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Abstract—This paper presents SynchroBot, a Natural Lan-
guage Question Answering system in the Commercial Domain.
It relies on an RDF dataset and an RDFS ontology that we
have developed for the commercial domain of the mobile phone
industry. We propose an approach to understand and interpret
natural language questions, based on the use of regular expres-
sions to identify both the properties connecting entities, and their
values. These regex are automatically learned from a subset of
our dataset with a genetic algorithm.

I. INTRODUCTION

During the last decade, the popularity of electronic com-
merce (or e-commerce) has tremendously grown along with
the customer turnout, leading to the emergence of a set of
dedicated Business-To-Client (B2C) services and applications
(e.g., Search Engines, Comparative Shopping Systems, Ques-
tion Answering Systems, and Dialog Systems). At the same
time, user needs are getting more and more complex and
specific, especially when it comes to commercial products,
with questions mostly related to their technical aspects (e.g.
price, color, seller, etc.). One of the challenges to overcome
to answer these needs is: how can a system understand and
interpret complex natural language (NL) questions (also known
as N -relation questions) in a commercial context?

In this paper, we answer this research question by propos-
ing an ontology-based approach to understand and interpret
complex NL questions, based on the use of regular expressions
(regex) to identify both the values of properties and the
properties themselves connecting entities. These regex are au-
tomatically learned from a subset of our dataset with a genetic
programming approach based on the work described in [1],
[2]. We implemented the whole approach in the SynchroBot
NL Question Answering System.

The paper is organized as follows. Section II presents our
approach of N -relation question analysis and modeling. Sec-
tion III presents our approach to automatically learn property
value patterns. The implementation of the overall approach in
SynchroBot and its evaluation are then detailed in Section IV.
Section V concludes.

II. QUESTION INTERPRETATION

The question interpretation step in SynchroBot relies on a
standard approach, adopted by several existing systems (for a
complete overview of QA systems over Linked Data, see [3]).
In our use case, we move from a multiple domain Knowledge
Base (KB) —like DBpedia, —to a domain-specific one for the

e-commerce domain—, for which we built the Merchant Site
Ontology (MSO) and the Phone Ontology (PO) [4].

Basically, to interpret a simple NL question with only one
relation, the approach is to identify the key elements in the
question, namely: (i) the Expected Answer Type (EAT), which
is the type of the resource that we are looking for, (ii) the
Named Entity (NE) representing the subject of the question,
and (iii) the property, representing the relation linking the
entity to the resource that we are looking for. For instance, in
the question “Who sells Nexus 5?”, the EAT is mso:Seller,
the NE is msr:Nexus_5, and the property is mso:sells.

A. Expected Answer Type (EAT) Detection

By default, the type of the expected answer is
mso:Product. To improve the precision of the query to
better answer the user question, the detection of the Expected
Answer Type (EAT) consists of considering all the classes in
the MSO ontology recognized in the user question. This is
done by matching the lemma of the words in the user question
with the class labels in the ontology. In our approach, the
EAT is very useful for limiting the number of candidate NE
and optimizing their retrieval. The EAT is used to specify
the type of the queried resources during the Named Entity
Recognition (see Section II-B). For example, in the question
“What is the average rate of the cell phone Lumia 1020
4G LTE?”(id = 34, training set), the type po:Phone will
be matched with the string cell phone. This means that
all the retrieved resources must be phones and, as a conse-
quence, the system will retrieve the corresponding resource
1020_4G_LTE whose type is po:Phone. The EAT is used
during the Graph Instantiation (see Section II-D2) to specify
the type of the resource that we want to retrieve. For instance,
in the question “Which HTC cases come in warm black?”(id
= 28, test set), the system will generate a query with a variable
of type po:Case.

B. Named Entity Recognition (NER)

The classic definition of Named Entity Recognition (NER)
is to locate and classify elements in textual inputs into known
categories (e.g., persons, organizations, locations, times, dates).
For NER in a specific domain, all the categories of resources
relevant to the domain may be of interest, and the recogni-
tion approach must be adapted to the domain. In our case,
for the commercial domain relative to mobile phones, we
have collected data from various data sources (e.g., relational



databases, Web services, APIs) and have constructed a KB on
sellers, smartphones, and their accessories (e.g., headphones,
chargers, cases). These are the categories we consider for NER.
We have proposed and implemented a specific algorithm to
cover this domain that we explain below.

To recognize a NE in a NL question, we match the query
words with the values of three properties chosen for their rele-
vance with respect to the domain, namely mso:legalName,
mso:name, and mso:description. We consider the prod-
uct name and description in addition to the product legal name
in order to overcome product name variations and abbrevia-
tions. Commercial products in general, and smartphones in
particular, are often called by pseudonyms instead of their
release names, e.g., Samsung Galaxy S5 is often refered to
as Samsung S5.

The recognized NEs are assigned a score as follows. The
pre-selected properties whose values are used for the NER
are assigned a coefficient to order them depending on their
relevance. For instance, matching a word in the question to
the value of the mso:legalName property will be more
accurate than matching it to the values of the mso:name or
mso:description properties, because the former contains
the exact name of the product, while the latter two contain
extra information (e.g., color, manufacturer, storage). Then a
score is assigned to the NE according to the following strategy:
the higher the number of matched words, the higher the score,
and the smaller the number of retrieved resources, the higher
the score. This may be formalized as follows:

Score(NE ) =
1

‖NEs‖

n∑
i=1

coef(PVi) · ‖MWs‖, (1)

where n is the number of matched properties, PVi is the
matched property values, coef is the function weighting the
properties depending on their relevance, MWs is the set of
matched words, and NEs is the set of recognized NE.

C. Property Identification

In this section, we present the two methods we combine for
property identification. The first method consists of capturing
occurrences (labels) that have the same meaning as the proper-
ties in our ontology. The second one consists of detecting the
property and its value by using specific regular expressions.

1) Label-based Property Identification: All the classes and
properties of our ontology are associated with labels. This
makes it possible to detect the property involved in a question
by matching the lemma identified with the labels of the prop-
erties in the ontology (we first remove stop words and perform
a lemmatisation using Stanford Part of Speech Tagger). Our
approach is similar to the one described in [5] and follows a
scoring strategy allowing us to pick up the relevant properties.
For instance, in the query “Give me the details of the products
cheaper than 200$”, the lemma “detail” will be matched with
the mso:description property.

This approach works fine when the user specifies the
property sought for in the question. However, the user may
also specify the value of the property without the property
itself. For instance, in the query “Give me the details of
the products cheaper than 200$’’, property mso:price is

mso:price rdfs:label "price"@en ;
rdfs:subPropertyOf <http://schema.org/price> ;
sbmo:regexExtractionPattern
"(?i)[0-9]+([,|.][0-9]+)?(dollar(s?)|euro(s?)|

...|$|...)";
rdfs:comment "The price of a product."@en ;
rdfs:domain mso:Product ;
rdfs:range xsd:double ;

Fig. 1. Definition of property mso:price

implicit. Handling such queries requires a more sophisticated
approach: the system must be able to detect a property based
on its value. Moreover, as concerns the processing of N -
relation questions, involving more than one property, property
values have to be captured in the user’s question and each one
correctly associated to the right property.

2) Value-based Property Identification: To identify a prop-
erty by its value when the property name is omitted in a
query and to correctly associate values and properties in
complex queries, we introduced in our Meta-Ontology the
sbmo:regexExtractionPattern property, whose do-
main is the class of properties and whose value is a regular
expression (regex) allowing to identify a property in a query by
matching the regex with the detected values. Figure 1 shows
the regex associated to property mso:price.

We first manually created a regex for each of the 28
properties of the MSO ontology after analysing its lineaments.
Then we proposed a supervised method based on Genetic
Programming to automatically generate regular expressions
for each property in our ontology which will be described in
Section III.

D. Construction of a Relational Graph

Once the properties occurring in the user query and their
values are identified, the construction of a complete represen-
tation of the query requires the creation of a query graph
connecting the identified properties. We first create a graph
structure relating the identified properties, then we instantiate
this graph with the detected property values.

1) Construction of the Relational Graph Structure: We
use property domains and ranges to connect properties and
create a relational graph as query graph pattern. Two proper-
ties sharing the same domain or the same range for Object
properties ,or one having as range the domain of the other,
are connected by their domains or ranges. For example, let
us consider the following question “Give me the details of the
products cheaper than 200$”. The system will identify the two
properties mso:description and mso:price sharing the
same domain and it will create a connected graph.

However, the resulting graph may not be connected. For
instance, if the user asks “Give me the address of the products
cheaper than 200$”, the system will detect the two properties
mso:address and mso:price and will not be able to
construct a connected graph with them, because the address
concerns the seller of the product and not the product itself. In
such cases, we look for the minimum number of properties that
would make the graph connected and we search for properties
with appropriate domains and range. For instance, for the



above example query, property mso:seller will be added
in the graph because its domain and range match the domain
and range of the other properties in the relational graph.

2) Instantiation of the Relational Graph: The relational
graph representing the user NL query is constructed from its
graph structure by replacing its nodes by the detected property
values or with variables if no value is detected for some
properties. This graph is formalized in the SPARQL language:
it is the graph pattern of the SPARQL query that the system
will execute against the KB to retrieve answers to the NL
query. For instance, Figure 2 presents the SPARQL query for
our running example NL query.

SELECT DISTINCT *
WHERE {

?ne a mso:Product ; mso:name ?n
OPTIONAL {?ne mso:description ?var1}
OPTIONAL {

?ne mso:price ?v. ?v rdf:value ?var2
FILTER (CONTAINS(?var2, lcase(str("200"))))}

BIND(IF(BOUND(?var1),1,0)+
IF(BOUND(?var2),1,0) AS ?c) }

ORDER BY DESC (?c) LIMIT 20

Fig. 2. The SPARQL query representing the NL question “Give me the
details of the products cheaper than 200$”

If several possible values are identified for one property, the
system will generate a query for each value. If several possible
graph structures are constructed, the system will generate a
query for each of them.

III. GENETIC LEARNING OF PROPERTY VALUE PATTERNS

Our approach to learning regular expressions for property
value detection is based on the work described in [1], [2],
which uses genetic programming.

The idea is to derive a regular expression for the values
of each property in the ontology, by using a training dataset
composed of a pair of strings (TCVTE,VTE) where TCVTE
is the Text Containing the Value To Extract and VTE is the
Value To Extract. For instance, Table I presents a few examples
of (TCVTE,VTE) pairs used to learn a regex for the values
of property mso:name.

Text (TCVTE) Value (VTE)
Patriot Memory - FUEL+ 5200 mAh Rechargeable Lithium-
Ion Battery and Signature Series 8GB microSDHC Memory
Card

8GB

Samsung - Galaxy Mega 4G with 16GB Memory Cell Phone
- Black (AT&T)

16GB

T-Mobile Prepaid - Apple iPhone 5 with 16GB Memory
No-Contract Mobile Phone - Black & Slate

16GB

HTC - One (M7) 4G LTE with 32GB Memory Cell Phone
- Black (Sprint)

32GB

... ...
Nokia - Lumia 520 with 8GB Memory Cell Phone (Un-
locked) - Black

8GB

TABLE I. EXAMPLE OF PAIRS (TCVTE,VTE) TO LEARN A REGEX
FOR PROPERTY MSO:NAME

Each regex is represented by its syntax tree, which contains
the (internal) function nodes (the central dot · stands for a
subtree, possibly consisting of a single node):

- concatenation node: to concatenate two subtrees;
- possessive quantifiers: {·*+, ·++, ·?+, ·{m,n}};
- group operator: (·);
- character class operator: [·];

and the following (leaf) terminal nodes:
- constants: a character, a number or a string;
- ranges: {a-z, 0-9, a-z0-9, A-Z, A-Z0-9};
- character classes: {\w (for characters), \d (for digits)};
- white space: \s
- the wildcard character: .

The principles of the genetic learning algorithm are as
follows. For each property, we start by creating an initial
population of regex whose size is twice the size of the example
dataset (VTE). Half of the regex population is generated based
on the property values in the example dataset, by replacing
numbers by \d and characters by \w. For example, “32GB”,
which is a phone storage value, will be turned into \d\d\w\w.
The other half of the initial regex population is generated by
using the ramped half-and-half method [6]. This method allows
generating random regex trees with different depth after setting
up a ramped size. The evolutionary algorithm is then launched
several times depending on a predefined number of iterations
(in our case 150 iterations).

At each iteration, the generated regex are tested against
the property values in the dataset and their performances
are measured by computing their precision and Matthews
Correlation Coefficient (MCC), defined as

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

(2)
where TP , TN , FP , FN are the number of True Positives,
True Negatives, False Positives and False Negatives.

A new population is created by using the fitness-
proportionate selection method, also known as the roulette-
wheel selection. According to this method, the probability for
the i-th individual in the population of being selected for the
next iteration is

pi =
fi∑N
j=1 fi

(3)

where fi is the fitness of the ith individual, regexi, computed as
its MCC (cf. Equation 2) and N is the number of individuals in
the regex population. This function allows to select one regex
at a time until reaching the size of the new population. As a
result, a population of the same size is constructed with the
best scoring regex eventually occurring several times.

In this new population, regexn and regexn+1 are recom-
bined with crossover with a probability of 1

2 . As a result, a new
population of regex having the same size of the previous one is
generated and the next iteration of the learning algorithm can
start. The algorithm stops when achieving a satisfying regex
population (the precision of one regex equals to 1) or at the end
of the allotted iterations. If a precision = 1 is achieved, then
the corresponding regex is automatically selected and used.
Otherwise, if the precision is greater than 80%, then the regex
with the highest score is selected. If not, the learning algorithm
is relaunched with a new initial population.



IV. EVALUATION

A. Dataset and Protocol

We tested both the algorithm for learning property val-
ues and the algorithm for answering NL questions on the
QALM [4] benchmark. QALM stands for Question Answering
Linked Merchant data. We built this benchmark for evaluating
QA systems that use commercial data. It provides an RDF
dataset along with an ontology describing a part of the com-
mercial domain and aligned to Schema.org ontology and a set
of 70 NL questions annotated with the corresponding SPARQL
queries and the correct answers retrieved from the dataset.

For the property value learning algorithm, we have ex-
tracted from the QALM dataset 500 examples of values for
each property as the training set. Then we launched the
algorithm on the whole dataset in the QALM benchmark.
As for the NL question answering algorithm, we used the
provided training set, which contains 40 NL questions, to train
the system and then we tested it using the gold standard.

B. Evaluation of the Algorithm for Learning Property Values

Table II presents the results of the algorithm for learning
property values. It clearly appears that the precision of the
learned regex vary a lot depending on the property. The results
of the algorithm are very good for properties with an infinite
domain of values like mso:price or mso:storage and
very bad for properties with a finite domain of discrete values
like mso:model or mso:color. For these properties, we
manually generated a regex with a high precision to improve
the performances of the QA algorithm using these regex. Table
III presents the precision of the algorithm.

Property Learned Regex Precision Manual Regex Precision
storage [0-9]++G[a-

zA-Z]
100% \d++[Gg][Bb] 100%

price \d++.\d++\D 97,33% (?i)[0—9]+([,|.][0—9]+)
?(euro(s?)|dollar(s?)|...|£|C|$
|...)

100%

release
date

\d\d\W[0—9]
++\D\d?+

60% \((19|20)\d\d)[—/](0?
[1—9]|1[012])[—/](0?
[1—9]|[12][0—9]|3[01])

100%

... ... ... ... ...
model [0—9]++G

[a—zA—Z]
20% ([A—Z]\w++)+*([A—Z]\d) 73%

color [0—9]++G
[a—zA—Z]

11% (?i)aliceblue|antiquewhite
|aqua|aquamarine|azure|beige
|bisque|black . . .

90%

TABLE II. PRECISION OF THE LEARNED REGEX FOR SOME
PROPERTIES IN THE QALM ONTOLOGY, LISTED IN DECREASING ORDER

Training set (500 examples) Whole set (5000-10000)
storage 100% 100%
price 97,33% 89,6%

release date 60% 47,16%
... ... ...

model 20% 4,01 %
color 11% 3,2%

TABLE III. PRECISION OF THE LEARNED REGEX ON THE WHOLE
QALM DATASET. PROPERTIES ARE LISTED IN DECREASING ORDER

C. Evaluation of the NL Question Answering Algorithm

Table IV shows the performances of the Synchrobot NL
Question Answering algorithm. The current version of the

system allows processing most of the questions in the dataset
(58/70). It is only capable of giving 12 right answers, even if
the average of output answers is relatively high. However, the
proportion of partially right answers (28/58) is very encourag-
ing in terms of enhancing the system precision.

Whole set Limited set
Precision Recall F-Score Precision Recall F-Score

Training 0.32 0.32 0.32 0.36 0.36 0.36
Test 0.30 0.41 0.35 0.30 0.52 0.38
Average 0.31 0.36 0.33 0.33 0.44 0.37

TABLE IV. EVALUATION OF THE NL QUESTION ANSWERING
ALGORITHM. THE LIMITED SET RESTRICTS TO THE QUERIES WHICH

SYNCHROBOT IS SUPPOSED TO BE ABLE TO ANSWER.

A deeper analysis revealed that our system can precisely
answer 1-relation questions that contain a Named Entity (up
to 90% of precision). The only cases where SynchroBot fails
to process 1-relation questions is when the property does
not exist in the ontology. Also, the amount of answered 2-
relations questions is large (63%). For N -relations and NE-less
questions, the performance still needs to be improved (only
11% of precision).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a prototype ontology-based and
NL Question Answering System for the Commercial domain,
aiming to answer complex queries. As ongoing work, we are
currently enhancing the genetic programming algorithm for
learning regex for property value extraction. Regarding the
construction of the relational graph representing a NL query,
we consider adopting the pattern extraction approach described
in [7] in order to enhance our property identification approach.
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