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Abstract— This paper addresses the problem of sound-source
localization (SSL) with a robot head, which remains a challenge
in real-world environments. In particular we are interested in
locating speech sources, as they are of high interest for human-
robot interaction. The microphone-pair response corresponding
to the direct-path sound propagation is a function of the
source direction. In practice, this response is contaminated
by noise and reverberations. The direct-path relative transfer
function (DP-RTF) is defined as the ratio between the direct-
path acoustic transfer function (ATF) of the two microphones,
and it is an important feature for SSL. We propose a method
to estimate the DP-RTF from noisy and reverberant signals
in the short-time Fourier transform (STFT) domain. First, the
convolutive transfer function (CTF) approximation is adopted
to accurately represent the impulse response of the microphone
array, and the first coefficient of the CTF is mainly composed of
the direct-path ATF. At each frequency, the frame-wise speech
auto- and cross-power spectral density (PSD) are obtained
by spectral subtraction. Then a set of linear equations is
constructed by the speech auto- and cross-PSD of multiple
frames, in which the DP-RTF is an unknown variable, and
is estimated by solving the equations. Finally, the estimated
DP-RTFs are concatenated across frequencies and used as
a feature vector for SSL. Experiments with a robot, placed
in various reverberant environments, show that the proposed
method outperforms two state-of-the-art methods.

I. INTRODUCTION

Sound source localization (SSL) is a crucial methodology
for robot audition. This paper addresses the problem of real-
world SSL using a microphone array embedded into a robot
head. The NAO robot (version 5) is used in this paper,
whose head and its four embedded microphones are shown
on Fig. 1.

Microphone-array processing SSL techniques are widely
adopted for robot audition, e.g., [1], [2], [3], [4], [5], [6].
These techniques generally need a large number of micro-
phones and high computational cost. The time difference
of arrival (TDOA) techniques [7], [8] are suitable if fewer
microphones are available, however they are generally ap-
plied to a free-field setup, in which the TDOA is frequency-
independent. We address SSL in the more general case,
namely when the source-to-sensor sound propagation is
affected by the robot’s head and torso, e.g., binaural audition
[9], [10], as well as by the room acoustics [11], and these
effects are frequency-dependent [12].

As shown in Fig. 1, four microphones are embedded in
NAO’s head. The two most discriminative microphone pairs
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Fig. 1: The version 5 of the NAO head has four microphones,
namely A, B, C, and D. This robot-head configuration is used
in our experiments to illustrate the proposed SSL method.

in terms of SSL, i.e., the two cross microphone pairs (A-
C and B-D) are used in this paper. The acoustic features
are extracted separately from these two microphone pairs,
and then these pairwise features are combined together. Two
interaural cues, the interaural time (or phase) difference (ITD
or IPD) and the interaural level difference (ILD), are widely
used for SSL. When computed using the STFT, the ILD and
IPD correspond to the magnitude and phase of a two-channel
relative transfer function (RTF), which is the ratio between
the ATFs of the two microphones [13]. The interaural cues,
or equivalently the two-channel RTF, that correspond to
the direct-path sound propagation are a function of the
source direction, which is to be estimated from noisy and
reverberant sensor signals, as they are available in a real
environment.

Techniques have been proposed to identify the RTF in
noisy environments, such as a speech non-stationary estima-
tor [13], an RTF identification method based on speech pres-
ence probability and spectral subtraction [14], and an RTF
estimator based on segmental PSD matrix subtraction [15].
In these RTF estimators, the multiplicative transfer function
(MTF) approximation [16] is assumed. This approximation is
justified only when the length of the room impulse response
is shorter than the length of the STFT window, which is
rarely the case in realistic acoustic setups. Moreover, the RTF
estimated above is the ratio between two ATFs that include
the reverberations and hence it is poorly suitable for SSL in
echoic environments.

Techniques have been proposed to extract the interaural
cues that correspond to the direct-path sound propagation,



e.g. based on the detection of time frames with less rever-
berations. The precedence effect [17] is widely modeled for
SSL [18], [19], which relies on the principle that the onset
frame is dominated by the direct-path wavefront [20], [21].
In the STFT domain, the coherence test [22] and the direct-
path dominance test [23] are proposed to detect the frames
dominated by one active source (namely only the direct-
path propagation), from which reliable localization cues are
estimated. However, in practice, there are always reflection
components in the frames selected by these algorithms due
to the inaccurate model or an improper decision threshold.

In this paper we propose a direct-path RTF estimator
suitable for the localization of a single speech source in the
real world. We build on the crossband filter proposed in [24]
(actually a simplified CTF approximation proposed in [25])
for system identification. This filter accurately characterizes
the impulse response in the STFT domain by a convolutive
transfer function instead of the MTF approximation. The first
coefficient of the CTF at different frequencies represents the
STFT of the first segment of the channel impulse response,
which is composed of the impulse response of the direct-
path propagation and possibly a few reflections. Therefore,
we refer to the first coefficient of the CTF as the direct-path
ATF, and the ratio between the coefficients from the two
channels as the direct-path RTF (DP-RTF). For the noise-
free case, inspired by [26], based on the relation of the
CTFs between the two channels, we construct a set of linear
equations using the auto- and cross-power spectral density
(PSD) of the speech signal received by the microphones.

At each frequency, the DP-RTF is the unknown variable
of the linear equations, and can be estimated from these
equations using the least square estimator. However, in
practice, the sensor signals are always contaminated by noise.
The speech PSD constructing the linear equations can be
obtained by subtracting the noise PSD from the sensor
signal PSD. Finally, the estimated DP-RTFs are concatenated
over microphone pairs and frequencies, and mapped to the
source direction space using the probabilistic piecewise affine
mapping model [27]. Experiments, conducted in various real-
world environments, show the effectiveness of the proposed
method.

The remainder of this paper is organized as follows.
Section II formulates the sensor signals based on the cross-
band filter. Section III presents the DP-RTF estimator. In
Section IV, the SSL algorithm based on the probabilistic
piecewise affine mapping model is described. Experimental
results are presented in Section V, and Section VI draws
some conclusions.

II. SIGNAL FORMULATION BASED ON CROSSBAND
FILTER

In this work, we process microphone pairs separately.
Thence, without loss of generality, only the sensor signals
of one microphone pair are defined in this section, analyzed
in section III, and the acoustic features of several microphone
pairs will be combined for SSL in Section IV.

Let us consider a non-stationary source signal, e.g., a
speech source s(n) in the time domain. In a noise-free
environment, the microphone-pair signals are

x(n) = a(n) ∗ s(n), y(n) = b(n) ∗ s(n), (1)

where ∗ denotes convolution, a(n) and b(n) are the room
impulse responses from the source to the first and second
microphone, respectively. Let T denote the length of a(n)
and b(n). Applying the STFT, based on the MTF approxima-
tion, microphone signal x(n) is approximated in the time-
frequency (TF) domain as xp,k = sp,kak, where xp,k and
sp,k are the STFT of the corresponding signals, p and k are
the indexes of time frame and frequency bin, respectively.
Let N denote the length of the STFT window (frame). This
MTF approximation is only valid when the impulse response
length T is lower than N . For a non-stationary acoustic
signal, such as speech, a small length N (around 20 ms)
is typically chosen to assume ‘local’ stationarity, i.e. in each
frame. Therefore the MTF approximation is questionable in
a, possibly strongly, reverberant environment with a long
room impulse response.

To address this problem, the crossband filter was intro-
duced in [24] to represent a linear system in the STFT
domain more accurately. Let ω̃(n) and ω(n) denote the
analysis and synthesis STFT windows respectively, and let
L denote the frame step. The crossband filter model consists
of representing the STFT coefficient xp,k as a summation
of multiple convolutions across frequency bands. A CTF
approximation is further introduced in [25] to simplify the
analysis, i.e. using only band-to-band filters as

xp,k =

Qk−1∑
p′=0

sp−p′,kap′,k = sp,k ∗ ap,k, (2)

where convolution is applied to the time variable p. The
frequency dependent CTF length Qk is related to the rever-
beration at the kth frequency band, which will be discussed
in section V. The TF-domain impulse response ap′,k is
related to the time-domain impulse response a(n) by:

ap′,k = a(n) ∗ ζk(n)|n=p′L, (3)

which represents the convolution with respect to the time
index n evaluated at frame steps, with

ζk(n) = ej
2π
N kn

∑
m

ω̃(m)ω(n+m). (4)

In the next section, the CTF formalism is used to extract the
impulse response of the direct-path propagation.

III. DIRECT-PATH RELATIVE TRANSFER FUNCTION

A. Definition of DP-ATF and DP-RTF Based on CTF

In the CTF approximation (2), using (3) and (4) at p′ = 0,
the first coefficient of ap′,k can be derived as

a0,k = a(n) ∗ ζk,k(n)|n=0 =
∑N−1

t=0
a(t)ν(t)e−j

2π
N kt, (5)



where

ν(t) =

{∑N
m=0 ω̃(m)ω(m− t) if 1−N ≤ t ≤ N − 1,

0, otherwise.

Therefore, a0,k can be interpreted as the k-th Fourier coeffi-
cient of the impulse response segment a(n)|N−1n=0 (windowed
by ν(t)|N−1n=0 ). In the sense of transfer function identification,
without loss of generality, we assume that the room impulse
response a(n) begins with the impulse response of the direct-
path sound propagation. If the frame length N is properly
chosen, a(n)|N−1n=0 is composed of the impulse responses of
the direct-path propagation and a few reflections. Particularly,
if the initial time delay gap (ITDG) is large compared to
the frame length N , a(n)|N−1n=0 is mainly composed of the
direct-path impulse response. Thence we refer to a0,k as the
direct-path ATF.

Similarly, the CTF approximation of yp,k is written as

yp,k = sp,k ∗ bp,k, (6)

and b0,k is assumed to represent the direct-path ATF from the
source to the second microphone. By definition, DP-RTF is
given by: b0,k

a0,k
. Let us remind that this DP-RTF is a relevant

cue for SSL.

B. DP-RTF Estimation

Since both channels are assumed to follow the CTF model,
we can write:

xp,k ∗ bp,k = sp,k ∗ ap,k ∗ bp,k = yp,k ∗ ap,k. (7)

In [26], this relation is proposed in time domain for TDOA
estimation. Eq.(7) can be written in vector form as

x>p,kbk = y>p,kak (8)

where > denotes vector or matrix transpose, and

xp,k = [xp,k, xp−1,k, . . . , xp−Qk+1,k]>,

yp,k = [yp,k, yp−1,k, . . . , yp−Qk+1,k]>,

bk = [b0,k, b1,k, . . . , bQk−1,k]>,

ak = [a0,k, a1,k, . . . , aQk−1,k]>. (9)

Dividing both sides of (8) by a0,k and reorganizing the terms,
we can write:

yp,k = z>p,kgk, (10)

where

zp,k = [xp,k, . . . , xp−Qk+1,k, yp−1,k, . . . , yp−Qk+1,k]>

gk =

[
b0,k
a0,k

, . . . ,
bQk−1,k
a0,k

,−a1,k
a0,k

, . . . ,−aQk−1,k
a0,k

]>
. (11)

We see that the DP-RTF appears as the first entry of gk.
Hence, in the following, we base the estimation of the DP-
RTF on the construction of yp,k and zp,k statistics. More
specifically, multiplying both sides of (10) by y∗p,k (∗ denotes
complex conjugation) and taking the expectation (denoted by
E{·}), we obtain:

φyy(p, k) = ϕ>zy(p, k)gk, (12)

where φyy(p, k) = E{yp,ky∗p,k} is the PSD of y(p, k), and

ϕzy(p, k) = [E{xp,ky∗p,k}, . . . , E{xp−Qk+1,ky
∗
p,k},

E{yp−1,ky∗p,k}, . . . , E{yp−Qk+1,ky
∗
p,k}]> (13)

is a vector which is composed of cross-PSD terms between
the elements of zp,k and yp,k. In practice, these auto-
and cross-PSD terms can be estimated by averaging the
corresponding spectra over a number D of frames, i.e.:

φ̂yy(p, k) =
1

D

D−1∑
d=0

yp−d,kyp−d,k (14)

The elements in ϕzy(p, k) can be estimated by using the
same principle. Consequently, (12) is approximated as

φ̂yy(p, k) = ϕ̂>zy(p, k)gk. (15)

In this equation, the speech PSD φ̂yy(p, k) and ϕ̂>zy(p, k) can
be obtained from the noise-free sensor signals. However in
the real world, the PSD of speech signals are deteriorated by
noise.

C. Speech PSD Estimate in the Presence of Noise

Noise signals are added into the sensor signals in (1) as

x̃(n) = x(n) + u(n) = a(n) ∗ s(n) + u(n),

ỹ(n) = y(n) + v(n) = b(n) ∗ s(n) + v(n), (16)

where u(n) and v(n) are the noise signals in two sensors,
respectively, which are supposed to be stationary and uncor-
related to the speech signal s(n).

Applying the STFT to the sensor signals in (16): x̃p,k =
xp,k + up,k and ỹp,k = yp,k + vp,k, respectively, in which
each quantity is the STFT coefficient of its corresponding
time domain signal. Similar to zp,k, we define

z̃p,k = [x̃p,k, . . . , x̃p−Qk+1,k, ỹp−1,k, . . . , ỹp−Qk+1,k]>

= zp,k + wp,k (17)

where

wp,k = [up,k, . . . , up−Qk+1,k, vp−1,k, . . . , vp−Qk+1,k]>.
(18)

We define the PSD of ỹp,k as φỹỹ(p, k). We also define
the PSD vector ϕz̃ỹ(p, k), which is composed of the auto- or
cross-PSD between the elements of z̃p,k and ỹp,k. Following
the principle in (14), by averaging the auto or cross spectra
of multiple frames, these PSDs can be estimated using the
STFT coefficients of input signals as φ̂ỹỹ(p, k) and ϕ̂z̃ỹ(p, k).
Because the speech and noise signals are not correlated, they
can be represented as

φ̂ỹỹ(p, k) = φ̂yy(p, k) + φ̂vv(p, k)

ϕ̂z̃ỹ(p, k) = ϕ̂zy(p, k) + ϕ̂wv(p, k) (19)

where φ̂vv(p, k) is an estimation of the PSD of vp,k, the
PSD vector ϕ̂wv(p, k) is composed of the estimated auto
or cross PSD between the elements of wp,k and vp,k. The
auto- and cross-PSD of noise can be subtracted by using the
noise estimator [28] or the inter-frame spectral subtraction



technique [15]. In this work, for simplicity, we assume that
noise is stationary (for example, the robot’s ego-noise), and
the noise-only signal is available, from which the noise
PSD φvv(p, k) and ϕwv(p, k) can be computed in advance.
Consequently, we approximately compute the speech PSD as

φ̂yy(p, k) ≈ φ̂ỹỹ(p, k)− φvv(p, k)

ϕ̂zy(p, k) ≈ ϕ̂z̃ỹ(p, k)− ϕwv(p, k). (20)

Because of the temporal sparsity of the speech signal, parts
of the frames are dominated by noise, which should be
disregarded for DP-RTF estimation. Thence we define the
frame index set that comprises the frames with considerable
speech power as

pk = {p | φ̂ỹỹ(p, k) > γφvv(p, k)}, (21)

where γ is a power threshold. Let Pk = |pk| denote the
cardinal of pk.

D. Direct-Path Relative Transfer Function Estimation
Based on the speech PSD estimated in (20), by concate-

nating across frames, (15) could be written in matrix form

Φ̂yy(k) = Ψ̂zy(k)gk. (22)

where

Φ̂yy(k) = [. . . , φ̂yy(p, k), . . . ]>, p ∈ pk

Ψ̂zy(k) = [. . . , ϕ̂zy(p, k), . . . ]>, p ∈ pk

are Pk × 1 vector, Pk × (2Qk − 1) matrix, respectively.
A least-square (LS) solution to (22) is given as

ĝk = (Ψ̂H
zy(k)Ψ̂zy(k))−1Ψ̂zy(k)Φ̂yy(k) (23)

where H denotes matrix conjugate transpose, −1 denotes
maxtrix inverse. The first element of ĝk is denoted as ĝk,
which is an estimation of DP-RTF b0,k

a0,k
.

IV. SOUND SOURCE LOCALIZATION METHOD

The amplitude and the phase of DP-RTF is equivalent
to the IPD and ILD interaural cues corresponding to the
direct-path propagation. As discussed in [29], [30], when the
reference transfer function a0,k is much smaller than b0,k,
the amplitude ratio estimation is sensitive to the noise in the
reference channel. Therefore, we normalize ĝk as

ĉk =
ĝk√
|ĝk|2 + 1

. (24)

It is clear that the phase is retained, and the amplitude is
normalized as 0 < |ĉk| < 1.

The quantity ĉk is the estimated DP-RTF for one micro-
phone pair, where the index of microphone pair is omitted.
Concatenating the estimated DP-RTF of microphone pairs
A-C and B-D, yields ĉk = [ĉk,AC , ĉk,BD]>.1 Then, con-
catenating ĉk across frequencies, we obtain a global feature
vector in C2K :

ĉ = [ĉ>0 , . . . , ĉ
>
k , . . . , ĉ

>
K−1]>, (25)

1For NAO version 5, a total of six microphone pairs are available.
However, experiments show that it is sufficient to consider two microphone
pairs.

where K denotes the number of frequencies involved in SSL.
To map the high-dimensional feature vector ĉ to a low-

dimensional source direction o ∈ RO (O denote the dimen-
sion of source direction), we adopt the regression method
proposed in [27]. Briefly, a probabilistic piecewise-linear
regression f : C2K → RO is learned from a training
dataset {ci,oi}Ii=1, where ci is a feature vector and oi is the
corresponding sound-source direction. Then, for a test DP-
RTF feature vector ĉ extracted from the microphone signals,
the source direction is predicted with ô = f(ĉ).

Due to the sparsity of speech signals in the STFT domain,
it is possible that there are only a few significant speech
frames at frequency k for one microphone pair, especially
in the case of low SNR. In other words, Pk could be
small, which makes the estimated ĉk unreliable. To disregard
the unreliable ĉk in the regression procedure, we introduce
a missing data indicator vector h ∈ R2K . If the matrix
Ψ̂zy(k) in (22) is underdetermined, i.e., Pk < 2Qk − 1,
its corresponding element in h is set to 0, and 1 otherwise.
The regression method that we use [27] makes use of such
an indicator vector h and the element in ĉ with a 0 indicator
is disregarded. The revised prediction is ô = f(ĉ,h).

V. EXPERIMENTS WITH THE NAO ROBOT

In this section several experiments using the NAO robot
(version 5) are conducted in various real-world environments.
From Fig. 1, one can see that four microphones are nearly
coplanar, and that the angle between the microphone plane
and the horizontal plane is small. The microphones are close
to the head’s fan (the circular ear in Fig. 1), thence the
microphone recording include ego-noise due to the fan. As
mentioned in [31], the fan noise is stationary and spatially
correlated. In addition, its spectral energy mainly concen-
trates in a frequency range of up to 4 kHz, thence the
recorded speech signal will be contaminated by the fan noise
significantly.

A. The Datasets

The data are recorded in four real world environments:
meeting room, laboratory, office, e.g., Fig. 2, and cafeteria,
whose reverberation time T60 are approximately 1.04 s, 0.52
s, 0.47 s and 0.24 s, respectively.

Two test datasets are recorded in these environments:
• The Audio-only dataset: in the laboratory, the speech

recording from the TIMIT dataset [32] are emitted
by a loudspeaker. Two groups of data are recorded
with a fixed robot-to-source distance of 1.1 m and
2.5 m, respectively. Besides T60, ITDG and direct-to-
reverberation ratio (DRR) are also important to measure
the intensity of the reverberation. In general, the larger
the robot-to-source distance the less ITDG and DRR.
Obviously, the two cross microphone paris allow a 360◦

azimuth localization. However, because of the limitation
of NAO’s head joint, NAO’s head can not rotate in
a 360◦ azimuth range. Thence, for each group, 174
sounds are emitted from directions uniformly distributed



Fig. 2: A typical audio-only localization experiment in the
office environment. The robot turns its head towards the
speaking person shown on the screen (please see the sup-
plementary video).

Fig. 3: The audio-visual training dataset contains sound
sources emitted by a loud-speaker that correspond to sound
directions materialized by image locations (marked as blue
circles).

in the range −120◦ to 120◦ (azimuth), and −15◦ to 25◦

(elevation).
• The Audio-visual dataset: Fig. 1 shows the NAO head

camera, with a field-of-view of 60.97◦×47.64◦; speech
sounds are emitted by a loudspeaker lying in the cam-
era’s field of view. The image resolution is of 640×480
pixels, so 1◦ of azimuth/elevation corresponds to about
10.5 horizontal/vertical pixels. For this dataset, the
source direction corresponds to a pixel in the image. The
ground-truth source direction is obtained by localizing
in the image the visual marker fixed on the loudspeaker.
Four groups of data are recorded in four rooms, respec-
tively. For each group, about 230 sounds are emitted
from directions uniformly distributed in the the camera
field-of-view. As an example, Fig. 3 illustrates the 228
directions shown as blue dots in the image plane. The
robot-to-source distance is approximately fixed as 2 m
in this dataset.

In both of these two datasets, the external noise is much
lower than the fan noise, thence noise in the recorded
signal is almost composed of the fan noise. The signal to
noise ratios (SNR) are approximately 14 dB, 11 dB for

Audio-only dataset with 1.1 m and 2.5 m robot-to-source
distance, respectively, and 2 dB for audio-visual dataset 2.
As mentioned in Section III-C, the fan noise PSD φvv(p, k)
and ϕwv(p, k) are precomputed.

The training dataset {ci,oi}Ii=1 for Audio-only exper-
iments is generated by the anechoic head-related impulse
responses (HRIR) of 1002 directions uniformly distributed
in the same range as the test dataset. The training dataset
for Audio-visual experiments is generated by the HRIR of
378 directions uniformly distributed in the camera field-of-
view. The anechoic HRIR is obtained by truncating the room
impulse response before the first reflection. White Gaussian
noise (WGN) signals are emitted from each direction, and
the cross-correlation between the microphone signal and
source WGN signal gives the room impulse response of each
direction.

B. Parameter Setup

The sampling rate of the microphone signals is 16 kHz.
The window length of STFT is 16 ms (256 samples) with
8 ms overlap (128 samples). Only the frequency band from
300 Hz to 4 kHz is taken into account for speech source
localization, i.e., the corresponding frequency bins are from
5 to 63, so the number of frequencies is K=59. The number
of frames D for PSD estimation is set to 25 (0.2 s). The
power threshold γ is set to 1.8. We set the length of CTF
Qk to be equal for all the frequency bins for simplicity, and
denote it as Q, which is set to 0.25T60.

C. Method Comparison

The crucial point of binaural localization is to extract
the reliable binaural cues from the noisy and reverberant
sensor signals. Two state-of-the-art binaural feature esti-
mation methods with good capability to reduce noise or
reverberations are tested for comparison.
• A variation of the unbiased RTF estimator proposed in

[14], in which the MTF approximation is adopted. The
noise PSD is recursively estimated in the original work,
while is more accurately precomputed using the noise-
only signal in this work. We refer to this method as
RTF-MTF.

• The coherence test (CT) method in [22]. The coherence
test is used for searching the rank-1 time-frequency
bins, which are supposed to be dominated by one active
source. In this work, it is adopted for single speaker
localization, in which one active source denotes the
direct-path source signal. The TF bins that involve
considerable reflections have low coherence. We first
detect the maximum coherence over all the frames
at each frequency bin, and then set the coherence
test threshold for each frequency bin to 0.9 times its
maximum coherence. In our experiments, this threshold
achieves the best performance. The covariance matrix
is estimated by taking a 120 ms (15 adjacent frames)
averaging. The auto and cross PSD of all the frames that

2Note that the loudspeaker volume is different for two datasets.



(a)

(b)

Fig. 4: Localization results for Audio-only dataset. (a) 1.1 m
robot-to-source distance. (b) 2.5 m robot-to-source distance.
The elevations of multiple source directions corresponding
to each azimuth uniformly distribute from -15◦ to 25◦.

have a coherence larger than the threshold are applied
the spectral subtraction with the same principle in (20),
and then are averaged over frames for acoustic feature
extraction. We refer to this method as RTF-CT.

• In addition, a conventional beamforming SSL method:
the steered-response power (SRP) utilizing the phase
transform (PHAT) [33], [34] is also tested. The source
directions in the training set of the proposed method
are taken as the steering directions, and their HRIRs
are taken as the steering vector.

D. Localization Results with the Audio-Only Dataset

Our experiments on Audio-only dataset show that, in the
elevation range [−15◦ 25◦], the elevation localization results
are completely unreliable for all the three methods. This can
be easily explained by the fact that the angle between the
microphone plane and the horizontal plane is small, hence
the microphone array has a low resolution for the elevation
direction. Therefore, in Fig. 4, we only present the azimuth
localization results.

From Fig. 4-(a), we observe that both the proposed method
and the RTF-MTF and RTF-CT methods work well in the
azimuth range [−50◦, 50◦]. The proposed method achieves
slightly better results in this range. The performance drops
drastically for the source directions out of this range. This
indicates that the NAO’s microphone array has a better
localization capability for the azimuth range [−50◦, 50◦].
From the results for the azimuth range [−120◦, −50◦] and
[50◦, 120◦], it can be seen that RTF-MTF has the largest
localization error and many localization outliers caused by
the reverberations. By selecting frames that involve less
reverberations, RTF-CT performs better than RTF-MTF, evi-
dently, which can be observed from the fact that RTF-CT
has less outliers than RTF-MTF. However, it is difficult
to automatically set a coherence test threshold that could
perfectly select the desired frames. Many frames that have
a coherence larger than the threshold include reflections.
Therefore, RTF-CT also has a relatively large localization
error and some localization outliers. There are also many
outliers for SRP-PHAT, which indicates that the steered
response power is influenced by the reverberation. The
proposed method achieves the best performance by properly
extracting the direct-path RTF.

Fig. 4-(b) shows the localization results for the data with
2.5 m robot-to-source distance. Compared to the robot-to-
source distance of 1.1 m, both ITDG and DRR are smaller.
Consequently, the performance degrades for both the pro-
posed method and the two state-of-the-art methods compared
to Fig. 4-(a). The reasons for this degradation are the
followings: for both RTF-MTF and RTF-CT the reflections
are large relative to the direct-path impulse response, which
makes the feature estimated from the reverberated signals
more different than the feature corresponding to the direct-
path propagation. In addition, concerning RTF-CT, the early
reflection is closer to the direct-path impulse response, which
makes less reverberation-free TF bins to be available. SRP-
PHAT also has more outliers than the case in Fig. 4-(a)
due to the lower DRR. For the proposed method, (i) the
early reflections in the impulse response segment a(n)|Nn=0

increase and (ii) in vector gk, the DP-RTF b0,k
a0,k

plays a
more unimportant role relative to the other elements with
the decreasing of DRR, which makes the DP-RTF estimation
error larger. We can see that the proposed method still
achieves the best performance, and most of its localization
results are reliable.

E. Localization Results with the Audio-Visual Dataset

The source directions of audio-visual dataset distribute in
the camera field-of-view, which is a small range in front
of NAO’s head (azimuth range [−30.5◦, 30.5◦]). As shown
in Fig. 4, good azimuth localization results are obtained in
this range. Table I shows the localization error for both the
azimuth (Azi.) and elevation (Ele.) directions. The localiza-
tion error is computed by averaging all the absolute errors
between the localized directions and their corresponding
ground truth (in degrees).



Fig. 5: Overview of the proposed distributed architecture that allows fast development of interactive applications using the
humanoid robot NAO [35].

It can be seen that the elevation errors are always much
bigger than the azimuth errors, due to the low elevation reso-
lution of the microphone array that we already mentioned. In
the cafeteria, the reverberation time T60 is 0.24 s, generally
speaking, which is a low reverberation time. The RTF-
MTF and RTF-CT methods yields performance comparable
with the proposed method in the cafeteria environment. The
reason is: the MTF approximation is relatively proper for
this case, while the proposed method has a higher model
complexity which needs more reliable data. In the office
and laboratory, the reverberation times are larger, so the
MTF approximation is not accurate anymore. As a result,
Table I shows that the proposed method achieves evidently
better performance than the two other methods in the office
and laboratory environments. The performance of RTF-
MTF is even better than RTF-CT, the reason is probably
that the coherence test doesn’t work well under low SNR
conditions (the SNR is about 2 dB). In the meeting room,
the reverberation time is high (1.04 s). SRP-PHAT achieves
the worst performance due to the intense noise, especially
the noise is spatially correlated. The proposed method still
evidently performs better than the other methods. These
further validates that the proposed method is more efficient
in reverberant environments.

Cafeteria Office Laboratory Meeting room
Methods Azi. Ele. Azi. Ele. Azi. Ele. Azi. Ele.

RTF-MTF 0.45 1.57 0.62 2.14 1.44 2.31 1.87 3.66
RTF-CT 0.44 1.50 0.64 2.25 1.61 2.36 1.77 3.44

SRP-PHAT 0.77 1.95 1.03 2.80 1.41 3.33 2.04 3.52
Proposed 0.47 1.47 0.55 1.87 0.82 1.84 0.95 2.12

TABLE I: Localization error (degrees) for the audio-visual
dataset. The best results are shown in bold.

F. Software Architecture

Ideally, one would like to implement the SSL method just
presented using the embedded computing resources available
with a robot such as the NAO companion humanoid. How-
ever, NAO like any other commercially available robot, has
two limitations. Firstly, the on-board computing resources
are restricted which implies that it is difficult to implement
sophisticated audio signal processing and analysis algorithms
needed by SSL in particular and by robot audition in general.

Secondly, robot programming implies the development of
embedded software modules and libraries, which is a difficult
task in its own right necessitating specialized knowledge.

We have developed a distributed software architecture that
attempts to overcome these two limitations and which allows
fast experimental validation of proof-of-concept demonstra-
tors [35]. Broadly speaking, NAO’s on-board computing
resources are networked with external (or remote) computing
resources. The latter is a computer platform (laptop or
desktop) with its CPU’s, GPU’s, memory, operating system,
libraries, software packages, internet access, etc. This config-
uration enables easy and fast development in Matlab, C, C++,
Python, etc. Moreover, it allows the user to combine on-board
libraries (motion control, face detection, etc.) with external
toolboxes, such as Matlab’s signal processing toolbox.

An overview of the proposed software architecture is
shown on Fig. 5. Data coming from NAO (motor positions,
images, microphone signals, or data produced by on-board
computing modules) are fed into the external computer.
Conversely, the latter can control the robot. Currently we
developed three internal-to-remote interfaces: vision, audio,
and locomotion. The role of these interfaces is twofold:
(i) to feed the data into a memory space that is subsequently
shared with existing software modules or with modules under
development and (ii) to send back to the robot commands
generated by the external software modules. Although these
modules may be developed in a variety of programming
languages, special emphasis was put to allow integration with
the Matlab programming environment.

The proposed SSL method is implemented in Matlab,
which offers the possibility to use Matlab’s signal processing
toolbox, e.g., the STFT. The Matlab computer vision toolbox
is used for image processing. The on-board robot controller
is invoked to rotate the robot head in the direction of the
detected sound source.

VI. CONCLUSIONS

We have proposed a direct-path RTF estimator for SSL,
and tested it on NAO robot. Instead of the MTF approxima-
tion, the method takes the CTF approximation, which is more
precise when the impulse response is too long. Compared
with the conventional RTF, the ratio between two direct-path



ATFs is more reliable for SSL. Because the trainning dataset
is generated using the anechoic HRIR, the SSL module can
operate for various room configurations, which is important
for robot audition. Experiments have shown that the proposed
method performs well for azimuth localization under difficult
acoustic conditions, however poorly for elevation localization
because of the microphone geometry of NAO robot head
version 5. Thence, for the next version of NAO, a more
reasonable microphone topology is expected.
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