Resolution in Solving Graph Problems

Kailiang Ji

- To cite this version:

Kailiang Ji. Resolution in Solving Graph Problems. 8th Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE 2016), Jul 2016, Toronto, Canada. hal-01245138v2

HAL Id: hal-01245138 https://hal.archives-ouvertes.fr/hal-01245138v2

Submitted on 26 Jul 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Resolution in Solving Graph Problems

Kailiang Ji *
LRI, Université Paris Sud
kailiang.ji@lri.fr

Abstract

Resolution is a proof-search method on proving satisfiability problems. Various refinements have been proposed to improve the efficiency of this method. However, when we try to prove some graph properties, none of the refinements have an efficiency comparable with traditional graph traversal algorithms. In this paper we propose a way of solving some graph traversal problems with resolution. And we design some simplification rules to make the proof-search algorithm work more efficiently on such problems.

1 Introduction

Since the introduction of Resolution [11], many refinements have been proposed to increase the efficiency of this method, by avoiding redundancies. A first refinement, hyper-resolution, has been introduced by Robinson himself the same year as Resolution [10]. More recently ordered resolution [9, 12], (polarized) resolution modulo (PRM) [5, 6], and finally ordered polarized resolution modulo (OPRM) [1] introduced more restrictions. However, as we shall see, these kind of refinements are still redundant.

In order to address the question of the redundancy of proof search methods, we encode graph problems, e.g. accessibility or cycle detection, as Resolution problem, and we compare two ways to solve these problems: by using a proofsearch method and by a direct graph traversal algorithm. If the proof-search method simulates graph traversal step by step, and in particular never visits twice the same part of the graph, we can say that it avoids redundancies. Otherwise, this helps us analyze and eliminate the redundancies of the method, by analyzing why the method visits twice the same part of the graph.

The two graph problems can be expressed by predicate formulae with class variables (monadic second-order logic) [4, 7]. For instance, the cycle detection problem can be expressed as $\exists Y\left(s_{1} \in Y \wedge \forall x\left(x \in Y \Rightarrow \exists x^{\prime}\left(\right.\right.\right.$ edge $\left.\left.\left.\left(x, x^{\prime}\right) \wedge x^{\prime} \in Y\right)\right)\right)$. The satisfiability of this formula can be proved by reducing it to effectively propositional case [8], where the sub-formula $\forall x A$ is replaced by $A\left(s_{1} / x\right) \wedge \cdots \wedge$ $A\left(s_{n} / x\right)$, and $\exists x A$ by $A\left(s_{1} / x\right) \vee \cdots \vee A\left(s_{n} / x\right)$, in which s_{1}, \ldots, s_{n} are the constants for all the vertices of a graph. By representing the theory of the graph as a set of rewrite rules [7], these problems can be proved by some off-the-shelf automated

[^0]theorem provers, such as iProver Modulo [2]. As these problems can be expressed with temporal formulae [3], they can also be solved by model checking tools. In this paper, a propositional encoding of these two problems is given. To reduce the search space and avoid redundant resolution steps, we add a selection function and a new subsumption rule. This method works for encoding of several graph problems. Its generality remains to be investigated.

The paper is organized as follows. Section 2 describes the theorem proving system PRM. In Section 3, some basic definitions for the expressing of graph problems are presented. Section 4 and 5 presents the encoding of cycle detection and accessibility respectively. In Section 6 , some simplification rules are defined. Finally, an implementation result is presented.

2 Polarized Resolution Modulo

In Polarized Resolution Modulo (see Figure 1), clauses are divided into two sets: one-way clauses (or theory clauses) and ordinary clauses. Each one-way clause has a selected literal and resolution is only permitted between two ordinary clauses, or a one-way clause and an ordinary clause, provided the resolved literal is the selected one (the one underlined later) in the one-way clause. In the rules of Figure 1, P and Q are literals, C and D denote a set of literals. σ is a substitution function, which is equal to the maximal general unifier $(m g u)$ of P and $Q . \mathcal{R}$ is a set of one-way clauses that are under consideration.

Resolution $\frac{P \vee C \quad Q^{\perp} \vee D}{\sigma(C \vee D)} \quad$ Factoring $\frac{P \vee Q \vee C}{\sigma(P, C)}$
Ext.Narr. $\frac{P \vee C}{\sigma(D \vee C)}$ if $\underline{Q^{\perp}} \vee D$ is a one-way clause of \mathcal{R}
Ext.Narr. $\frac{P^{\perp} \vee C}{\sigma(D \vee C)}$ if $\underline{Q} \vee D$ is a one-way clause of \mathcal{R}

Fig. 1. Polarized Resolution Modulo

Proving the completeness of the rules in Figure 1 requires to prove a cut elimination lemma [6,5] for Polarized Deduction Modulo, the deduction system with a set of rewrite rules, containing for each one-way clause $\underline{P^{\perp}} \vee C$ the rule $P \rightarrow^{-} C$ and for each one-way clause $\underline{P} \vee C$ the rule $P \rightarrow^{+} C^{\perp}$.

Like in OPRM, in this paper we define a selection function to select literals in an ordinary clause which have the priority to be resolved and add the selection function to PRM.

Note that when applying a Resolution rule between an ordinary clause and a one-way clause, we are in fact using an Extended Narrowing rule on this ordinary clause. We write $\Gamma \mapsto_{\mathcal{R}} C$ if C can be derived from the set of clauses Γ by applying finitely many inference rules of PRM.

3 Basic Definitions

In this paper, we consider a propositional language which contains two atomic propositions B_{i} and W_{i} for each natural number. We denote a graph as $G=$ $\langle V, E\rangle$, where V is a set of vertices enumerated by natural numbers, E is the set of directed edges in the graph. The sequence of vertices $l=s_{0}, \ldots, s_{k}$ is a walk if and only if $\forall 0 \leq i<k,\left(s_{i}, s_{i+1}\right) \in E$. The walk l is closed if and only if $\exists 0 \leq j \leq k$ such that $s_{k}=s_{j}$. The walk l is blocked if and only if s_{k} has no successors. The method we proposed is inspired by graph traversal algorithms.

Definition 1 (Black literal, white literal). Let G be a graph and $\left\{s_{1}, \ldots, s_{n}\right\}$ be the set of all the vertices in G. For any $1 \leq i \leq n$, the literal B_{i} is called a black literal and the literal W_{i} is called a white literal.

Intuitively, the black literals denote the vertices that have already been visited, while the white literals denote the non-visited ones.

Definition 2 (Original clause, traversal clause, success clause). Let G be a graph and $\left\{s_{1}, \ldots, s_{n}\right\}$ the set of vertices in G. For each graph traversal problem starting from $s_{i}(1 \leq i \leq n)$, the clause of the form $B_{i} \vee W_{1} \vee \cdots \vee W_{n}$ is called an original clause $\left(\mathrm{OC}\left(s_{i}, G\right)\right)$. A clause with only white and black literals is called a traversal clause. Let C be a traversal clause, if there is no i, such that both B_{i} and W_{i} are in C, then C is called a success clause.

Among the three kinds of clauses, the original clause is related to the starting point of the graph traversal algorithm, the traversal clause is the current state of the traveling, and the success clause denotes that a solution is derived. Trivially, the original clauses and success clauses are also traversal clauses.

4 Closed-walk Detection

In this section, we present a strategy of checking whether there exists a closed walk starting from a given vertex. For a graph, each edge is represented as a rewrite rule, and the initial situation is denoted by the original clause.

E-coloring rule Let G be a graph and $V=\left\{s_{1}, \ldots, s_{n}\right\}$ be the set of vertices in G. For each pair of vertices $\left\langle s_{i}, s_{j}\right\rangle$ in V, if there exists an edge from s_{i} to s_{j}, then we formalize this edge as an E-coloring rewrite rule

$$
W_{i} \hookrightarrow B_{j} .
$$

The corresponding one-way clause of this rewrite rule is $W_{i}^{\perp} \vee B_{j}$ (called E-

Resolution for closed-walk detection Let G be a graph and s be a vertex of G, then the the problem of checking whether, starting from s, there exists a closed walk can be encoded as the set of clauses $\{\mathrm{OC}(s, G)\} \cup \mathrm{EC}(G)$. By applying resolution rules among these clauses, a success clause can be derived if and only if there exists a closed walk starting from s.

Example 1. Consider the following graph

We prove that there exists a closed walk starting from s_{1}. For this problem, the original clause is $B_{1} \vee W_{1} \vee W_{2} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6}$ and the set of E-coloring clauses for this graph are

$$
\underline{W_{1}^{\perp}} \vee B_{2}, \underline{W_{1}^{\perp}} \vee B_{3}, \underline{W_{2}^{\perp}} \vee B_{4}, \underline{W_{3}^{\perp}} \vee B_{5}, \quad \underline{W_{3}^{\perp}} \vee B_{6}, \quad \underline{W_{4}^{\perp}} \vee B_{5}, \quad \underline{W_{5}^{\perp}} \vee B_{2} .
$$

The resolution steps are presented in the following tree from top to bottom

$$
\begin{array}{cc}
B_{1} \vee W_{1} \vee W_{2} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6} & \underline{W_{1}^{\perp} \vee B_{2}} \\
\hline B_{1} \vee B_{2} \vee W_{2} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6} & \underline{W_{2}^{\perp} \vee B_{4}} \\
\hline B_{1} \vee B_{2} \vee B_{4} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6} & \underline{W_{4}^{\perp} \vee B_{5}} \\
\hline B_{1} \vee B_{2} \vee B_{4} \vee W_{3} \vee B_{5} \vee W_{5} \vee W_{6} & \underline{W_{5}^{\perp} \vee B_{2}} \\
\hline B_{1} \vee B_{2} \vee B_{4} \vee W_{3} \vee B_{5} \vee W_{6}
\end{array}
$$

The clause $B_{1} \vee B_{2} \vee B_{4} \vee W_{3} \vee B_{5} \vee W_{6}$ is a success clause. Thus, there exists a closed walk starting from s_{1}.

Theorem 1. Let G be a graph and s be a vertex of G. Starting from s, there exists a closed walk if and only if starting from $\{\mathrm{OC}(s, G)\} \cup \mathrm{EC}(G)$, a success clause can be derived.

5 Blocked-walk Detection

In this section, a method on testing whether, starting from a vertex, there exists a blocked walk or not is given. In this method, the set of edges starting from the same vertex are represented as a rewrite rule.

A-coloring rule Let G be a graph and $V=\left\{s_{1}, \ldots, s_{n}\right\}$ the set of vertices in G. For each s_{i} in V, assume that starting from s_{i}, there are edges to $s_{i_{1}}, \ldots, s_{i_{j}}$, then we formalize such set of edges as an A-coloring rewrite rule

$$
W_{i} \hookrightarrow B_{i_{1}} \vee \cdots \vee B_{i_{j}} .
$$

The one-way clause of this rewrite rule is $W_{i}^{\perp} \vee B_{i_{1}} \vee \cdots \vee B_{i_{j}}$ (called A-coloring clause). The set of all the A-coloring clauses of G is denoted as $\mathrm{AC}(G)$.

Resolution for blocked-walk detection Let G be a graph and s be a vertex of G, then the problem of checking that starting from s, whether there exists a blocked walk can be encoded as the set of clauses $\{\mathrm{OC}(s, G)\} \cup \mathrm{AC}(G)$. By applying resolution rules among these clauses, a success clause can be derived if and only if there is no blocked walk starting from s.

Example 2. Consider the graph

and check whether there exists a blocked walk starting from s_{1}. For this problem, the original clause is $B_{1} \vee W_{1} \vee W_{2} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6}$ and the set of A-coloring clauses for this graph are

$$
\underline{W_{1}^{\perp}} \vee B_{2} \vee B_{3}, \quad \underline{W_{2}^{\perp}} \vee B_{4}, \quad \underline{W_{3}^{\perp}} \vee B_{2}, \quad \underline{W_{4}^{\perp}} \vee B_{3}, \quad \underline{W_{5}^{\perp}} \vee B_{4}, \quad \underline{W_{6}^{\perp}} \vee B_{4}
$$

The resolution steps are presented in the following tree top-down

$$
\begin{gathered}
\frac{B_{1} \vee W_{1} \vee W_{2} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6} \quad \underline{W_{1}^{\perp}} \vee B_{2} \vee B_{3}}{\substack{B_{1} \vee B_{2} \vee B_{3} \vee W_{2} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6} \quad \underline{W_{2}^{\perp} \vee B_{4}} \\
\frac{B_{1} \vee B_{2} \vee B_{3} \vee B_{4} \vee W_{3} \vee W_{4} \vee W_{5} \vee W_{6} \quad \underline{W_{3}^{\perp} \vee B_{2}}}{B_{1} \vee B_{2} \vee B_{3} \vee B_{4} \vee W_{4} \vee W_{5} \vee W_{6} \quad \underline{W_{4}^{\perp}} \vee B_{3}} \\
B_{1} \vee B_{2} \vee B_{3} \vee B_{4} \vee W_{5} \vee W_{6}}}
\end{gathered}
$$

The clause $B_{1} \vee B_{2} \vee B_{3} \vee B_{4} \vee W_{5} \vee W_{6}$ is a success clause. Thus, there is no blocked walk starting from s_{1}.

Theorem 2. Let G be a graph and s be a vertex of G. Starting from s, there is no blocked walk if and only if, starting from $\{\mathrm{OC}(s, G)\} \cup \mathrm{AC}(G)$, a success clause can be derived.

6 Simplification Rules

Traditional automatic theorem proving methods are only practical for graphs of relatively small size. In this section, the reason why the resolution method is not as efficient as graph traversal algorithms is analyzed. Moreover, some strategies are designed to address such problems in proof-search algorithms.

6.1 Selection Function

First we show that the number of resolution steps strongly depend on the literals that are selected. More precisely, the number of literals that are selected will also affect the number of resolution steps. Then a selection function is given.

Example 3. For the graph
we prove the property: starting from s_{1}, there exists a closed walk. The original clause is $B_{1} \vee W_{1} \vee W_{2} \vee W_{3} \vee W_{4}$ and the E-coloring clauses of the graph are

$$
\underline{W_{1}^{\perp}} \vee B_{2}, \quad \underline{W_{2}^{\perp}} \vee B_{1}, \quad \underline{W_{2}^{\perp}} \vee B_{3}, \quad \underline{W_{3}^{\perp}} \vee B_{4}, \quad \underline{W_{4}^{\perp}} \vee B_{3} .
$$

Starting from the original clause, we can apply resolution as follows: First, apply resolution with E-coloring clause $W_{1}^{\perp} \vee B_{2}$, which yields

$$
\begin{equation*}
B_{1} \vee B_{2} \vee W_{2} \vee W_{3} \vee W_{4} \tag{1}
\end{equation*}
$$

Then for (1), apply resolution with E-coloring clause $\underline{W_{2}^{\perp}} \vee B_{1}$, which yields

$$
\begin{equation*}
B_{1} \vee B_{2} \vee W_{3} \vee W_{4} \tag{2}
\end{equation*}
$$

Clause (2) is a success clause. However, from (1), if we apply resolution with another E-coloring clause, more steps are needed to get a success clause.

The instinctive idea from Example 3 is similar to graph traversal algorithm. In a traversal clause, if there exists a pair of literals B_{i} and W_{i}, then the strategy of selecting W_{i} to have priority in applying resolution rules may have less resoution steps to get a success clause.

Definition 3 (Grey literal). Let C be a traversal clause. For the pair of white literals and black literals $\left\langle W_{i}, B_{i}\right\rangle$, if both W_{i} and B_{i} are in C, then W_{i} is called a grey literal of C. The set of grey literals of C is defined as follows:

$$
\operatorname{grey}(C)=\left\{W_{i} \mid B_{i} \in C \& W_{i} \in C\right\}
$$

Example 4. For the graph

we prove the property: starting from s_{1}, there is no blocked walk. The original clause is $B_{1} \vee W_{1} \vee W_{2} \vee W_{3} \vee W_{4}$ and the A-coloring clauses of the graph are

$$
\underline{W_{1}^{\perp}} \vee B_{2} \vee B_{3}, \quad \underline{W_{2}^{\perp}} \vee B_{3}, \quad \underline{W_{3}^{\perp}} \vee B_{4}
$$

For the original clause, apply resolution with A-coloring clause $\underline{W_{1}^{\perp}} \vee B_{2} \vee B_{3}$, which yields

$$
\begin{equation*}
B_{1} \vee B_{2} \vee B_{3} \vee W_{2} \vee W_{3} \vee W_{4} \tag{3}
\end{equation*}
$$

Then for (3), we can apply resolution rules with A-coloring clauses $W_{2}^{\perp} \vee B_{3}$ and $\underline{W_{3}^{\perp}} \vee B_{4}$, and two new traversal clauses are generated:

$$
\begin{equation*}
B_{1} \vee B_{2} \vee B_{3} \vee W_{3} \vee W_{4}, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
B_{1} \vee B_{2} \vee B_{3} \vee B_{4} \vee W_{2} \vee W_{4} \tag{5}
\end{equation*}
$$

Then for (4), apply resolution rule with A-coloring clause $\underline{W_{3}^{\perp}} \vee B_{4}$, which yields

$$
\begin{equation*}
B_{1} \vee B_{2} \vee B_{3} \vee B_{4} \vee W_{4}, \tag{6}
\end{equation*}
$$

and for this clause, we cannot apply resolution rules any more. For (5), we can apply resolution rule with A-coloring clause $W_{2}^{\perp} \vee B_{3}$, and the clause generated is the same as (6). Thus, the clause (5) is redundant.

To avoid generating redundant clauses similar to Example 4, the following selection function is defined.

Definition 4 (Selection function). For any traversal clause C, the selection function δ is defined as:

$$
\delta(C)= \begin{cases}\operatorname{single}(\operatorname{grey}(C)), & \operatorname{grey}(C) \neq \emptyset \\ C, & \text { Otherwise }\end{cases}
$$

in which single is a random process to select only one literal from a set of literals.
Notations The Polarized Resolution Modulo with δ is written as PRM_{δ}. We write $\Gamma \rightarrow_{\mathcal{R}}^{\delta} C$ if the clause C can be derived from Γ in the system PRM_{δ}.

6.2 Elimination Rule

As we will see, selecting literals, which is at the base of Ordered Resolution, PRM, OPRM and this method are not sufficient enough, as we also have to restrict the method at the level of clauses.

Example 5. Reconsider the graph in Example 4, we prove the property: starting from s_{1}, there exists a closed walk. The original clause is $B_{1} \vee W_{1} \vee W_{2} \vee W_{3} \vee W_{4}$ and the E-coloring clauses of the graph are:

$$
\underline{W_{1}^{\perp}} \vee B_{2}, \quad \underline{W_{1}^{\perp}} \vee B_{3}, \quad \underline{W_{2}^{\perp}} \vee B_{3}, \quad \underline{W_{3}^{\perp}} \vee B_{4}
$$

 new traversal clauses

$$
\begin{align*}
& B_{1} \vee B_{2} \vee W_{2} \vee W_{3} \vee W_{4}, \tag{7}\\
& B_{1} \vee B_{3} \vee W_{2} \vee W_{3} \vee W_{4} \tag{8}
\end{align*}
$$

are generated. For (7), apply resolution rule with $\underline{W_{2}^{\perp}} \vee B_{3}$, which yields

$$
\begin{equation*}
B_{1} \vee B_{2} \vee B_{3} \vee W_{3} \vee W_{4} \tag{9}
\end{equation*}
$$

Then for (9), apply resolution rule with $\underline{W_{3}^{\perp}} \vee B_{4}$, which yields

$$
\begin{equation*}
B_{1} \vee B_{2} \vee B_{3} \vee B_{4} \vee W_{4} . \tag{10}
\end{equation*}
$$

Resolution rules cannot be applied on (10) any more. Then we can apply resolution rule between (8) and $\underline{W_{3}^{\perp}} \vee B_{4}$, with

$$
\begin{equation*}
B_{1} \vee B_{3} \vee W_{2} \vee B_{4} \vee W_{4} \tag{11}
\end{equation*}
$$

generated, on which the resolution rules cannot be applied neither.

In Example 5, The clause (8) has the same grey literal as (9). Note that no success clause can be derived start from either (8) or (9).

Definition 5 (Path subsumption rule (PSR)). Let M be a set of $A(E)$ coloring clauses and C be a traversal clause. If we have $C, M \rightarrow_{\mathcal{R}}^{\delta} C_{1}$ and $C, M \rightarrow_{\mathcal{R}}^{\delta} C_{2}$, in which $\operatorname{grey}\left(C_{1}\right)=\operatorname{grey}\left(C_{2}\right)$, the following rule

$$
\xlongequal[C_{i}]{C_{1} \quad C_{2}} \operatorname{grey}\left(C_{1}\right)=\operatorname{grey}\left(C_{2}\right), i=1 \text { or } 2
$$

can be applied to delete either C_{1} or C_{2}, without breaking the final result.
After each step of applying resolution rules, if we apply PSR on the set of traversal clauses, the clause (8) in Example 5 will be deleted.

Theorem 3 (Completeness). PRM_{δ} with PSR is complete.

7 Implementation

In this section, we talk about the issues during the implementation, and then present the data of experiments.

7.1 Issues in Implementation

Success Clauses In normal resolution based algorithms, the deduction will terminate if (i) an empty clause is generated, meaning the set of original clauses is Unsatisfiable or (ii) the resolution rule cannot be applied to derive any more new clauses, in this case the set of original clauses is Satisfiable. However, for the problems in this paper, the derivation should stop when a success clause is derived, which is neither Sat nor Unsat. To implement our method in automated theorem provers, there may be two ways to deal with the success clauses. The first way is to give a set of rewrite rules, and make sure that every success clause can be rewritten into empty clause. For example, we can introduce class variables and treat the atomic propositions B_{i} and W_{i} as binary predicates, i.e, replace B_{i} with $B\left(s_{i}, Y\right)$ and W_{i} with $W\left(s_{i}, Y\right)$. Thus the success clause $B_{1} \vee \cdots \vee B_{i} \vee W_{i+1} \vee$ $\cdots \vee W_{k}$ is replaced by $B\left(s_{1}, Y\right) \vee \cdots \vee B\left(s_{i}, Y\right) \vee W\left(s_{i+1}, Y\right) \vee \cdots \vee W\left(s_{k}, Y\right)$. To deal with this kind of clause, the following rewrite rules are taken into account.

$$
\begin{aligned}
& B(x, \operatorname{add}(y, Z)) \hookrightarrow x=y^{\perp} \wedge B(x, Z) \quad W(x, n i l) \hookrightarrow \perp \\
& W(x, \operatorname{add}(y, Z)) \hookrightarrow x=y \vee W(x, Z) \quad x=x \hookrightarrow \top \\
& \text { for each pair of different vertices } s_{i} \text { and } s_{j}, s_{i}=s_{j} \hookrightarrow \perp
\end{aligned}
$$

This idea is a variation of the theory in [7]. The second way is to add a function to check whether a clause is a success clause or not to the proof-search procedure. Path Subsumption Rule To make it simple, an empty set G is given in the initial part of the proof-search algorithm, and for the selected traversal clause in U, if the selected grey literal of the traversal clause is in G, then the traversal clause is dead, otherwise, add the selected grey literal to G.

```
Init : original clause in U , coloring clauses in P
    \(\mathrm{G}=\emptyset / / \mathrm{G}\) is a set of sets of grey literals
Output: Sat or Unsat
while \(U \neq \emptyset\) do
    \(\mathrm{c}=\operatorname{select}(\mathrm{U})\);
    \(U=U \backslash c ; / /\) remove \(c\) from \(U\)
    if c is an empty clause or a success clause then
        | return Unsat
    end
    \(\mathrm{g}:=\delta(\mathrm{c}) ; / / \delta\) is the literal selection function
    if \(\mathrm{g} \notin \mathrm{G}\) then
        \(\mathrm{P}=\mathrm{P} \cup\{\mathrm{c}\} ; / /\) add c to P
        \(\mathrm{G}=\mathrm{G} \cup\{\mathrm{g}\} ;\)
        \(\mathrm{U}=\mathrm{U}+\) generate \((\mathrm{c}, \mathrm{P}) ;\)
    end
end
return Sat;
```

Algorithm 1: Proof Search Algorithm

Algorithm The proof-search algorithm with literal selection function and path subsumption rule is in Algorithm 1. In this algorithm, select (U) selects a clause from U, g is the selected grey literal in c and generate (c, P) produces all the clauses by applying an inference rule on c or between c and a clause in P .

7.2 Experimental Evaluation

In the following experiment, the procedure of identifying success clauses, the selection function, and the PSR are embedded into iProver Modulo. The data of the experiments on some randomly generated graphs are illustrated in Table 1.

Table 1. Closed-walk and Blocked-walk Detection

Graph				Result and Time			
Prop	$\mathbf{N}(\mathbf{v})$	$\mathbf{N}(\mathbf{e})$	$\mathbf{N u m} \mid$ Sat	Succ $\mathbf{P R M}_{\delta}$	$\mathbf{P R M}_{\delta}+\mathbf{P S R}$		
	1.0×10^{3}	1.0×10^{3}	100	95	5	25 m 40 s	$25 \mathrm{m0s}$
Closed Walk	1.0×10^{3}	1.5×10^{3}	100	50	50	1 h 06 m 40 s	1 h 02 m 46 s
	1.0×10^{3}	2.0×10^{3}	100	23	77	1 h 09 m 44 s	1 h 09 m 46 s
	1.0×10^{3}	2.0×10^{3}	100	100	0	17 m 48 s	
Blocked Walk	1.0×10^{3}	3.0×10^{3}	100	100	0	1 h 06 m 28 s	
	1.0×10^{3}	1.0×10^{4}	100	0	100	24 h 50 m 43 s	

For the test cases of closed-walk detection, the total time on testing all the 100 graphs did not change much when we take PSR into account. By checking the running time of each graph, we found that in most cases, PSR was inactive, as most of the vertices did not have the chance to be visited again. However, on some special graphs, the running time do reduces much. On blocked walk detection, the running time grows while there are more edges on graphs, as the number of visited vertices increased.

8 Conclusion and Future Work

In this paper, two graph problems, closed-walk and blocked-walk detection, are considered. The problems are encoded with propositional formulae, and the edges are treated as rewrite rules. Moreover, a selection function and a subsumption rule are designed to address efficiency problems.

Safety and liveness are two basic model checking problems [3]. In a program, safety properties specify that "something bad never happens", while liveness assert that "something good will happen eventually". To prove the safety of a system, all the accessible states starting from the initial one should be traversed, which is a kind of blocked-walk detection problem. For liveness, we need to prove that on each infinite path starting from the initial state, there exists a "good" one. This problem can be treated as closed-walk detection. In the future, we will try to address some model checking problems by improving our strategy.

Acknowledgments. I am grateful to Gilles Dowek, for his careful reading and comments.

References

1. Burel, G.: Embedding Deduction Modulo into a Prover. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 155-169. Springer Berlin Heidelberg (2010)
2. Burel, G.: Experimenting with Deduction Modulo. In: Sofronie-Stokkermans, V., Bjørner, N. (eds.) CADE 2011. Lecture Notes in Artificial Intelligence, vol. 6803, pp. 162-176. Springer (2011)
3. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA, USA (1999)
4. Courcelle, B.: The Monadic Second-order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Information and computation 85(1), 12-75 (1990)
5. Dowek, G.: Polarized Resolution Modulo. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 182-196. Springer Berlin Heidelberg (2010)
6. Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Automated Reasoning 31, 33-72 (2003)
7. Dowek, G., Jiang, Y.: Axiomatizing Truth in a Finite Model (2013), https://who. rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf, manuscript
8. Navarro-Pérez, J.A.: Encoding and Solving Problems in Effectively Propositional Logic. Ph.D. thesis, The University of Manchester (2007)
9. Reiter, R.: Two Results on Ordering for Resolution with Merging and Linear Format. Journal of the ACM (JACM) 18(4), 630-646 (1971)
10. Robinson, J.A.: Automatic Deduction with Hyper-Resolution. Journal of Symbolic Logic 39(1), 189-190 (1974)
11. Robinson, J.A.: A Machine-oriented Logic Based on the Resolution Principle. Journal of the ACM (JACM) 12(1), 23-41 (1965)
12. Slagle, J.R., Norton, L.M.: Experiment with an Automatic Theorem-prover Having Partial Ordering Inference Rules. Communications of the ACM 16(11), 682-688 (1973)

A Appendix

A. 1 Correctness of the Encoding of Closed-Walk Detection Problem

To prove that this kind of encoding suit for all closed walk detection problems, a proof of the theorem below is given.

Theorem 4. Let G be a graph and s be a vertex in G. Starting from s, there exists a closed walk if and only if starting from $\{\mathrm{OC}(s, G)\} \cup \mathrm{EC}(G)$, a success clause can be derived.

Before proving this theorem, several notations and lemmas are needed, which will also be used in the following sections.

Notations Let C_{1}, C_{2}, C_{3} be clauses, Γ be a set of clauses:

- if C_{3} is generated by applying resolution between C_{1} and C_{2}, then write the resolution step as $C_{1} \xrightarrow{C_{2}} C_{3}$; if the resolution is based on a selection function δ, then the resolution step is written as $C_{1} \xrightarrow{C_{2}} C_{3}$.
- if C_{2} is generated by applying resolution between C_{1} and a clause in Γ, then write the resolution step as $C_{1} \xrightarrow{\Gamma} C_{2}$; if the resolution is based on a selection function δ, then the resolution step is written as $C_{1} \xrightarrow{\Gamma} C_{2}$.
- if C_{1} is generated by one step of resolution on some clauses in Γ, then write the resolution step as $\Gamma \longrightarrow \Gamma, C_{1}$; if the resolution is based on a selection function δ, then the resolution step is written as $\Gamma \longrightarrow_{\delta} \Gamma, C_{1}$.

Lemma 1. For any two traversal clauses, we cannot apply resolution rules between them.

Proof. All the literals in traversal clauses are positive.
Lemma 2. If resolution rules can be applied between a traversal clause and a coloring clause, then one and only one traversal clause can be derived.

Proof. As all the literals in the traversal clause are positive and there is only one negative literal in the coloring clause, straightforwardly, only one traversal clause can be derived.

Proposition 1. Let M be a set of coloring clauses, C_{1}, \ldots, C_{n} be traversal clauses and S be a success clause. If $M, C_{1}, \ldots, C_{n} \rightarrow S$, then there exists $1 \leq i \leq n$, such that $M, C_{i} \rightarrow S$, and the length of the later derivation is at most equal to the former one.

Proof. By induction on the size of the derivation $M, C_{1}, \ldots, C_{n} \rightarrow S$.

- If S is a member of C_{1}, \ldots, C_{n}, then there exists the derivation $M, S \rightarrow S$ without applying any resolution rules.
- If S is not a member of C_{1}, \ldots, C_{n}, then in each step of the derivation, by Lemma 1, the resolution rules can only be applied between a traversal clause and a coloring clause. Assume the derivation is $M, C_{1}, \ldots, C_{n} \longrightarrow$ $M, C_{1}, \ldots, C_{n}, C^{\prime} \rightarrow S$, in which, by Lemma $2, C^{\prime}$ is a traversal clause. Then for the derivation $M, C_{1}, \ldots, C_{n}, C^{\prime} \rightarrow S$, by induction hypothesis, $M, C^{\prime} \rightarrow S$ or there exists $1 \leq i \leq n$ such that $M, C_{i} \rightarrow S$, with the steps of the derivation at most equal to $M, C_{1}, \ldots, C_{n}, C^{\prime} \rightarrow S$. If $M, C_{i} \rightarrow S$, then the steps of the derivation are less than $M, C_{1}, \ldots, C_{n} \rightarrow S$, thus this derivation is as needed. If $M, C^{\prime} \rightarrow S$, then by Lemma 1 , there exists C_{j} in C_{1}, \ldots, C_{n}, such that $C_{j} \xrightarrow{M} C^{\prime}$, thus the derivation $M, C_{j} \rightarrow S$, with the derivation steps at most equal to $M, C_{1}, \ldots, C_{n} \rightarrow S$, is as needed.

Proposition 2. Let M be a set of coloring clauses, C be a traversal clause, and S be a success clause. If $M, C \rightarrow S\left(\pi_{1}\right)^{1}$, then there exists a derivation path $C\left(C_{0}\right) \xrightarrow{M} C_{1} \xrightarrow{M} C_{2} \cdots \xrightarrow{M} C_{n}(S)$.

Proof. By induction on the size of the derivation π_{1}.

- If C is a success clause, then the derivation path can be built directly.
- Otherwise, by Lemma 1, in each step of the derivation, the resolution rules can only be applied between a traversal clause and a coloring clause. Assume the derivation is $M, C \longrightarrow M, C, C^{\prime} \rightarrow S$, then for the derivation $M, C, C^{\prime} \rightarrow$ S, by Proposition 1 , there exists a derivation $M, C \rightarrow S\left(\pi_{2}\right)^{2}$ or $M, C^{\prime} \rightarrow S$, with the length less than π_{1}. For π_{2}, by induction hypothesis, there exists a derivation path $C\left(C_{0}\right) \xrightarrow{M} C_{1} \cdots \xrightarrow{M} C_{n}(S)$, and this is just the derivation as needed. For $M, C^{\prime} \rightarrow S$, by induction hypothesis, there exists a derivation path $C^{\prime} \xrightarrow{M} C_{1}^{\prime} \cdots \xrightarrow{M} C_{m}^{\prime}(S)$. As $C \xrightarrow{M} C^{\prime}$, the derivation path $C \xrightarrow{M}$ $C^{\prime} \xrightarrow{M} C_{1}^{\prime} \cdots \xrightarrow{M} C_{m}^{\prime}(S)$ is as needed.

Now it is ready to prove Theorem 4. The proof is as follows.
Proof of Theorem 4

- For the right direction, we assume that the path is

By the method of generating E-coloring clauses of a graph, there exist Ecoloring clauses:
$\underline{W_{k_{1}}^{\perp}} \vee B_{k_{2}}, \underline{W_{k_{2}}^{\perp}} \vee B_{k_{3}}, \ldots, \underline{W_{k_{i-1}}^{\perp}} \vee B_{k_{i}}, \underline{W_{k_{i}}^{\perp}} \vee B_{k_{i+1}}, \ldots, \underline{W_{k_{j}}^{\perp}} \vee B_{k_{i}}$.

[^1]Then starting from the original clause $C_{1}=B_{1} \vee W_{1} \vee \cdots \vee W_{n}$, the derivation

$$
C_{1} \xrightarrow{D_{1}} C_{2} \xrightarrow{D_{2}} \cdots C_{i-1} \xrightarrow{D_{i-1}} C_{i} \xrightarrow{D_{i}} \cdots C_{j} \xrightarrow{D_{j}} C_{j+1}
$$

can be built, in which C_{j+1} is a success clause and for each $1 \leq m \leq j, D_{m}$ is the E-coloring clause $W_{k_{m}}^{\perp} \vee B_{k_{m+1}}$.

- For the left direction, by Proposition 2, starting from the original clause $C_{1}=B_{1} \vee W_{1} \vee \cdots \vee W_{n}$, there exists a derivation path

$$
C_{1} \xrightarrow{D_{1}} C_{2} \xrightarrow{D_{2}} \cdots C_{i-1} \xrightarrow{D_{i-1}} C_{i} \xrightarrow{D_{i}} \cdots C_{j} \xrightarrow{D_{j}} C_{j+1}
$$

in which C_{j+1} is a success clause and for each $1 \leq m \leq j, D_{m}$ is an Ecoloring clause. As C_{j+1} is a success clause, for each black literal B_{i} in the clause C_{j+1}, there exists an E-coloring clause $W_{i}^{\perp} \vee B_{k_{i}}$ in D_{1}, \ldots, D_{j}. Thus for each black literal B_{i} in the clause $C_{j+1}, \overline{\text { there exists a vertex } s_{k_{i}} \text { such }}$ that there is an edge from s_{i} to $s_{k_{i}}$. As the number of black literals in C_{j+1} is finite, for each vertex s_{i}, if B_{i} is a member of C_{j+1}, then starting from s_{i}, there exists a path which contains a cycle. As the literal B_{1} is in C_{j+1}, starting from s_{1}, there exists a path to a cycle.

A. 2 Correctness of the Encoding of Block-Walk Detection Problem

Theorem 5. Let G be a graph and s_{1} be a vertex of G. Starting from s_{1}, there is no blocked walk if and only if, starting from $\left\{\mathrm{OC}\left(s_{1}, G\right)\right\} \cup \mathrm{AC}(G)$, a success clause can be derived.

Before proving this theorem, a lemma is needed.
Lemma 3. Let G be a graph and s_{1} be a vertex of G. Starting from s_{1}, if all the reachable vertices are traversed in the order $s_{1}, s_{2}, \ldots, s_{k}$ and each reachable vertex has at least one successor, then starting from $\left\{\mathrm{OC}\left(s_{1}, G\right)\right\} \cup \mathrm{AC}(G)$, there exists a derivation path $C_{1}\left(\mathrm{OC}\left(s_{1}, G\right)\right) \xrightarrow{D_{1}} C_{2} \xrightarrow{D_{2}} \cdots C_{k} \xrightarrow{D_{k}} C_{k+1}$, in which C_{k+1} is a success clause and $\forall 1 \leq i \leq k, D_{i}$ is an A-coloring clause of the form $\underline{W_{i}^{\perp} \vee B_{i_{1}} \vee \cdots \vee B_{i_{j}} .}$

Proof. As $s_{1}, s_{2} \ldots, s_{k}$ are all the reachable vertices starting from s_{1}, for a vertex s, if there exists an edge from one of the vertices in $s_{1}, s_{2}, \ldots, s_{k}$ to s, then s is a member of $s_{1}, s_{2}, \ldots, s_{k}$. Thus, after the derivation $C_{1} \xrightarrow{D_{1}} C_{2} \xrightarrow{D_{2}} \cdots C_{j} \xrightarrow{D_{j}}$ C_{j+1}, for each black literal B_{i}, the white literal W_{i} is not in C_{j+1}, thus C_{j+1} is a success clause.

Now it is ready to prove Theorem 5. The proof is as follows.
Proof of Theorem 5

- For the right direction, assume that all the reachable vertices starting from s_{1} are traversed in the order $s_{1}, s_{2}, \ldots, s_{k}$. For the resolution part, by Lemma 3 , starting from the original clause, a success clause can be derived.
- For the left direction, by Proposition 2, starting from the original clause $C_{1}=\mathrm{OC}\left(s_{1}, G\right)$, there exists a derivation path

$$
C_{1} \xrightarrow{D_{1}} C_{2} \xrightarrow{D_{2}} \cdots C_{j} \xrightarrow{D_{j}} C_{j+1}
$$

in which C_{j+1} is a success clause and $\forall 1 \leq i \leq j, D_{i}$ is an A-coloring clause with $W_{k_{i}}^{\perp}$ underlined. As there is no i such that both B_{i} and W_{i} are in C_{j+1}, for the vertices in $s_{k_{1}}, s_{k_{2}}, \ldots, s_{k_{j}}$, the successors of each vertex is a subset of $s_{k_{1}}, s_{k_{2}}, \ldots, s_{k_{j}}$. As the black literal B_{1} is in the clause C_{j+1}, by the definition of success clause, the white literal W_{1} is not in C_{j+1}, thus s_{1} is a member of $s_{k_{1}}, s_{k_{2}}, \ldots, s_{k_{j}}$. Then recursively, for each vertex s, if s is reachable from s_{1}, then s is in $s_{k_{1}}, s_{k_{2}}, \ldots, s_{k_{j}}$. Thus starting from s_{1}, all the vertices reachable have successors.

A. 3 Completeness of $\mathrm{PRM}_{\delta}+\mathrm{PSR}$

For the completeness of our method, we first prove that PRM_{δ} is complete, then we prove that PRM_{δ} remains complete when we apply PSR eagerly.

Proposition 3 (Completeness of $\mathbf{P R M}_{\delta}$). Let M be a set of coloring clauses and C_{1}, \ldots, C_{n} be traversal clauses. If $M, C_{1}, \ldots, C_{n} \rightarrow S$, in which the clause S is a success clause, then starting from M, C_{1}, \ldots, C_{n}, we can build a derivation by selecting the resolved literals with selection function δ in Definition 4 and get a success clause.

Proof. By Proposition 1 and Proposition 2, there exists $1 \leq i \leq n$, such that $C_{i}\left(C_{i_{0}}\right) \xrightarrow{D_{1}} C_{i_{1}} \cdots \xrightarrow{D_{n}} C_{i_{n}}(S)$. As there are no white literals in any clauses of D_{1}, \ldots, D_{n} and in each step of the resolution, the resolved literal in the traversal clause is a white literal, the order of white literals to be resolved in the derivation by applying Resolution rule with coloring clauses in D_{1}, \ldots, D_{n} will not affect the result. Thus use selection function δ to select white literals to be resolved, until we get a traversal clause S^{\prime} such that there are no grey literals in it. By the definition of success clause, S^{\prime} is a success clause.

Lemma 4. Let M be a set of coloring clauses and C be a traversal clause. Assume $C\left(H_{0}\right) \xrightarrow{D_{1}} \delta H_{1} \xrightarrow{D_{2}}{ }_{\delta} \cdots H\left(H_{i}\right) \xrightarrow{D_{i}}{ }_{\delta} \cdots{\xrightarrow{D_{n}}}_{\delta} H_{n}$ in which H_{n} is a success clause and for each $1 \leq j \leq n$, the coloring clause D_{j} is in M, and $M, C \rightarrow^{\delta} K$ such that $\operatorname{grey}(H)=\operatorname{grey}(K)$. If $K, D_{1}, \ldots, D_{n} \rightarrow^{\delta} K^{\prime}$, and K^{\prime} is not a success clause, then there exists a coloring clause D_{k} in D_{1}, \ldots, D_{n}, such that $K^{\prime} \xrightarrow{D_{k}} K^{\prime \prime}$.

Proof. As K^{\prime} is not a success clause, assume that the literals B_{i} and W_{i} are in K^{\prime}. As W_{i} cannot be introduced in each step of resolution between a traversal clause and a coloring clause, W_{i} is in C and K. As the literal B_{i} is in clause K^{\prime}, during the derivation of K^{\prime}, there must be some clauses which contains B_{i} :

- if the literal B_{i} is in K, as W_{i} is also in K, W_{i} is a grey literal of K. As $\operatorname{grey}(H)=\operatorname{grey}(K)$, the literal B_{i} is also in H, and as B_{i} cannot be selected during the derivation, it remains in the traversal clauses H_{i+1}, \ldots, H_{n}.
- if the literal B_{i} is introduced by applying Resolution rule with coloring clause D_{j} in D_{1}, \ldots, D_{n}, which is used in the derivation of H_{n} as well, so the literal B_{i} is also a member of H_{n}.

In both cases, the literal B_{i} is in H_{n}. As H_{n} is a success clause, the literal W_{i} is not a member of H_{n}. As W_{i} is in C, there exists a coloring clause D_{k} in D_{1}, \ldots, D_{n} with the literal W_{i}^{\perp} selected. Thus, $K^{\prime} \xrightarrow{D_{k}} K^{\prime \prime}$.

Lemma 5. Let M be a set of $A(E)$-coloring clauses and C be a traversal clause. If we have $M, C \rightarrow^{\delta} H$ and $M, C \rightarrow^{\delta} K$, such that $\operatorname{grey}(H)=\operatorname{grey}(K)$, then starting from M, H a success clause can be derived if and only if starting from M, K a success clause can be derived.

Proof. Without loss of generality, prove that if starting from M, H we can get to a success clause, then starting from M, K, we can also get to a success clause. By Proposition 2, starting from C, there exists $H_{0}(C) \xrightarrow{M} \delta H_{1} \xrightarrow{M} \delta$ $\cdots H_{i}(H) \xrightarrow{M} \cdots \xrightarrow{M}_{\delta} H_{n}$, in which H_{n} is a success clause. More precisely, $H_{0}(C) \xrightarrow{D_{1}} H_{1} \xrightarrow{D_{2}}{ }_{\delta} \cdots H_{i}(H) \xrightarrow{D_{i+1}}{ }_{\delta} \cdots \xrightarrow{D_{n}}{ }_{\delta} H_{n}$, where for each $1 \leq j \leq n$, the coloring clause D_{j} is in M. Then by Lemma 4 , starting from M, K, we can always find a coloring clause in D_{1}, \ldots, D_{n} to apply resolution with the new generated traversal clause, until we get a success clause. As the white literals in the generated traversal clauses decrease by each step of resolution, we will get a success clause at last.

Theorem 6 (Completeness). $P R M_{\delta}$ with $P S R$ is complete.
Proof. By Lemma 5, each time after we apply PSR, the satisfiability is preserved.

[^0]: * This work is supported by the ANR-NSFC project LOCALI (NSFC 61161130530 and ANR 11 IS02 002 01)

[^1]: ${ }^{1}$ we denote the derivation as π_{1}.
 ${ }^{2}$ we denote the derivation as π_{2}.

