to be searched is (
𝑛
1

) × (
𝑚
1

) while in our divide-and-conquer approach, the

complexity is reduced to (
𝑛
1

) + (
𝑚
1

). In each search step, we design efficient techniques to further

improve the optimization effectiveness and efficiency. In the first step, we only consider on-demand
instances and utilize the pruning capability of A⋆ search to improve the optimization efficiency. In the
second step, we consider the hybrid of spot and on-demand instances as the refinement of the
instance configuration obtained from the first step. We give the following example to illustrate the
feasibility of the two-step optimization.

EXAMPLE 1. Consider the instance configuration for a single task. In the A*-based instance
configuration step, the on-demand instance configuration found for the task is < (0, 0.1, 𝐹𝑎𝑙𝑠𝑒) >. In
the refinement step, the on-demand instance configuration is refined to < (0,0.01, 𝑇𝑢𝑟𝑒),
(0, 0.1, 𝐹𝑎𝑙𝑠𝑒) >. Assume the expected execution time of the task on type 0 instance is 1 hour and the
spot price is lower than $0.01 (equals to $0.006) for 50% of the time. The expected monetary cost of
executing the task under the on-demand instance configuration is $0.1 and under the hybrid instance
configuration is only $0.053 ($0.006 × 50% + $0.1 × 50%). Thus, it is feasible to reduce the expected
monetary cost by instance configuration refinement in the second step.

Evaluation results. We compare Dyna with the state-of-the-art algorithm [48] (denoted as Static) on
three different workflow applications shown in Figure 3 and find that Dyna saves monetary cost over
Static by 15{73% when the probabilistic deadline requirement is 96%. Although the average execution
time of Dyna is longer than Static, it can guarantee the probabilistic deadline requirements under all
settings.

4.2.2 Transformation-based Optimizations for Workflows in IaaS Clouds
Due to the diversified cloud offerings and complex workflow structures and characteristics, resource
provisioning for scientific workflows in IaaS clouds is a complicated optimization problem. To address
the complexity issues, we propose a transformation-based optimization framework called ToF to
simplify workflow optimizations effectively. In ToF, we abstract the common operations in the
monetary cost and performance optimizations of scientific workflows as transformations and design a
cost model to guide the selection of transformations effectively.

Table 2 Details of the six transformation operations. The formulation 𝑉𝑖(𝑡0, 𝑡1) stands for an instance of type i

and the task on this instance starts at 𝑡0 while ends at 𝑡1.

Name Category Description Formulation

Merge Main Merge multiple tasks to the same
instance to fully utilize partial
hours.

ℳ(𝑉𝑖(𝑡0, 𝑡1), 𝑉𝑖(𝑡2, 𝑡3))
→ 𝑉𝑖(𝑡0, 𝑡3)

Demote Main Assign a task to a cheaper instance
type.

𝒟(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑗(𝑡2, 𝑡3), 𝑤ℎ𝑒𝑟𝑒 𝑖 > 𝑗

Move Auxiliary Delay a task to execute later. 𝒱(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑖(𝑡2, 𝑡3), 𝑤ℎ𝑒𝑟𝑒 𝑡3

= 𝑡2 + (𝑡1 − 𝑡0)
Promote Auxiliary Assign a task to a better instance

type.
𝒫(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑗(𝑡2, 𝑡3), 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗

Split Auxiliary Stop a running task at some
checkpoint and restart it later.

𝒮(𝑉𝑖(𝑡0, 𝑡1))

→ 𝑉𝑖1(𝑡0, 𝑡2), 𝑉𝑖2(𝑡3, 𝑡4)
Co-scheduling Auxiliary Assign two or more tasks to the

same instance for execution.
𝒞(𝑉𝑖(𝑡0, 𝑡1), 𝑉𝑖(𝑡2, 𝑡3))
→ 𝑉𝑖(min(𝑡0, 𝑡2) , max (𝑡1, 𝑡3))

We have developed six basic transformation operations, namely Merge, Split, Promote, Demote,
Move and Co-scheduling. These basic transformations are simple and lightweight. Moreover, they can
capture the current cloud features considered in this chapter. They are the most common operations
and widely applicable to workflow structures. For example, the operations of all the comparison
algorithms used in the experiments can be represented using those transformations. However, we do
not claim they form a complete set. Users can extend more transformation operations into the
transformation set. Adding a transformation operation requires the modifications including adding
the cost model and transformation implementation on the instance DAG.

Based on their capabilities in reducing monetary cost, we categorize the transformation operations
into two kinds, namely main schemes and auxiliary schemes. A main scheme can reduce the
monetary cost while an auxiliary scheme simply transforms the workflows so that the transformed
workflow is suitable for main schemes to reduce cost. By definition, Merge and Demote are main

schemes, and the other four operations are auxiliary schemes. Table 2 summarizes the definition and
categorization for the six operations.

Figure 7 Use cases of the six transformation operations shown in the instance-time chart.

Some examples of transformation are illustrated in Figure 7. We illustrate the transformation
operations with an instance-time chart, where the x axis represents time and y axis represents the
instance. An instance-time chart is similar to Gantt chart, with the box width as the execution time
and with dependencies between boxes. The height of the boxes stand for prices of instances. During
the transformation, we maintain the structural dependency among tasks even after transformations.

We develop simple yet effective cost models to estimate the cost and the time changes for applying
one transformation operation on the instance DAG. Since an auxiliary scheme does not directly
reduce the cost, we estimate the potential cost saving of the main schemes after applying the
auxiliary scheme. As for the time estimation, the changes of execution time need to be propagated to
all the tasks with dependencies on the vertices affected by the transformation operation. This article
estimates the worst case for the change of execution time, since worst-case analysis usually can have
simplified estimation process. For details on cost model, readers can refer to the paper [80].

In one optimization iteration, we first estimate the (potential) cost reduction of each operation which
satisfies the deadline constraint, using the cost models. Second, we select and perform the operation
with the most cost reduction. All selected transformations form the optimization sequence.

Figure 8 Example of applying transformation operations on a three node structured workflow.

Figure 8 shows an example of a simple structured workflow with three tasks. The deadline of the
workflow is 120 minutes and the execution time of Tasks 0, 1 and 2 on the assigned instance types are

30, 30 and 40 minutes respectively. In the first iteration, we first check the operations in main
schemes and find that no one can reduce cost. We then check the operations in auxiliary schemes and
select the Move operation to perform as it can introduce the most cost reduction. In the next
iteration, Merge from the main schemes is selected and performed, after which no operation can
further reduce the cost of the workflow. After applying the Move and Merge operations, the charging
hours of executing this workflow is reduced from three to two.

Evaluation results. We demonstrated the accuracy of our cost model estimation and compared ToF
with the state-of-the-art algorithm [48] on the Montage and Ligo workflows. ToF outperforms the
state-of-the-art algorithm by 30% for monetary cost optimization, and by 21% for the execution time
optimization. Please refer to our previous work [78] for experimental details.

4.2.3 A Declarative Optimization Engine forWorkflows in IaaS Clouds
WMSes [29, 46, 65] are often used by scientists to execute and manage scientific workflows. Those
workflow management systems often have dependent software tools such as Condor and DAGMan
[12], and require specific skills to implement the specific optimization algorithms in the cloud. All
those software packages are interplayed with the resource provisioning problem in the cloud. It is
desirable to abstract these complexities from users and shorten the development cycle. In this
chapter, we develop a declarative resource provisioning engine named Deco and integrate it into a
popular WMS named Pegasus for executing scientific workflows in IaaS clouds. Figure 9 presents a
system overview of Deco and its integration in the Pegasus WMS.

Figure 9 System Overview of Deco with integration in Pegasus.

Table 3 Workflow and cloud specific built-in functions and keywords in WLog.

Function/Keyword Remark

goal Optimization goal defined by the user.

cons Problem constraint defined by the user.

var Problem variable to be optimized.

In order to schedule the workflows in the cloud, users can alternatively choose from several
traditional schedulers provided by Pegasus and our proposed Deco. For example, Pegasus provides a
Random scheduler by default, which randomly selects the instance to execute for each task in the
workflow. With Deco, we model the resource provisioning problem as a constrained optimization
problem. Users can specify various optimization goals and constraints with WLog programs. WLog is a
declarative language extended from ProLog, with special extensions for scientific workflows and the
dynamic clouds. Table 3 gives several examples of such extensions and explains their functionality.

Deco allows users to use probabilistic notions to specify their optimization requirements in the
dynamic clouds. We model the dynamic cloud performance with probabilistic distributions, which is
transparent to users. Deco automatically translates a WLog program submitted by users to
probabilistic intermediate representation (IR) and interpret it using the WLog interpreter. We traverse
the solution space to find a good solution for the optimization problem. For each searched solution,
we evaluate it with the probabilistic IR, which requires a lot of computation [25]. To effectively and
efficiently search for a good solution in a reasonable time, we implement a GPU-accelerated parallel
solver to leverage the massive parallelism of the GPU. After the optimization process, Deco returns
the found resource provisioning plan (indicating the selected execution site for each task in the
workflow) to Pegasus for generating the executable workflow.

Evaluation results. We use Deco to solve three different workflow optimization problems.
Specifically, we formulate a workflow scheduling problem (single workflow and single cloud), a
workflow ensemble optimization problem (multiple workflows and single cloud) and a workflow
migration problem (multiple workflow and multiple clouds). These use cases have covered a large
part of resource provisioning problems for scientific workflows. Our experimental results show that,
Deco is able to obtain better optimization results than heuristic based methods in all use cases.
Specifically, Deco can achieve more effective performance/cost optimizations than the state-of-the-
art approaches, with the monetary cost reduction by 30-50%. The optimization overhead of Deco
takes 4.3-63.17 ms per task for a workflow with 20-1000 tasks.

5 Open Problems
Previous sections have reviewed the status and the observations in building eScience applications and
systems in the cloud. Despite the fruitful results along this research direction, we clearly see that
there are still many open problems to be addressed in order to fully unleash the power of cloud
computing for eScience. We present the open problems for developing the next-generation eScience
applications and systems in the cloud. Those open problems are rooted at the interplay between
eScience requirements and cloud computing features.

Data Lock-In: There is no standardization between different cloud platforms, such as different clouds
use different data storage formats. For example, data stored in Amazon S3 cannot be easily used by
the jobs running on the Windows Azure platform due to different APIs, data storage techniques such
as encryption technique and security protocols. On the other hand, due to the fact that eScience
projects usually involve a large amount of data for scientific research, such as the genome sequence
data and seismographic data, data transfer cost between different cloud platforms is substantial. It
requires further research on reducing the network data transfer in terms of both performance and
monetary cost.

Performance Unpredictability: Some eScience applications have rather rigid performance
requirements. Performance unpredictability is a critical problem for running those applications in the
cloud, due to the interference among concurrent applications running in the same cloud. This
problem is particularly severe for disk I/O and network traffic, especially for data-intensive eScience
applications. The other factor of performance unpredictability is VM failures or unreliability. In [44],
the authors issued a total of 10,032 VM unique instance start events on Windows Azure cloud and
only 8,568 instances started once during their lifetimes while the others had encountered various
unknown problems during their run and were restarted by the Azure infrastructure for many times.

Data Confidentiality and Auditability: Current commercial clouds are essentially open to public and
are consequently exposing themselves to more attacks. For eScience applications, the data involved
could be relevant to the homeland security of a country, such as the geographical data of the country,
or even the security of human beings, such as the human genome data. So protecting these sensitive
data from unauthorized or even malicious access is an important ongoing research topic.

Lacking of eScience Common System Infrastructure: As we discussed in the previous section, the
efforts of implementing eScience projects on the cloud are quite ad-hoc. For example, the Montage
workflow, an astronomy toolkit, is commonly used to discuss the pros and cons of using cloud
computing for scientific applications [28, 37] and such physical science systems built in the cloud are
specifically designed to better fit the cloud for scientific workflow applications. Thus, such
developmental experiences may not be useful to scientific applications in other areas. In order to save
the development cycle and better exploit the experiences of current systems, we need a holistic
platform which enables various research fields can build their systems upon and offers opportunities
for application specific optimizations.

Resource Management on Future Clouds: With the presence of new cloud service models and new
technologies, the resource management problem is becoming more important and complex in the
future clouds. The high-speed Internet connection makes hybrid cloud resources available and
perform as if they are physically located close to the users. However, to enable such cost-efficient and
low-latency services to users, we need to design a fine-grained and extensive resource management
system providing different ways of measuring and allocating resources. As the cloud gets popular,
cloud autonomics is on its way. As a result, automated resource management systems are also
required to ease the users from tedious system configurations, monitoring and management.

6 Conclusion
Scientific computing is an emerging and promising application in the big data era. Recently, we
witness many scientific applications have been developed and executed on the cloud infrastructure,
due to its elasticity and scalability. In this chapter, we develop a taxonomy and conduct a review on
the current status of eScience applications in the cloud. Due to the pay-as-you-go pricing feature of
the cloud, we find that resource provisioning is an important problem for scientific applications in the
cloud. We present our experiences on improving the effectiveness of monetary cost and performance
optimizations for scientific workflows in IaaS clouds. Finally, we propose the open problems in this
area and call for more support from the cloud community and more investment and efforts from
other communities.

References
[1] US Naval Research Laboratory, Monterey, Ca. http://www.nrlmry.navy.mil/sec7532.htm.
[2] EGI Federated Cloud Task Force. https://www.egi.eu/infrastructure/cloud/.
[3] Catania Science Gateway. http://www.catania-science-gateways.it/.
[4] Docker - An open platform for distributed applications for developers and sysadmins.
https://www.docker.com/.
[5] SciDB Use Case. http://scidb.org/use/.
[6] Altair SaaS. http://www.altairfms.com/altairfms-new/products/altaircloud.aspx.
[7] The kasumigaseki cloud concept. http://www.cloudbook.net/japancloudgov.
[8] The UK G-cloud, 2009. http://johnsuffolk.typepad.com/john-suffolk-government-
cio/2009/06/government-cloud.html.
[9] The US cloud storefront, 2009. http://www.gsa.gov/portal/content/103758.
[10] Top 500 supercomputer, 2010. http://www.top500.org/lists/2010/11/.
[11] University of California, 2012. http://setiathome.berkeley.edu/.
[12] DAGman: A directed acyclic graph manager. Condor team, July 2005.
http://www.cs.wisc.edu/condor/dagman/.
[13] R. Alfieri, R. Cecchini, V. Ciaschini, and F. Spataro. From gridmap-file to voms: managing
authorization in a grid environment. Future Generation Computer Systems, 21:549-558, 2005.
[14] Amazon Case Studies. http://aws.amazon.com/ solutions/case-studies/. accessed on July 2014.
[15] Amazon EC2 Instance Types. http://aws.amazon.com/ ec2/instance-types/. accessed on July
2014.
[16] Gabriel Antoniu, Alexandru Costan, Benoit Da Mota, Bertrand Thirion, and Radu Tudoran. A-
Brain: Using the cloud to understand the impact of genetic variability on the brain. ERCIM News,
2012(89), 2012.
[17] Janine C. Bennett, Hasan Abbasi, Peer-Timo Bremer, Ray Grout, Attila Gyulassy, Tong Jin, Scott
Klasky, Hemanth Kolla, Manish Parashar, Valerio Pascucci, Philippe Pebay, David Thompson, Hongfeng
Yu, Fan Zhang, and Jacqueline Chen. Combining in-situ and in-transit processing to enable extreme-
scale scientific analysis. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC '12, pages 49:1-49:9, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.
[18] S. Bohle. What is e-science and how should it be managed? http://www.scilogs.com/scientific
and medical libraries/what-is-e-science-and-how-should-it-be-managed/.
[19] Paul G. Brown. Overview of SciDB: large scale array storage, processing and analysis. In SIGMOD
'10, pages 963-968, 2010.
[20] R.N. Calheiros and R. Buyya. Meeting Deadlines of Scientific Workflows in Public Clouds with
Tasks Replication. IEEE Transactions on Parallel and Distributed Systems, 25(7):1787-1796, July 2014.
[21] Kyle Chard, Kris Bubendorfer, Simon Caton, and Omer Rana. Social cloud computing: A vision for
socially motivated resource sharing. IEEE Trans. Serv. Comput., 5(4):551-563, January 2012.
[22] P.C. Church and A.M. Goscinski. A survey of cloud-based service computing solutions for
mammalian genomics. IEEE Trans. Serv. Comput., 7(4):726-740, Oct 2014.
[23] Roger Curry, Cameron Kiddle, Nayden Markatchev, Rob Simmonds, Tingxi Tan, Martin Arlitt, and
Bruce Walker. Facebook meets the virtualized enterprise. In EDOC '08, pages 286{292, 2008.
[24] Tolga Dalman, Tim Doernemann, Ernst Juhnke, MichaelWeitzel, Matthew Smith, Wolfgang
Wiechert, Katharina Noh, and Bernd Freisleben. Metabolic flux analysis in the cloud. In ESCIENCE '10,
pages 57-64, 2010.
[25] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence, IJCAI'07, pages 2468-2473, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers
Inc.
[26] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107-113, 2008.
[27] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Workflows and e-science: An
overview of workflow system features and capabilities, 2008.
[28] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The cost of doing
science on the cloud: the montage example. In SC '08, pages 50:1-50:12, 2008.

[29] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang
Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anastasia Laity, Joseph C. Jacob, and Daniel S. Katz.
Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems. Sci.
Program., 13(3):219{237, July 2005.
[30] Kefeng Deng, Junqiang Song, Kaijun Ren, and Alexandru Iosup. Exploring portfolio scheduling for
long-term execution of scientific workloads in IaaS clouds. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC '13, pages 55:1-
55:12, New York, NY, USA, 2013. ACM.
[31] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox. MapReduce for data intensive scientific
analyses. In ESCIENCE '08, pages 277-284, 2008.
[32] Constantinos Evangelinos and Chris N. Hill. Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled Atmosphere-Ocean climate models on amazon's EC2. In
Cloud Computing and Its Applications, 2008.
[33] Hamid Mohammadi Fard, Radu Prodan, and Thomas Fahringer. A truthful dynamic workflow
scheduling mechanism for commercial multicloud environments. IEEE Trans. Parallel Distrib. Syst.,
24(6):1203-1212, 2013.
[34] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid computing 360-
degree compared. In GCE08, 2008.
[35] GAIA-Space. http://www.esa.int/Our Activities/Space Science/Gaiaoverview.
[36] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In SOSP '03,
pages 29-43, 2003.
[37] Christina Hoffa, Gaurang Mehta, Tim Freeman, Ewa Deelman, Kate Keahey, Bruce Berriman, and
John Good. On the use of cloud computing for scientific workflows. In ESCIENCE '08, pages 640-645,
2008.
[38] Dexter H. Hu, Yinfeng Wang, and Cho-Li Wang. Betterlife 2.0: Large-scale social intelligence
reasoning on cloud. In CLOUDCOM '10, pages 529-536, 2010.
[39] Marty Humphrey, Zach Hill, Catharine van Ingen, Keith R. Jackson, and Youngryel Ryu. Assessing
the value of cloudbursting: A case study of satellite image processing on windows azure. In
eScience'11, pages 126-133, 2011.
[40] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi, Gaurang Mehta, and Karan Vahi.
Characterizing and profiling scientific workflows. Future Gener. Comput. Syst., 29(3):682-692, March
2013.
[41] Derrick Kondo, Bahman Javadi, Paul Malecot, Franck Cappello, and David P. Anderson. Cost-
benefit analysis of cloud computing versus desktop grids. In IPDPS '09, pages 1-12, 2009.
[42] Craig A. Lee. A perspective on scientific cloud computing. In HPDC '10, pages 451-459, 2010.
[43] Jie Li, Marty Humphrey, Deborah A. Agarwal, Keith R. Jackson, Catharine van Ingen, and
Youngryel Ryu. escience in the cloud: A MODIS satellite data re-projection and reduction pipeline in
the windows azure platform. In IPDPS'10, pages 1-10, 2010.
[44] Jie Li, Marty Humphrey, You-Wei Cheah, Youngryel Ryu, Deborah A. Agarwal, Keith R. Jackson,
and Catharine van Ingen. Fault tolerance and scaling in e-science cloud applications: Observations
from the continuing development of modisazure. In eScience'10, pages 246-253, 2010.
[45] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle workstations. In
ICDCS, June 1988.
[46] Bertram Ludascher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones,
Edward A. Lee, Jing Tao, and Yang Zhao. Scientific Workflow Management and the Kepler System:
Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1039-1065, August 2006.
[47] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost- and deadline-
constrained provisioning for scientific workflow ensembles in IaaS clouds. In SC '12, pages 22:1-22:11,
2012.
[48] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet application deadlines in
cloud workflows. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC '11, pages 49:1{49:12, New York, NY, USA, 2011. ACM.
[49] Nayden Markatchev, Roger Curry, Cameron Kiddle, Andrey Mirtchovski, Rob Simmonds, and
Tingxi Tan. A cloud-based interactive application service. In E-SCIENCE '09, pages 102-109, 2009.
[50] Humphrey Marty, Steele Jacob, In Kee Kim, G. Kahn Michael, Bondy Jessica, and Ames Michael.
Clouddrn: A lightweight, end-to-end system for sharing distributed research data in the cloud. In
ESCIENCE '13, 2013.

[51] Andrfiea Matsunaga, Maurfificio Tsugawa, and Josfie Fortes. Cloudblast: Combining MapReduce
and virtualization on distributed resources for bioinformatics applications. In ESCIENCE '08, pages
222-229, 2008.
[52] Montage Workflow. http://montage.ipac.caltech.edu/docs/download2.html. accessed on July
2014.
[53] J. Craig Mudge, Pinaki Chandrasekhar, Graham S. Heinson, and Stephan Thiel. Evolving inversion
methods in geophysics with cloud computing – a case study of an escience collaboration. In eScience,
pages 119-125, 2011.
[54] Ashish Nagavaram, Gagan Agrawal, Michael A. Freitas, Kelly H. Telu, Gaurang Mehta, Rajiv G.
Mayani, and Ewa Deelman. A cloud-based dynamic workflow for mass spectrometry data analysis.
eScience, pages 47-54, 2011.
[55] NetCDF. http://www.unidata.ucar.edu/software/netcdf.
[56] Andrew Newman, Yuan-Fang Li, and Jane Hunter. Scalable semantics - the silver lining of cloud
computing. In ESCIENCE '08, pages 111-118, 2008.
[57] Santiago Nunez, Blair Bethwaite, Jose Brenes, Gustavo Barrantes, Jose Castro, Eduardo Malavassi,
and David Abramson. Ng-tephra: A massively parallel, nimrod/g-enabled volcanic simulation in the
grid and the cloud. In ESCIENCE '10, pages 129-136, 2010.
[58] Kary A.C.S. Ocana, Daniel de Oliveira, Jonas Dias, Eduardo Ogasawara, and Marta Mattoso.
Optimizing phylogenetic analysis using scihmm cloud-based scientific workflow. eScience 62-69, 2011.
[59] OpenNebula. http://opennebula.org/users:users.
[60] OpenStack Swift. https://swiftstack.com/openstack-swift/architecture/.
[61] Mell Peter and Grance Timothy. The nist definition of cloud computing. National Institute of
Standards and Technology, October 7 2009.
[62] J•org Schad, Jens Dittrich, and Jorge-Arnulfo Quianfie-Ruiz. Runtime Measurements in the Cloud:
Observing, Analyzing, and Reducing Variance. Proc. VLDB Endow., 3(1-2):460{471, September 2010.
[63] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop distributed
file system. In MSST '10, pages 1-10, 2010.
[64] Vedaprakash Subramanian, LiqiangWang, En-Jui Lee, and Po Chen. Rapid processing of synthetic
seismograms using windows azure cloud. In Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, CLOUDCOM '10, pages 193-200, 2010.
[65] Wei Tang, Jared Wilkening, Narayan Desai, Wolfgang Gerlach, Andreas Wilke, and Folker Meyer.
A Scalable Data Analysis Platform for Metagenomics. In The Proceedings of the 2013 IEEE
International Conference on Big Data, BigData, 2013.
[66] Ronald Taylor. An overview of the Hadoop/MapReduce/HBase framework and its current
applications in bioinformatics. BMC bioinformatics, 11 Suppl 12, 2010.
[67] Ashfag M. Thaufeeg, Kris Bubendorfer, and Kyle Chard. Collaborative research in a social cloud. In
ESCIENCE '11, pages 224-231, 2011.
[68] The HDF5 Format. http://www.hdfgroup.org/HDF5.
[69] The Large Synoptic Survey Telescope (LSST). http://www.lsst.org/ .
[70] Jens-S•onke V•ockler, Gideon Juve, Ewa Deelman, Mats Rynge, and Bruce Berriman. Experiences
using cloud computing for a scientific workflow application. In ScienceCloud '11, 15-24, 2011.
[71] Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He, Zhengping Qian, and Lidong Zhou.
Distributed systems meet economics: Pricing in the cloud. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud'10, Berkeley, CA, USA, 2010.
[72] Jianwu Wang and Ilkay Altintas. Early cloud experiences with the Kepler scientific workflow
system. Procedia Computer Science, 9(0):1630-1634, 2012.
[73] Yi Wang, Gagan Agrawal, Tekin Bicer, and Wei Jiang. Smart: A MapReduce-like framework for in-
situ scientific analytics. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC '15, pages 51:1{51:12, New York, NY, USA, 2015.
[74] Paul Watson, Phillip Lord, Frank Gibson, Panayiotis Periorellis, and Georgios Pitsilis. Cloud
computing for e-science with carmen. In 2nd Iberian Grid Infrastructure Conference, pages 3-14, 2008.
[75] Wenjun Wu, Hui Zhang, ZhenAn Li, and Yaokuan Mao. Creating a cloud-based life science
gateway. eScience, 55-61, 2011.
[76] Y. Zhao, Y. Li, I. Raicu, S. Lu, C. Lin, Y. Zhang, W. Tian, and R. Xue. A service framework for
scientific workflow management in the cloud. IEEE Trans. Serv. Comput., PP(99):1-1, 2014.
[77] Amelie Chi Zhou and Bingsheng He. Simplified resource provisioning for workflows in IaaS clouds.
In IEEE CloudCom, pages 650-655, 2014.

[78] Amelie Chi Zhou and Bingsheng He. Transformation-based monetary cost optimizations for
workflows in the cloud. IEEE Transactions on Cloud Computing, 2(1):85-98, 2014.
[79] Amelie Chi Zhou, Bingsheng He, Xuntao Cheng, and Chiew Tong Lau. A declarative optimization
engine for resource provisioning of scientific workflows in IaaS clouds. In Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed Computing, HPDC '15, pages
223-234, New York, NY, USA, 2015. ACM.
[80] Amelie Chi Zhou, Bingsheng He, and Cheng Liu. Monetary Cost Optimizations for Hosting
Workflow-as-a-Service in IaaS Clouds. IEEE Transactions on Cloud Computing, 1, 2015.
[81] R. W. Zurek and L. J. Martin. GridPP: Development of the UK computing grid for particle physics.
Journal of Physics G: Nuclear and Particle Physics, 32:1-20, 2006.

