archives-ouvertes

Maximizing Parallelism without Exploding Deadlines in
a Mixed Criticality Embedded System
Antoine Blin, Cédric Courtaud, Julien Sopena, Julia Lawall, Gilles Muller

» To cite this version:

Antoine Blin, Cédric Courtaud, Julien Sopena, Julia Lawall, Gilles Muller. Maximizing Parallelism
without Exploding Deadlines in a Mixed Criticality Embedded System. 28th EUROMICRO Confer-
ence on Real-Time Systems (ECRTS’16), Jul 2016, Toulouse, France. hal-01346979

HAL Id: hal-01346979
https://hal.inria.fr /hal-01346979
Submitted on 20 Jul 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/hal-01346979
https://hal.archives-ouvertes.fr

Maximizing Parallelism without Exploding
Deadlines in a Mixed Criticality Embedded System

Antoine Blin*T Cédric Courtaud’ Julien Sopena’ Julia Lawall’ Gilles Muller

*RENAULT s.a.s.

Abstract—Complex embedded systems today commonly in-
volve a mix of real-time and best-effort applications. The recent
emergence of low-cost multicore processors raises the possibility
of running both kinds of applications on a single machine,
with virtualization ensuring isolation. Nevertheless, memory
contention can introduce other sources of delay, that can lead
to missed deadlines. In this paper, we present a combined
offline/online memory bandwidth monitoring approach. Our ap-
proach estimates and limits the impact of the memory contention
incurred by the best-effort applications on the execution time
of the real-time application. We show that our approach is
compatible with the hardware counters provided by current small
commodity multicore processors. Using our approach, the system
designer can limit the overhead on the real-time application to
under 5% of its expected execution time, while still enabling
progress of the best-effort applications.

I. INTRODUCTION

In many embedded system domains, such as the automotive
industry, it is necessary to run applications with different levels
of criticality [13]. Some applications may have nearly hard
real-time constraints, while others may need only best-effort
access to the CPU and memory resources. A typical example
is the car dashboard, which may display both critical real-time
information, such as an alarm, and non critical information,
such as travel maps and suggestions on how to outsmart traffic.
Traditionally, multiple applications are integrated in a vehicle
using a federated architecture: Every major function is imple-
mented in a dedicated Electronic Control Unit (ECU) [28]] that
ensures fault isolation and error containment. This solution,
however, multiplies the hardware cost, and, in an industry
where every cent matters, is increasingly unacceptable.

Recently, efforts have been made to develop an integrated
architecture, in which multiple functions share a single ECU.
AUTOSAR [16] is a consortium of actors from the automotive
industry that defines a software architecture to exploit the
benefits of integrated architectures by facilitating the reuse
of applications. The AUTOSAR standard targets applications
that control vehicle electrical systems and that are scheduled
on a real-time operating system that is compliant with the
AUTOSAR OS standard. Infotainment applications, however,
typically target a Unix-like operating system, and thus still
require the use of a federated architecture.

Recent experimental small uniform memory access com-
modity multicore systems provide a potential path towards
a complete low-cost integrated architecture. Systems such as
the Freescale SABRE Lite [1]] offer sufficient CPU power to
run multiple applications on a single low-cost ECU. Using
Virtualized architectures (8], [18], [34], multiple operating

fSorbonne Universités, Inria, UPMC Univ Paris 06, LIP6

systems can be used without modification. Recent hypervisors
targeting embedded systems, such as SelL4 [2] and PikeOS
[3], make it possible in the context of the automotive domain
to dedicate one or several cores to a class of applications, and
thus provide CPU isolation.

CPU isolation, however, is not sufficient to ensure that real-
time applications can meet their performance constraints. For
current inexpensive small multicore systems, the memory bus
is also a shared resource. Therefore, it has been observed
that the memory usage of applications running on one core
may impact the execution time of applications running on the
other cores [19], [26], [27]. An industrial base-line solution
is to run critical applications in mutual exclusion, which
guarantees no interference [14]]. But this approach only permits
multicore parallelism for non-critical applications, and thus
wastes CPU resources and leads to longer latencies for non-
critical applications.

In this paper, we propose a run-time software-regulation
approach that has the goal of maximizing parallelism between
real-time and best-effort applications running on a single low-
cost multicore ECU. Our approach uses an overhead estima-
tion derived from offline profiling of the real-time application,
when running alone and in parallel with various loads, to
estimate the slow down on the real-time application caused by
memory interferences. When the estimated overhead reaches
a predefined threshold, our approach suspends the best-effort
applications, allowing the real-time task to continue executing
without interference. Suspended best-effort applications are
resumed when the real-time application ends its current activa-
tion. Our solution requires only system-wide memory counters
that are available on most commodity multicore platforms.

A key observation behind our approach is that the overhead
incurred by the real-time application depends both on the
amount of traffic generated on the various cores and on the
ratio between reads and writes in this traffic. To address this
issue, we propose (i) a per-application off-line analysis for
characterizing the performance overhead induced by increases
in memory bandwidth and by various read-write ratios, that is
sensitive to the read-write ratios in the different phases of the
real-time application, and (ii) a run-time system, implemented
within the operating system or hypervisor, that samples the
system-wide memory bandwidth and suspends the best-effort
applications when the accumulated overhead exceeds the level
at which the real-time application can be guaranteed to meet
its timing requirements.

Concretely, we first manually analyze the real-time appli-
cation source code so as to identify phases during which the

application does a recurring job that is likely to generate a
common memory access behavior. Then, we construct a per-
phase overhead table for the real-time application based on
the results of running it in parallel with a large variety of
loads. Finally, at run time, the run-time system periodically
samples the global memory bandwidth usage. On each sample,
it uses the overhead table to estimate the overhead for the
current sample, given the observed global bandwidth. If the
accumulated estimated overhead becomes too high, the run-
time system suspends all of the best-effort applications for the
remainder of the current activation of the real-time application,
to ensure that the current activation incurs no further overhead.

We have prototyped our approach on a SABRE Lite four-
core multicore system using Linux 3.0.35. The run-time
system is implemented as a kernel module, enabling it to
sample the memory bandwidth using counters available in the
memory subsystem, and to suspend and resume the best-effort
applications on the best-effort cores. In our experiments, one
core runs the real-time application, while one or more of the
other three cores run best-effort applications. We assume that
an upper bound on the number of active best-effort cores is
fixed by the system designer and is thus constant throughout
the activations of the real-time application. To emulate real-
time applications, we have chosen the MiBench embedded
benchmark suite [17] because it targets embedded systems.
MiBench has been used in many studies, as reflected by the
more than 2700 citations to the MiBench articlel[T]

Our main contributions are the following:

« We introduce a load microbenchmark for characterizing the
impact of memory accesses on execution time overhead
for a given multicore system. This microbenchmark is
configurable in terms of the ratio of reads and writes, and
in terms of the delay between sequences of read and write
memory accesses.

o We characterize the memory behavior of the MiBench appli-
cations. We show that 13 of the 35 applications may suffer
from more than 5% overhead due to memory contention
on the SABRE Lite. For applications with high memory
demands such as gsort, the overhead is up to 183%.

« We propose a new approach to limit the overhead induced
by loads to a threshold chosen by the system designer. Our
approach uses a run-time controller that periodically samples
the global memory bandwidth usage and uses profiling
information to estimate the incurred overhead on the real-
time application. Our approach suspends the best-effort
applications as soon as the estimated overhead exceeds the
threshold minus the proportion of the application execution
time represented by one sample.

e« We evaluate our approach on the 13 most demanding in-
stances of the MiBench benchmarks that exhibit an overhead
greater than 10% without our approach and a short running
time of below 50ms. Our evaluation uses an overhead
threshold of 5%. Under a variety of constant loads, our
approach limits the overhead on 12 of these application
instances to under 5%, while for the remaining application
instance, the overhead only reaches 5.10%.

'Google Scholar, February 2016

o We study the amount of parallelism permitted by our ap-
proach, i.e., the percentage of the activation of the real-time
application during which best-effort applications are also al-
lowed to execute. For 12 of the 13 selected applications, we
observe an increase in parallelism as compared to a baseline
solution that suspends the best-effort applications on each
activation of the real-time application. 7 of the applications
achieve at least 70% of parallelism for low-bandwidth loads,
regardless of the number of active best-effort cores. For the
other 6 applications, the gain in parallelism depends on the
number of cores used for the best-effort applications.

The rest of this paper is organized as follows. Section [[I] first
presents the SABRE Lite and the MiBench benchmark suite.
We then illustrate the problem of overhead due to high memory
bandwidth on the MiBench applications. Section [lII| presents
our approach, focusing on our off-line and run-time profiling
strategies. Section [[V]|evaluates our approach on the MiBench
applications. Finally, Section presents related work, and
Section [V1] concludes.

II. PROBLEM CHARACTERIZATION

In this section, we first describe our target hardware, then
present MiBench, and finally present a set of experiments
that illustrates in a controlled setting the problem of overhead
induced by high memory bandwidth usage.

A. Architecture of the SABRE Lite

In this paper, we target embedded systems, as used in the
automotive domain, which has strong hardware cost require-
ments. We choose the SABRE Lite multicore system [15] (see
Figure |1)) since it has already been adopted by some industry
leaders as an experimental platform.

The processor of the SABRE Lite is an i.MX 6, which is
based on a 1.2 GHz quad-core Cortex A9 MPCore [7]]. Each
core has two 32-kilobyte 4-way set-associative L1 caches,
one for data and the other for instructions. Each core is also
connected to an external 1-megabyte 16-way set-associative
L2 cache [6] that can be either shared by all the cores or
partitioned in multiples of 1/16th of the cache size. The
Multi Mode DRAM Controller (MMDC) manages access to
one gigabyte of DDR3 RAM that can be used by all cores
[15]. Each core contains six configurable hardware counters
to gather statistics on the operation of the processor (number of
cycles, etc.) and the memory system (L1 accesses, L1 misses,
etc.) [4], [5]. The MMDC contains hardware counters that
measure global memory traffic (read/write bytes, read/write
accesses, etc.) on the platform [15], but no hardware counter
is provided to identify the core that is the source of a L2 miss.

On the SABRE Lite, when using DDR3 RAM, the MMDC
is accessible through a single AXI channel. This AXI channel
has two dedicated request queues: a 16 entry queue for read
requests and a 8 entry queue for write requests. Each request
queue entry holds the information to access up to one cache
line. A round-robin arbitration mechanism is used to send
pending read and write requests into a final reordering buffer,
before the request is sent to the RAM. We will show in
Figure [5] that this mechanism has a significant impact on the

bandwidth that can be achieved when mixing read and write
accesses.

A9 MPCore

Core 0 Core 1 Core 2 Core 3

L1 It |L1 Dat: L1 It |L1 Dat: L1 It |L1 Dat: L1 It |L1 Dat

[PL310 Controller

F—

]
< 3 >
—

Fig. 1: Architecture of the SABRE Lite board

L2 Cache

| MMDC Controller DDR3

B. MiBench

Our experiments use the MiBench benchmark suite [17].
MiBench comprises 35 applications in a variety of embed-
ded domains, including Automotive and Industrial Control,
Networking, and Telecommunications. We exclude 19 appli-
cations that contain x86 code or that relate to long-running
or office applications, leaving 16 applications. All of the
benchmarks are provided with “large” and “small” data sets.
We run the MiBench applications on a 3.0.35 Linux kernel
that has been ported by Freescale to the i.MX 6 architectureﬂ
All MiBench applications are compiled using GGC 4.9.1 with
the option —02. Data inputs are stored in an in-memory file
system, to eliminate the cost of disk access. The L2 cache is
not partitioned and is only used by the MiBench application
running alone on core 0. Each experiment involves 150 runs,
where we have discarded the first 20, to minimize variability.
Table |I| shows the mean run time, the standard deviation, and
the maximum run time. The mean run time ranges from 1
ms for susan small -cto 3 seconds for crc32 large,
showing the large spectrum of application types.

C. Execution time impact of memory contention

Given the capabilities of the SABRE Lite board, one ap-
proach to reducing memory contention between classes of
applications is to partition the L2 cache. Partitioning the L2
cache among the cores avoids interference at the cache level
and limits contention to the memory bus accesses. Still, reduc-
ing the L2 cache size may impact performance for memory
demanding applications. We first study the impact of cache
partitioning on the performance of applications running alone,
and then study the extent to which cache partitioning resolves
the problem of memory contention between applications.

Figure [2] shows the impact of cache partitioning on the
performance of the MiBench applications when run alone, as
compared to the non-partitioned case. In each case, we have
performed 150 runs, and discarded the first 20 results. We
compare the maximum execution times, since we care about
the worst case. Two configurations are studied: (i) the cache
is split in half with one half associated to core 0, running
the MiBench application, and the other half associated to the
other three cores, (ii) the cache is split in two asymmetric

Zhttps://github.com/boundarydevices/linux-imx6/tree/boundary-
imx_3.0.35_4.1.0/

Application Description Mean Max
runtime (ms) |runtime (ms)
basicmath large | auto: math calculations 54.82 £ 0.03 54.94
small 12.31 4+ 0.01 12.33
bitcount large | auto: bit manipulation 413.63 £+ 14.50 449.63
small 2746 £ 1.12 30.52
gsort large | auto: quick sort 23.44 £ 0.08 23.59
small 18.28 £ 0.05 18.38
susan -e large | auto: image recognition | 56.54 £ 0.08 56.75
small 2.08 £+ 0.02 2.13
susan -s large | auto: image recognition | 270.97 4 0.01 270.99
small 17.96 £ 0.01 17.98
susan -c large | auto: image recognition | 23.80 £ 0.05 23.92
small 1.08 £ 0.02 1.15
adpcm large | telecom: 550.29 £ 0.08 550.49
encode small speech processing 30.83 £ 0.01 30.88
adpcm large | telecom: 523.33 £ 0.07 523.52
decode small speech processing 26.06 £ 0.01 26.09
fft large | telecom: FFT 120.17 + 0.21 121.00
small 8.40 £ 0.04 8.48
fft -i large | telecom: inverse FFT 122.30 £ 0.17 122.98
small 17.89 £ 0.05 18.01
cre32 large | telecom: cyclic 3068.97 £ 0.06| 3069.18
small redundancy check 157.59 £ 0.01 157.62
patricia large | network: tree structure 283.28 £ 2.97 289.77
small 49.42 £+ 0.06 49.58
dijkstra large | network: shortest path 228.89 £ 0.21 229.33
small 53.06 £ 0.03 53.14
sha large | security: secure hash 82.20 £ 0.02 82.26
small 7.63 £+ 0.01 7.65
rijndael large security: block cipher 285.96 £+ 0.30 286.92
encode small 27.02 £ 0.11 27.25
rijndael large | security: block cipher 264.83 + 0.15 265.32
decode small 24.89 £ 0.07 25.09

TABLE I: MiBench applications without cache partitioning

parts, 1/4 being associated to core 0, and 3/4 being shared by
the other three cores. The latter setting allows the threads of
multi-threaded best-effort applications to share more L2 cache
data, thus potentially improving their performance. When the
cache size available to the MiBench application is reduced
to 1/4, there is a performance degradation of less than 5%
on all applications except gsort, susan small -c, and
susan small —e. Table[ll shows that susan small -c
and susan small -e have the shortest durations of any of
the MiBench applications, and thus are particularly sensitive
to any overhead. Overall the results suggest that the MiBench
applications mostly fit into a quarter of the L2 cache and are
not memory intensive.

35

Cache configuration
30 One half for cpu0
Il One quarter for cpu0

Overhead (%)

2 2 2 2
OSLTOLOIOTOITOLOLOITOITOLOITOITOITOLHLS
SO S S S0 S eSS TS STETETETEESS
SIS ISSESHNILEE T HXEFLIPLLOL O L0220 2
FSTSSELITEEELE SEFFEEEESS ° 5SS 555
FIOEESILTIFS F§TWE5S SEESSS
DD T THFIOQ] RSO PSS S
FSES<™ FEES
PEET SSSS

Fig. 2: Impact of partioning of MiBench performance

We then study the performance degradation that occurs
when the memory bus is highly loaded. We have developed a

load program in assembly code that performs repeated memory
writes, in such a way as to maximize the probability of an L2
cache miss for each write. When run alone on the SABRE
Lite, the generated load is 2020 MB/s. We run the MiBench
application on core 0 and one instance of the load program
on each of the other three cores. All processes run under the
FIFO Linux scheduling policy with maximum priority and are
pinned to their core to prevent migration.

The results are shown in Figure [3| In each case, the baseline
is the running time of the application when run alone and
without cache partitioning. The overhead ranges up to 183%,
in the case of gsort large. For all cases where there
is an overhead, the overhead is reduced by partitioning the
cache. This is because the load program evicts cache lines to
force memory writes, and as all processes share the cache, the
load program may remove cache lines used by the MiBench
application. On the other hand, whether the application has
access to half of the cache or a quarter of the cache has little
impact. We conclude that cache partitioning is useful to reduce
memory contention. Still, even when the cache is partitioned,
there are 21 cases where a MiBench application running on
a given dataset suffers from an overhead that is greater than
5%. We observe small differences on the overhead between
the 1/4 configuration and the 3/4 configuration. We believe
that these differences come from the cache partitioning, which
can impact the behaviour of the applications.

120 Cache configuration
110 No partitioning
100 I One half for cpu0
%0 One quarter for cpu0
<
S 80
B
i}
£ 60
=
Q 50
O 4w
30 S S —
20
SRR RS S
T e TR RN RRR R RN RN AN
Ny o~ o~ o~ o~ o~ Ny Ny o~ o~ o~ o~ o~ o~ o~ Ny
NN NN AN RN SN N N N N
SIS S SO LSS SFESILLES 2 E P8
SS9 S ELLE SELEESEEE 2 °SSFSESS
SSEEEELES LS S5 EOPESE " FESESE
A I IS SESSSS
FEEET SEEE
LRI INENESES
SESE S§SS

Fig. 3: Impact of load on MiBench performance depending on the partioning scheme

III. APPROACH

We target the setting of an n-core machine, with a real-time
application running on one core, and best-effort applications
running on some of the remaining cores. The maximum
number of active best-effort cores used by the system must be
selected in advance. The choice could be made by the system
designer or by using hardware counters to detect the number
of active best-effort cores. In our work, for simplicity, we use
the first approach. Our goal is to obtain as much parallelism
between the best effort and real-time applications as possible,
as long as the overhead that the best-effort applications intro-
duce on the real-time application remains below a specified
threshold. As is standard for real-time computing, we assume

that the real-time application is known in advance, that it is
periodic, and that it can be profiled to determine its worst-
case execution time and worst-case resource consumption
properties during each activation. On the other hand, best-
effort applications can start and stop at any time, and we do
not know any properties of their memory usage.

To achieve our goals, we propose an approach in two stages.
The first stage, performed offline by the system designer,
begins with a manual analysis of the real-time application
source code to identify phases in which the application has a
constant memory access behavior (read-write ratio). The sys-
tem designer then runs the real-time application against a wide
range of constant loads, and measures the number of memory
accesses and the execution time of each phase, to obtain the
phase’s average overall bandwidth and incurred overhead. For
this analysis, we have developed a load microbenchmark that
makes it possible to generate various loads, in terms of both
bandwidth and the read-write access ratio. The result of this
profiling stage is a table mapping bandwidths to overheads, for
each phase and for each number of active best-effort cores.

In the second stage, at run time, a run-time system, inte-
grated into the OS kernel or the hypervisor, samples the system
memory bandwidth and uses the overhead table obtained from
the profiling stage to accumulate a running sum that con-
servatively overestimates the maximum possible accumulated
overhead for the current sampling period of the real-time
application. If the estimated accumulated overhead is greater
than the threshold specified by the system designer, minus
the maximum amount of overhead that can be accumulated
in a single sample, i.e., the percentage of the total execution
of the real-time application that is represented by the sample
duration, the run-time system suspends all of the best-effort
applications. Suspended applications are allowed to run again
when the real-time application completes its current activation.

In the rest of this section, we describe the various analyses
and mechanisms that support our approach. All further ex-
periments are done with a partitioned cache so as to focus
on contention at the level of the memory subsystem. We
use the 1/4 - 3/4 L2 partitioning scheme, which provides
sufficient cache space for the MiBench applications and which
maximizes the space available to the best-effort applications.

A. Generating constant memory loads

In order to gather the maximum overhead on the application
caused by a constant memory bandwidth generated by loads,
we extend the load program used in Section which
generates a worst case in terms of write accesses. We increase
the range of generated memory bandwidths, by interleaving
a set of write accesses with a set of read accesses, so as to
induce competition between the write and read request queues.
We also make it possible to add a delay between memory
accesses using a wait loop.

Figure [4 shows the read and write loops of the microbench-
mark. The microbenchmark performs sequential accesses to
maximize the memory bandwidth. Our experimental analysis
of the memory bandwidth behavior of a real-time application
runs the application in parallel with one or more instances

stress_read_write :
mov rll, #0
mov rl2, #0

mov Ir, r3 @ r3 has write_nb
add 1r, r4 @ r4 has read_nb
Isl Ir, #5 @ lr x= 32
outer_loop:
mov 16, r0 @ r0 has array address
mov r7, rl @ rl has array size
stress_loop:
mov 18, r3
mov r9, r4
mov r10,r5 @ r5 has delay_nb
subs r7, Ir @ branch to end if there
ble stress_loop_end @ is not enough room

write_loop:
subs 18, #1

stmgeia r6!, {r1l,r12} @
stmgeia r6!, {r1l,r12} @
stmgeia r6!, {r1l,r12} @
stmgeia r6!, {rll,r12} @

write write_nb cache
lines and increment the
pointer stored in r6
accordingly

bgt write_loop

mov rl2, #0 @ reset rll and ri2

mov rll, #0 @ to avoid overflows
read_loop:

subs r9,#1

ldmgeia 16!, {rll,r12} @ read read_nb cache lines
Idmgeia r6!, {r11,r12} @ and increment the pointer
ldmgeia r6!, {rl1l,r12} @ stored in r6 accordingly
Idmgeia r6!, {r1l1,r12}

bgt read_loop

delay_loop:
subs r10,#1 @ increment rll and rl2
add rl11, #1 @ delay_nb times
add rl12, #1

bgt delay_loop
b stress_loop

stress_loop_end:
subs r2, #1
bgt outer_loop

r2 has the number of

@
@ stress loop iteration

Fig. 4: Main loops of the load microbenchmark

of this microbenchmark, each pinned to its own core. We
vary the ratio of read and write accesses in the read and
write loops, such that the sum is 10 (e.g., 3 reads per 7
writes). A sum of 10 permits a variety of read-write ratios.
To take into account both symmetric and asymmetric loads,
we consider numbers of wait-loop iterations of the form 1z
(one load), 1z, 1z and 1z, 2x (two loads), and 1z, 1z, 1x and
lx,2x,3x (three loads), for various values of z between 0
and 8000. We have observed that the traffic resulting from a
delay of 8000 iterations has essentially no impact on the real-
time application. In each run, we obtain the execution time
by measuring elapsed CPU cycles, and obtain the memory
bandwidth of all running instances by measuring the number of
exchanged bytes using the counters of the memory controller.

To illustrate the behavior of the microbenchmark, we run it
alone on core 0, for the targeted range of read-writes ratios
and numbers of wait-loop iterations. The obtained bandwidths
are presented in Figure [5] The highest bandwidth (2020MB/s)
is obtained when only write requests are generated and there
are no wait-loop iterations, i.e., the behavior of the origi-
nal load program. This configuration produces the highest

—&-0r-10w

2000 #—= —-1r-9w
2r-8w

1500 —A-3r-7Tw
g > 4r-6w

U . 5r-5w
o S— . - 6r-4w
9‘*:&,, .

7r-3w
0
0 20 40 60 80 100 120 140 160 180 200 300 400 800 1000 2000 4000 8000

Bandwidth (MB/s)

—

- - 8r-2w

or-lw
= 10r-0w
Iterations

Fig. 5: Bandwidth of the microbenchmark run in isolation

bandwidth because the controller does not have to wait for
write completion, in contrast to the case of reads. Mixing
read and write requests furthermore introduces competition
for accessing the reordering buffer, which reduces the obtained
bandwidth substantially.

B. Profiling a real-time application

In order to be able to compute a conservative estimate
of the overhead incurred by an application in the face of
arbitrary loads, we compute offline a profile of each real-
time application, reflecting the worst-case overhead that the
application incurs when run in parallel with a wide range
of constant loads. Our approach assumes that the real-time
application traffic does not vary over a considered period of
time, i.e., a phase. Therefore, we first identify phases that have
this property in the real-time application, using a combination
of manual source code examination and memory profiling.
Then, the profile for an application is constructed in two steps:
data collection and overhead estimation.

In the data collection step, we first run the application in
isolation a number of times, and collect the maximal observed
execution time per phase p, EzecT), and the corresponding
observed number of memory accesses, Acc,. We then run
the application a number of times in parallel with a range of
constant loads, [, and likewise collect for each load and phase
the execution time, EzecT),, and the number of memory
accesses, Acc;p, observed in each run. For each run with
load ! and for each phase p, we then compute the observed
bandwidth as ObsB; , = Acc;p/ExecT) p, and the overhead
as Ovd;, = (EzecT),/ExecT,) — 1. The result is a set of
mappings of bandwidths ObsB; ,, to overheads Ovd, , for the
given real-time application. For each mapping, we furthermore
note the number of load processes, the read-write ratio and the
number of wait-loop iterations used to generate the load /, and
the phase p.

As the data collection step works on average bandwidths
collected over entire (phase) runs, the result does not cover
the complete set of memory bandwidths that can be observed
during a given execution at a finer granularity. To be able
to estimate the overheads incurred for arbitrary memory
bandwidths, we extrapolate from the observed overhead val-
ues using least squares polynomial fitting, as implemented
by the polyfit function of the Python numpy libraryE]
Constructing an appropriate polynomial raises two challenges.
First, least squares polynomial fitting requires choosing an
appropriate degree for the polynomial, and second, it produces

3http://www.numpy.org/

a polynomial that is as close as possible to all of the points,
while we want one that is a conservative approximation of the
overhead and thus that sits just above all of the points.

To choose the degree, we take a brute force approach of
trying a number of possible degrees, and determining via
simulation which gives the best results. We have designed a
simulator that takes as input an execution trace, consisting
of periodic samples of the overall memory bandwidth of a
real-time application running with some load processes, and a
table mapping memory bandwidths to overheads for the given
application. The simulator then estimates the total overhead
on the application for the given execution trace and table.
We run the simulator on execution traces for a variety of
constant loads, using tables obtained from fitting polynomials
with various degrees. Based on the results, we choose the
degree that gives the lowest error, measured using residual
sum of squares (RSS), between the estimated overhead and
the actual overhead for the largest number of read-write ratios.
We consider only degrees between 1 and 5, to avoid the erratic
behavior that is characteristic of high degree polynomials.

Least squares polynomial fitting interpolates a polynomial
that closely matches the complete set of data points. To instead
construct a polynomial that tracks the greatest overheads, we
interpolate a polynomial individually for each of the read-write
ratios, with various delays, and then take the maximum value
of any of these polynomials for each bandwidth of interest. To
avoid the result being excessively influenced by polynomial
values that are not near any observed data points, we include
a polynomial in the maximum overhead computation only for
bandwidths that exceed the maximum observed bandwidth by
at most 5%. For bandwidths that are beyond this point for
all read-write ratios, we use the overhead inferred for the
bandwidth that is 5% beyond the overall maximum observed
bandwidth. This value is used up to 3000MB/s. Beyond that
value, we consider the overhead to be 0%. Indeed, we have
only seen bandwidths over 3000 in the first sample of our
experiments with loads; in the rest of the samples, in all
executions of the MiBench applications with loads, the overall
bandwidth never exceeds 2000 MB/s.

The above procedure approximates the overhead for a given
observed bandwidth in the case of a constant load. To be more
general, we also consider the possibility that the load changes
within the sampling interval. For example, if the overall
bandwidth is 400MB/s during the first quarter of a sampling
interval, and is 300MB/s in the rest of the sampling interval,
then the sampling process will observe an overall bandwidth
of 325MB/s. To address this imprecision, we follow a packing
strategy, that estimates the worst-case overhead that can be
incurred when the load changes once within each sampling
interval. For this, we consider how the overall bandwidth
ObsB observed within a sampling interval can be decomposed
into two other bandwidths ObsB, and ObsB5 and fractions of
a sampling interval ¢; and ¢, where 0 < ¢1,%5 < 1, such that
t1+tx =1and t; - ObsB1 +ty- ObsBy = ObsB. For ObsB;
and ObsBs, we consider all pairs of multiples of 20.48 MB/s,
which is the granularity of the tables used by our runtime
system (see Section [[II-C), between 0 and 3000, such that,
without loss of generality, ObsB, < ObsB4 and such that the

values of ¢ and ¢, are in the required range.

For each of the pairs of possible observed bandwidths,
we estimate the sample overhead as follows. Based on the
polynomial analysis, each of the observed bandwidths ObsB1
and ObsBs is associated with an overhead on the real-time
application in the case of a constant load. To determine the
effect of combining the bandwidths within a single sample,
we observe that the overhead, which was calculated in terms
of running times, also reflects the ratio between the amount of
bandwidth, Req, required by the real-time application within
a sampling period and the amount of bandwidth, ObtB, that
the real-time application actually obtains. Req is simply the
bandwidth observed when the real-time application is run
alone. ObtB can be computed from the overhead OvdB for a
given constant bandwidth ObsB, as ObtB = Req/(OvdB+1).
From the obtained bandwidth information, we then compute
the overhead incurred in the context of the overall observed
bandwidths ObsB1 and ObsBy as Ovd = Req/(t1 - ObtB1 +
to - ObtBs). For the resulting overhead table, we take the
maximum overhead satisfying all of the criteria.

Figure [6] shows the overhead tables for the four phases
of susan small -c. The second phase has an estimated
overhead for all bandwidths up to 10 times higher than the
other phases, but as shown subsequently in Figure [7}, this
phase has a very short duration. In all of the phases, there is
a high point around 1000 MB/s, and then the overhead drops
off. The drop off represents the fact that if the application is
to achieve such a high bandwidth, then it must in some way
have taken over the memory bus, and is incurring delay on the
best-effort tasks. Note that the average bandwidths per phase,
based on which the overheads are interpolated, typically only
go slightly beyond the high point, but that greater bandwidths
are observed in practice at finer granularities.

C. Run-time system

The run-time system is implemented as a Linux kernel
module that periodically samples the memory bandwidth. At
the end of each sampling interval, the run-time system obtains
the overhead associated with the bandwidth observed in the
current sample and suspends all best-effort applications if the
result of adding this overhead to a running sum becomes
greater than the desired thresholdﬂ Since we target an embed-
ded system with predefined real-time applications, the kernel
module contains all the necessary information, including the
overhead tables and the maximum allowed overhead.

Sampling is triggered by a timer interrupt on one of the
cores dedicated to best-effort applications. On each timer
interrupt, the value of the memory subsystem counter is read
and then reset to 0. The estimated overhead associated with
the current sample is obtained from the appropriate overhead
table according to the number of active best-effort cores. To
make look up in this table efficient, we structure the table
such that the required index can be obtained by a right shift of

4Technically, we take the threshold minus the proportion of the application
execution time represented by one sample, to ensure that the worst case of
no progress in the next sample will not cause the overhead on the real-time
application to exceed the threshold.

250 o~ 2500

% overhead

Y% overhead
g
\
\

T

T T T T T T 1
0 500 1000 1500 2000 0 500 1000 1500 2000

memory bandwidth (MB/s) memory bandwidth (MB/s)

(a) Phase 1 (b) Phase 2

- 1load
2 loads
----3loads

% overhead
% overhead
\

T T T 1 T T T
0 500 1000 1500 2000 0 500 1000 1500 2000

memory bandwidth (MB/s) memory bandwidth (MB/s)

(c) Phase 3 (d) Phase 4

Fig. 6: Overheads associated with the four phases of Susan small -c. Phase 2 has estimated overheads 10 times greater than the other phases.

the value of the memory subsystem counter, i.e., the number
of memory accesses in the current sample. The amount to
shift is chosen as a tradeoff between the need to limit the
table size, and the need to avoid rounding error. We choose
a shift of 10, which has the effect of dividing the number of
bytes by 1024. As motivated subsequently in Section
we use a sampling interval of 50us. Each successive entry
in the overhead table thus represents a bandwidth increment
of 20.48MB/s. This approach introduces an approximation
at two levels: the overhead is that of a bandwidth resulting
from rounding down to the nearest multiple of 20.48 and
in practice the sampling intervals are not all exactly 50us.
Nevertheless, this approach imposes little overhead on the
best-effort core running the run-time system, thus maximizing
the parallelism between the real-time application and the best-
effort applications.

Finally, to suspend the best-effort applications when the
estimated overhead exceeds the threshold, we modified the
Linux kernel to add a new inter-processor interrupt (IPI).
When suspension is required, the run-time system sends an
IPI to the best-effort cores. Each best-effort task is preempted
by the IPI handler, that then loops on a flag signaling the end
of the real-time task activation. When the real-time application
ends its current activation, the flag is set, the IPI handlers end
and the best-effort tasks resume their executions.

At the end of each activation of the real-time application,
the run-time system performs a L1 cache flush on core 0.
Doing so avoids incurring cache writebacks at the beginning
of the next activation, and thus ensures a constant read-write
ratio in the first phase of the application, as was intended by
the choice of phase boundaries. Placing the flush after the
application’s activation best exploits any available slack time
to avoid incurring any extra load on the real-time application.

IV. EVALUATION

Our goals for our approach are first to ensure that the
execution time of the real-time application is not excessively
impacted by the best-effort applications and second to ensure
that the best-effort applications are allowed to run as long
as they do not impact the real-time ones. In the rest of this
section, we evaluate the efficiency of our approach on the
MiBench applications and datasets that, as shown in Figure [2]
can have an overhead greater than 10% without our approach
and that have a running time of at most 50ms. For space
reasons, we focus on the applications with short running times,
since in these cases the duration of a single sample represents

a high percentage of the overall run time, thus introducing the
greatest risk of exceeding the overhead threshold.

Our approach has been prototyped in Linux 3.0.35, which
was the latest stable version available for our platform when
we started the project. The L2 cache is partitioned such that
1/4 is allocated to the real-time application and 3/4 is allocated
to the best effort ones. We set the overhead threshold to 5%,
as 5% is commonly viewed as a lower bound on the precision
of performance measurements.

A. Overhead of run-time sampling

The sampling interval used by the run time controlling
mechanism is a critical parameter for our solution. The higher
the sampling frequency, the faster the system will react when
there is a possibility of exceeding the acceptable overhead.
However, sampling relies on interrupts which, at high fre-
quency, risk inducing a substantial overhead on any best-effort
application that runs on the core that performs the monitoring.

To evaluate the cost of sampling, we use again the MiBench
applications, and measure the slowdown incurred with a 10us
or 50us sampling period, as shown in Table [l When sampling
runs on the same core as a MiBench application, in the role
of a best-effort application, the overhead for a 10us sampling
period is up to 209%. Such an overhead is too penalizing
for best-effort applications. With a 50us sampling period,
sampling only induces an overhead of up to 27%, which is
compatible with our goal of improving parallelism between
real-time and best-effort applications. On the other hand,
when sampling runs on a different core from the MiBench
application, now in the role of a real-time application, the
overhead on the MiBench application is always below 1% and
is sometimes negative, showing that sampling does not impact
the performance of the real-time application.

Real-time core Best-effort core
Application 10 ps 50 ps 10 ps 50 ps
adpcm -d small 0.26% -0.50 3059 % | 3.63 %
adpcm -e small 0.06% -0.27% 31.87 % | 4.07 %
fft small 0.59% 0.69% 30.30 % | 2.52%
fft -i small 0.90% 0.22% 30.51 % | 2.82 %
patricia small 0.12% 0.03% 4759 % | 4.14 %
gsort large 0.44% 0.62% 34.00% 3.19 %
gsort small -0.12% | -0.70% | 32.00% 16.7 %
rijndael -d small | 0.26% 0.00% 30.70 % | 2.76 %
rijndael -e small | 0.67% 0.27% 31.42% 3.19%
sha small 0.14% -0.33% | 2983 % | 2.83 %
susan -c large 0.15% 0.39% 31.60% 2.90%
susan -c small -0.19% 0.85% 31.80 % 353 %
susan -e small 0.45% 0.62% 29.64 % 3.28 %

TABLE II: Overhead of sampling on MiBench applications

For real-time applications with short activations, however,
a 50us sampling period does represent a large portion of their
execution time. For example, the maximum running time of
susan -c small is 1.15ms, and thus each sample equals
at least 4.3% of its duration, and the maximum running time of
susan —-e small is 2.13ms, and thus each sample equals
at least 2.3% of its duration. Our approach stops the best-
effort applications one sample before the 5% threshold may be
exceeded, implying that even a moderate estimated overhead
in the first sample will prevent any further parallelism in the
affected activation for these applications. Still, our approach
respects the desired threshold.

B. Application memory profiles

Figure [/| shows the memory profiles for the selected appli-
cations that exhibit different phases. Write accesses (blue) are
shown on top of read accesses (green). Phases are typically
delimited by loops in the source code. Our approach assumes
that a single memory access patterns recurs throughout a
phase. Still there are variations within the phases for some
MiBench applications, such as gsort. We find that our
estimated overheads are sufficient to protect the real-time
application as long as the read-write ratio remains roughly
constant during a phase. Note that some of the phases are very
small, such as the first phase of rijndael and the second
phase of susan small.

C. Efficiency for constant loads

We study the impact of using our approach when running
the selected MiBench applications, while running loads ex-
hibiting all the read-write ratios considered when creating the
overhead tables. In total, for each application, there are 18
different load values, with 11 different read-write ratios and
5 configurations of loads on best-effort cores, leading to 990
experiments. Each experiment involves 30 runs, of which we
drop the first 10 results.

We calculate the overhead on a MiBench application by
measuring its running time at the end of the activation with
the running time of the application alone with the L2 cache
partitioned. Figure [§] shows the overhead distribution for each
application in the form of a violin plot. The width of a violin
at a particular overhead value indicates the number of runs
of the application that exhibit that overhead. The maximum
overhead is reached by sha small with an overhead of
5.10%. All other applications have an overhead under 5%. The
large variations in the overheads of susan small -c and
susan small -e are due to their short execution times.

We next study the degree of parallelism we can obtain
for best-effort applications, with various loads. Parallelism
is measured as the percentage of time during which best-
effort applications are executed in parallel with the real-
time application. Figure [0] shows the worst-case degree of
parallelism for the applications, for all of the studied multiples
of wait-loop iterations, among the 20 considered runs in
each case. The degree of parallelism achieved for the various
applications differs greatly, thus showing the need for our
application-specific profiles. For 7 of the 13 applications, all

configurations achieve at least 70% parallelism when the loads
become dominated by non memory related computations: both
adpcms, both ffts, both rijndaels, and sha small.
For the remaining applications, except gsort large and
susan small -c, the degree of parallelism depends highly
on the number of active best-effort cores. Finally, gsort
large and susan small -c start with a long memory
intensive phase (see Figure [7d), during which the overhead
threshold is reached.

V. RELATED WORK

A variety of approaches have been proposed to reduce the
impact of memory contention on process execution times.
These range from offline approaches, in which a Worst Case
Execution Time (WCET) is computed that takes memory con-
tention into account, to various changes to software, hardware,
or a combination of both, to reduce or eliminate the impact
of memory contention on application execution times.

a) WCET approaches: Pellizzoni et al. [30] have de-
veloped a method for calculating the WCET in a multicore
context. Bin et al. [9], [10] have developed a methodology
to compute the WCET of avionic applications sharing the
same multicore system. Jean et al. [19] have studied the
problem of WCET for multicore processors in the context of
an embedded hypervisor in the context of avionic systems.
Our approach relies on run-time monitoring and can benefit
from any advance in WCET computation.

b) Software approaches: Caccamo et al. [12] and Yun et
al. [36] have developed mechanisms for sharing the memory
bandwidth in the context of a multi-core architecture with an
accurate knowledge of the memory consumed by each core.
They implemented their solution on a quad-core platform with
two last level caches, each cache being shared by two cores
(Cores 0 and 1 share an LLC, and Cores 2 and 3 share
another LLC). To get accurate information on each core’s
memory consumption, they monitor the LLC miss rate and
they disable core 0 and core 2 to eliminate cache sharing
effects. Our solution targets hardware platforms that do not
provide per-core memory bandwidth information. Kritikakou
et al. [20] have developed a solution to manage contention
on shared resources. They introduce a set of observation
points in the binaries of the real time applications. At each
observation point, the run-time system determines if best-
effort tasks must be suspended. Their approach is independent
of the resources involved. Consequently, their solution can
be applied to any contention issue on shared resources and
does not rely on the hardware to obtain measurements. They
then extend their solution to schedule multiple real-time tasks
[21]. Our solution differs from these approaches because it
does not require any modification of the application binary.
Indeed, such a modification could add an additional overhead
on the real-time application. Muralidhara et al. [25] use an 8-
core hardware platform connected to the main memory by
several channels, each independently controlling a portion
of the physical memory. They group applications that do
not interfere on the same channel. Liu et al. [23] combine
cache coloring with the partitioning by channel in the Linux

800 800

2:
\
N

Nnnn
Al

600 8 600
g

400 g 400

T T I T

nlnng
N
00
/777

>

200

T O T L]
Bandwidth (megabyte/s)

7/
%
7
7
2

Nl
Alhnn
AMIBUIMNSN

4
.
00
4
7

1 E] g 6 7 B

N
5|
=

16

Time (ms) Time (ms)

(a) Fft small (3 phases) (b) Fft small -i (3 phases)

=SSN

4

\\\\\\

SSS
SO\

-
=SS S
~eama

CE=SS
SSwman

XY =
5|

Time (ms)

(c) Qsort small (2 phases)

Bandwidth (megabyte/s)
Bandwidth (megabyte/s)
Bandwidth (megabyte/s)

0 5 1 20 25 0 s 10 15 20 2

0 15
Time (ms)

(e) Rijndael small -d (2 phases) (f) Rijndael small -e (2 phases)

\ Il Read I Write

Bandwidth (megabyte/s)

10 1
Time (ms)

(i) Susan small - (5 phases)

456 4.60
397 357 350

Z¢$xz¢¢¢IK£$w”

5

Overhead (%)

N N DDA & PPN & AN N
& & X & l < < < 2 & &
EIP P O G IR IO IV L S gL g
D7 e L N A NN SN M)
& & T R TH S
Ny
SIS N T

Fig. 8: Overhead for MiBench applications with constant loads

kernel in order to partition the cache and the memory. Seo et
al. determine the memory contention level using hardware
counters to calculate the number of retries necessary for a
memory request to be accepted by the memory controller.
They use this information to improve, by scheduling, the whole
system performance,

¢) Hardware approaches: Ungerer et al. [33] have de-
signed a multicore architecture for applications having varying
degrees of criticality that permits a safe computation of
the WCET. Lickly et al. [22] propose a new multithreaded
architecture for executing hard real-time tasks that provides
precise and predictable timings. Moscibroda et al. propose
a new memory controller designed to provide memory access
fairness across different consumers. Shah et al. [33] present
a new scheduling policy for the bus arbiter to respect real-
time constraints and have good performance. All of these
approaches involve hardware that does not currently exist,
while our approach targets COTS machines.

[Z1Phase 1 EPhase 2

(d) Qsort large (2 phases)

N
\
N
¥

I\
!
i
i
N
il

(g) Susan large -c (4 phases) (h) Susan small -c (4 phases)

SPhase 3 [IPhase 4 [KAPhase5

Fig. 7: Memory profiles of selected MiBench applications

d) Mixed approaches: Pellizzoni et al. introduce
hardware buffers that make it possible to schedule accesses to
shared resources in such a way as to prevent two consumers/-
producers from simultaneously accessing the same resources.
Applications must be structured into phases that have par-
ticular memory-access properties and are thus able to take
advantage of the resource guarantees provided by the sched-
uler. Boniol et al. propose an algorithm for restructuring
applications automatically to fit the requirements of such a
system. Finally, Rafique et al. designed a fair bandwidth
sharing memory controller, which is coupled to a feedback-
based adaptive bandwidth sharing policy managed by the
operating system. Our approach requires neither new hardware
nor any changes to the best-effort application source code.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach permitting to
mix real-time and best-effort applications on a single small
COTS multicore machine, while bounding the overhead that
the real-time application can incur due to memory-demanding
best-effort applications. Our approach relies on an off-line
analysis of the real-time application, and a run-time system
that controls the scheduling of the best-effort applications.
No modifications to the best-effort applications are required.
Our approach allows the best-effort applications to run concur-
rently with the real-time application as long as the overhead
limit on the real-time application can be guaranteed to be
respected. We have investigated the feasibility of the approach
on MiBench applications, and found the limits both in terms of
sampling and phase precision. We have studied the behavior

2 2 @ 5
& 2 3 8

Parallelism (%)
Parallelism (%)

N s Py @ 5
8 & 3 8 8
5[

Parallelism (%)

8

100 =
80 80 E Zi

Parallelism (%)

o

1000 2000 3000 4000 5000 6000 7000 8000
Iterations

1000 2000 3000 4000 5000 6000 7000 8
Iterations

(a) Adpcm -e small (b) Adpem -d small

0 1000 2000 3000 4000 5000 6000 7000 8000

1000 2000 3000 4000 5000 6000 7000 8000

Iterations Iterations

(c) Fft small

Parallelism (%)

N N o ® 5

] 3 3 8 S

\ ’
Parallelism (%)

a Y o 5

3 3 8 8

20

(d) Fft small -i

Parallelism (%)
Parallelism (%)

1000 2000 3000 4000 5000 6000 7000 8000 o 1000 2000 3000 4000 5000 6000 7000 8000 o 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Iterations Iterations Iterations Iterations
(e) Patricia small (f) Qsort small (g) Qsort large (h) Rijndael -e small

100 4] 100 2 =+ 100 100

80 80 80 80
E 60 E 60 E 60 E 60
8 9 a a
o o o]
T 40 © 40 © 40 © 40|
e e e e
s s s s
& & < <

20 20 20 20

= %
A + ¥ ¥—
1 1000 2000 3000 4000 5000 6000 7000 8000 o 1000 2000 3000 4000 5000 6000 7000 8000 00 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations Iterations Iterations Iterations
(i) Rijndael -d small (j) Sha small (k) Susan large -c (1) Susan small -e

100

80

0 —a [1x] e—e [1x, 2x] [1x, 1x] ¢ [1x, 2x, 3x] +»~ [1x, 1x, 1x]

Parallelism (%)
&

8

L=

000 2000 3000 4000 5000 6000 7000 8000
Iterations

(m) Susan small -c

Fig. 9: Parallelism for MiBench applications with constant loads. The different curves represent different multiples of the wait-loop iterations between sequences of accesses.

of the 13 MiBench applications and datasets that incur an
overhead of over 10% without our mechanism and are of
short duration. Of these, 12 always incur an overhead of less
than 5% with our mechanism, regardless of the load, and one
incurs an overhead of 5.10%. Furthermore, 7 achieve 70% of
parallelism for low-bandwidth loads, regardless of the number
of active best-effort cores.

Currently, our approach suspends all best-effort applications
as soon as the possibility of an excessive delay is detected.
To further increase the amount of time in which best-effort
applications are allowed to run, alternate approaches could
be considered that reduce the demand of the best effort
applications incrementally. One approach would be to slow
down the clock speed of the best effort cores, when the
hardware permits this operation (the SABRE Lite hardware
does not). Another approach would be to suspend only the
best-effort processes running on the core having the greatest
L1 cache activity. Unlike L2 cache activity, which is global
to the system, measuring core-specific L1 cache activity is
possible on standard processors, because the L1 cache is core
specific. A third approach would be to exploit the different
bandwidth requirements of the different phases of the real-
time application. As phases with low bandwidth requirements

incur little delay, regardless of the overall memory traffic, it
could be possible to restart the best-effort applications when
the real-time application enters such a phase. All of these
approaches would require degrading the execution of the best-
effort applications well before reaching the overhead threshold,
to ensure that this threshold continues to be respected.

A current limitation of our work is that it involves manual
analysis of the source code to determine the phases. In the
future, we plan to automate this process by combining auto-
mated source code analysis to identify repetitive patterns in the
source code and filtering of the memory profiles to identify
memory phases. A second limitation is that the approach does
not adapt to cases where the memory demands varies with the
input data. To address this issue, we could compute memory
profiles for a variety of inputs, and then merge the worst case
for each observed bandwidth and load into a single table.

Finally, our approach currently accommodates only one
real-time application, or multiple real-time applications with-
out preemption. Handling multiple real-time applications with
preemption would require switching real-time application pro-
files when one real-time application is preempted by another.
We leave this to future work.

(1]

(2]
(3]
(4]

(5]
(6]

(7]
(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

Freescale boards. |http://www.freescale.com/webapp/sps/site/overview.
jsp?code=SABRE_HOME({ } &fsrch=1&sr=1&pageNum=1.

Okl4 microvisor. http://www.ok-labs.com/products/okl4-microvisor.
PikeOS. http://www.sysgo.com,

ARM. ARM Architecture Reference Manual ARMv7-A and ARMv7-R
edition, rev C.b, November 2012.

ARM. Cortex-A9 Technical Reference Manual, rev r4pl, June 2012.
ARM. Level 2 Cache Controller L2C-310 Technical Reference Manual,
rev 1r3p3, June 2012.

ARM. Cortex-A9 MPCore Technical Reference Manual, June rev r4pl,
2012.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, 1. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP, pages 164-177, 2003.

J. Bin, S. Girbal, D. G. Perez, A. Grasset, and A. Merigot. Studying co-
running avionic real-time applications. In Embedded Real Time Software
and Systems (ERTS), Feb. 2014.

J. Bin, S. Girbal, D. G. Perez, and A. Merigot. Using monitors to predict
co-running safety-critical hard real-time benchmark behavior. In Inter-
national Conference on Information and Communication Technology for
Embedded Systems (ICICTES), Jan. 2014.

F. Boniol, H. Cassé, E. Noulard, and C. Pagetti. Deterministic execution
model on COTS hardware. In International Conference on Architecture
of Computing Systems (ARCS), pages 98-110. Springer-Verlag, 2012.
M. Caccamo, R. Pellizzoni, L. Sha, G. Yao, and H. Yun. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In RTAS, pages 55-64, 2013.

C. Ficek, N. Feiertag, K. Richter, and M. Jersak. Applying the
AUTOSAR timing protection to build safe and efficient ISO 26262
mixed-criticality systems. In Embedded Real Time Software and Systems
(ERTS), Feb. 2012.

S. Fisher. Certifying applications in a multi-core environment: The
worlds first multi-core certification to sil 4. SYSGO AG, 2014.
Freescale Semiconductor. i.MX 6Dual/6Quad Applications Processor
Reference Manual, rev 1, April 2013.

S. Fiirst, J. Mossinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkédmper, G. Kinkelin, K. Nishikawa, and K. Lange. Autosar—a
worldwide standard is on the road. In /4th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden, volume 62, 2009.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Workload Characterization, IEEE International
Workshop, pages 3—14, 2001.

H. Hirtig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter. The
performance of pkernel-based systems. In SOSP, pages 6677, 1997.
X. Jean, M. Gatti, D. Faura, L. Pautet, and T. Robert. A software
approach for managing shared resources in multicore ima systems. In
Digital Avionics Systems Conference (DASC), 2013 IEEE/AIAA 32nd,
pages 7D1-1-7D1-15, Oct. 2013.

A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange. Run-
time control to increase task parallelism in mixed-critical systems. In
Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on, pages
119-128. IEEE, 2014.

A. Kiritikakou, C. Rochange, M. Faugere, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez. Distributed run-time wcet controller for concurrent
critical tasks in mixed-critical systems. In Proceedings of the 22nd
International Conference on Real-Time Networks and Systems, page 139.
ACM, 2014.

B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee. Predictable programming on a precision timed architecture. In
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), pages 137-146. ACM, 2008.

L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In 27st PACT, pages 367-376, 2012.

T. Moscibroda and O. Mutlu. Memory performance attacks: Denial
of memory service in multi-core systems. In 16th USENIX Security
Symposium (SS), pages 18:1-18:18, 2007.

S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda. Reducing memory interference in multicore systems
via application-aware memory channel partitioning. In [EEE/ACM
International Symposium on Microarchitecture, pages 374-385, 2011.
J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. In EDCC, pages 132-143, May 2012.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

J. Nowotsch and M. Paulitsch. Quality of service capabilities for hard
real-time applications on multi-core processors. In Proceedings of the
21st International Conference on Real-Time Networks and Systems,
RTNS 13, pages 151-160, New York, NY, USA, 2013. ACM.

R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz. From a
federated to an integrated automotive architecture. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(7):956,
2009.

R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley. A predictable execution model for COTS-based embedded
systems. In RTAS, pages 269-279, Apr. 2011.

R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore systems.
In Design, Automation Test in Europe Conference Exhibition (DATE),
2010, pages 741-746, Mar. 2010.

N. Rafique, W.-T. Lim, and M. Thottethodi. Effective management of
DRAM bandwidth in multicore processors. In Parallel Architecture and
Compilation Techniques (PACT), pages 245-258, Sept. 2007.

D. Seo, H. Eom, and H. Y. Yeom. MLB: A memory-aware load
balancing for mitigating memory contention. In 2014 Conference on
Timely Results in Operating Systems (TRIOS 14), 2014.

H. Shah, A. Raabe, and A. Knoll. Priority division: A high-speed shared-
memory bus arbitration with bounded latency. In Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1-4, Mar. 2011.
U. Steinberg and B. Kauer. NOVA: A microhypervisor-based secure
virtualization architecture. In EuroSys, pages 209-222, 2010.

T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quinones, M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig,
I. Guliashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische.
Merasa: Multicore execution of hard real-time applications supporting
analyzability. IEEE Micro, 30(5):66-75, Sept. 2010.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access
control in multiprocessor for real-time systems with mixed criticality. In
24th ECRTS, pages 299-308, July 2012.

http://www.freescale.com/webapp/sps/site/overview.jsp?code=SABRE_HOME{}&fsrch=1&sr=1&pageNum=1
http://www.freescale.com/webapp/sps/site/overview.jsp?code=SABRE_HOME{}&fsrch=1&sr=1&pageNum=1
http://www.ok-labs.com/products/okl4-microvisor
http://www.sysgo.com

	Introduction
	Problem characterization
	Architecture of the SABRE Lite
	MiBench
	Execution time impact of memory contention

	Approach
	Generating constant memory loads
	Profiling a real-time application
	Run-time system

	Evaluation
	Overhead of run-time sampling
	Application memory profiles
	Efficiency for constant loads

	Related work
	Conclusion and Future Work
	References

