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New efficient clustering quality indexes

Jean-Charles Lamirel, Nicolas Dugué, Pascal Cuxac

Abstract— This paper deals with a major challenge in clus-
tering that is optimal model selection. It presents new efficient
clustering quality indexes relying on feature maximization,
which is an alternative measure to usual distributional measures
relying on entropy, Chi-square metric or vector-based measures
such as Euclidean distance or correlation distance. First Exper-
iments compare the behavior of these new indexes with usual
cluster quality indexes based on Euclidean distance on different
kinds of test datasets for which ground truth is available. This
comparison clearly highlights altogether the superior accuracy
and stability of the new method on these datasets, its efficiency
from low to high dimensional range and its tolerance to noise.
Further experiments are then conducted on ”real life” textual
data extracted from a multisource bibliographic database for
which ground truth is unknown. These experiments show that
the accuracy and stability of these new indexes allow to deal
efficiently with diachronic analysis, when other indexes do not
fit the requirements for this task.

I. INTRODUCTION

Unsupervised classification or clustering is a data analysis
technique which is increasingly widely-used in different
areas of application. If the datasets to be analyzed have
growing size, it is clearly unfeasible to get ground truth
that permit to work on them in a supervised fashion. The
main problem which then arises in clustering is to qualify
the obtained results in terms of quality. A quality index is a
criterion which makes possible to decide which clustering
method to use, to fix an optimal number of clusters and
also to evaluate or develop a new method. Many approaches
have been developed for that purpose as it has been pointed
out in [25] [31] [27] [1]. However, even if recent alternative
approaches do exist [4] [13] [14], the usual quality indexes
are mostly based on the concepts of dispersion of a cluster
and dissimilarity between clusters. Computation of the latter
criteria themselves relies on Euclidean distance. Most popu-
lar such indexes are the Dunn index [9], the Davis-Bouldin
index [6], the Silhouette index [28], the Calinski-Harabasz
index [5] and the Xie-Beni index [32]. They implement the
afore mentioned concepts in slightly different ways.

Consider a dataset D made of n data points, and C, a
partition in k clusters of the dataset : C = (Ci, · · · , Ck).
The Dunn index (Equation 1), that has to be maximized,
identifies clusters which are well separated and compacts. It
combines dissimilarity between clusters and their diameters
to estimate the most reliable number of clusters:

DU =
min1≤i<j≤k DissDU (Ci, Cj)

maxm=1,··· ,k Diam(Cm)
(1)

The dissimilarity distance usually used as the numerator
is often an exhaustive dissimilarity measure between all
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points of distinct clusters. In general, different diameters and
distances definitions can be used.

The Davies-Bouldin index (Equation 2) is similar to the
Dunn index and identifies clusters which are far from each
other and compacts. It should be minimized:

DB =
1

k

k∑
i=1

max
j=1,··· ,k;i6=j

{Diam(ci) + Diam(cj)

DissDB(Ci, Cj)
} (2)

The dissimilarity distance used in Davies-Bouldin is a dis-
tance between centroids. It is thus far faster to compute than
the Dunn Index in its usual form.

To define the Silhouette index, we first define the Silhou-
ette width of each point (Equation 3):

S(i) =
b(i) · a(i)

max(b(i), a(i))
(3)

with a(i) being the mean distance of point i to the other
points of its cluster, and b(i), the lowest average distance
between i and each other cluster point set. A negative
silhouette value for a given point means that the point is
most suited to belong to a different cluster from the one it is
allocated. Then, the Silhouette Index is computed as follows
and has to be maximized:

SI =
1

n

∑
i∈n

S(i) (4)

The Calinski-Harabasz index (Equation 5) is defined as
follows:

CH =
(n− k)

(k − 1)

BGSS

WGSS
(5)

with BGSS the Between Group Sum of Squared that mea-
sures the dissimilarity between different clusters, and WGSS
the Within Group Sum of Squared that measures dissimilarity
within clusters. Well separated and compact clusters should
maximize this ratio.

The Xie-Beni index (Equation 6) is a compromise between
the approaches provided by the Dunn index and by the
Calinski-Harabasz index, and it should be minimized:

XB =
1

n

WGSS

min1≤i<j≤k DissDU (Ci, Cj)
(6)

As stated in [31] [12] usual indexes have the defect to
be sensitive to noisy data and outliers. In [20], we also
observed that the proposed indexes are not suitable to analyze
clustering results in highly multidimensional space as well
as they are unable to detect degenerated clustering results.
Also, these indexes are not independent of the clustering
method with which they are used. As an example, a clustering
method which tends to optimize WGSS, like k-means [24],
will also tend to naturally produce low value for that criteria



which optimizes indexes output, but does not necessarily
guarantee coherent results, as it was also demonstrated in
[20]. Last but not least, as Hamerly et al. pointed out in [15],
the experiments on these indexes in the literature are often
performed on unrealistic test corpora made up of low dimen-
sional data with a small number of “well-shaped” (mostly
hyperspheric) embedded virtual clusters. As an example, in
their reference paper, Milligan and Cooper [25] compared 30
different methods for estimating the number of clusters. They
classified CH and DB in the top 10, with CH the best but
their experiments only used simulated data described in a low
dimensional Euclidean space. The same remark can be made
about the comparison performed in [31] or in [7]. However,
Kassab et al. [16] used the Reuters test collection to show that
the aforementioned indexes are often unable to identify an
optimal clustering model whenever the dataset is constituted
by complex data which need to be represented in both high-
dimensional and sparse description space, obviously with
embedded non-Gaussian clusters, as is often the case with
textual data. The silhouette index is considered one of the
more reliable indexes among those mentioned above, espe-
cially in the case of multidimensional data, mainly because it
is not a diameter-based index optimized for Gaussian context.
However, like the Dunn and Xie-Beni indexes, its main defect
is that it is computationally expensive, which could represent
a major drawback for use with large datasets constituted by
high-dimensional data.

There are also other alternatives to the usual indexes. For
example, in 2009, Lago-Fernãndez et al. [18] proposed a
method using negentropy which evaluates the gap between
the cluster entropy and entropy of the normal distribution
with the same covariance matrix, but again their experiments
were only conducted on two-dimensional data. Other recent
indexes attempts were also limited by the researchers’ choice
of complex parameters [31].

Our goals were manifold: to get rid of the method-index
dependency problem and of the sensitivity to noise issue,
and to deal with high-dimensional context while avoiding
computation complexity and parameter settings. To achieve
such goals, we exploited features of the data points attached
to clusters instead of information carried by cluster centroids
and replaced Euclidean distance with a more reliable quality
estimator based on the feature maximization measure. This
measure has been already successfully used by Lamirel et al.
to solve complex high-dimensional classification problems
with highly unbalanced and noisy data gathered in similar
classes thanks to its very efficient feature selection and
data resampling capabilities [22]. As a complement to this
information, we shall show in the upcoming experimental
section that cluster quality indexes relying on this measure do
not possess any of the defects of usual approaches including
computational complexity.

Section II presents a feature maximization measure and
our proposed new indexes. Section III presents our first
experimental context based on reference datasets. Section
IV details our first results already presented in a more

synthetical way in [23]. Section V presents a further step of
comparative exploitation of the index on a real application of
diachronic analysis of scientific litterature. Section VI draws
our conclusion and ideas for future work.

II. FEATURE MAXIMIZATION FOR FEATURE SELECTION

Feature maximization is an unbiased measure which can
be used to estimate the quality of a classification whether it
be supervised or unsupervised. In unsupervised classification
(i.e. clustering), this measure exploits the properties (i.e. the
features) of cluster associated data. Its principal advantage is
thus to be totally independent of the clustering method and
of its operating mode.

Consider a partition C which results from a clustering
method applied to a dataset D represented by a group
of features F . The feature maximization measure favours
clusters with a maximal feature F-measure. The feature F-
measure FFc(f) of a feature f associated with a cluster
c is defined as the harmonic mean of the feature recall
FRc(f) and of the feature predominance FPc(f), which
are themselves defined as follows:

FRc(f) =
Σd∈cW

f
d

Σc∈CΣd∈cW
f
d

FPc(f) =
Σd∈cW

f
d

Σf ′∈Fc,d∈cW
f ′

d
(7)

with

FFc(f) = 2

(
FRc(f)× FPc(f)

FRc(f) + FPc(f)

)
(8)

where W f
d represents the weight of the feature f for the

data d and Fc represents all the features present in the
dataset associated with the cluster c. Feature Predominance
measures the ability of f to describe cluster c. In a
complementary way, Feature Recall allows to characterize f
according to its ability to discriminate c from other clusters.

There are some important similarities between Recall and
Predominance used in the proposed approach and Recall
and Precision used in information retrieval. We have already
exploited this analogy more thoroughly in some of our
former works, like in [19], but the measures proposed here
must be considered as generalizations of such information
retrieval measures which are no more based on agreement
but on influence of a feature materialized by a weight.
Weight represents the importance of a feature for a data and
furthermore for a cluster. The choice of the weighting scheme
is not really constrained by the approach, but it is necessary
to deal with positive values. Such scheme is supposed to
figure out the significance (i.e. semantic and importance) of
the feature for the data.

Feature recall is a scale independent measure but feature
predominance is not. We have however shown experimentally
in [22] that the F-measure which is a combination of these
two measures is only weakly influenced by feature scaling.
Nevertheless, to guaranty full scale independent behavior for
this measure, data must be standardized.



In supervised context, feature maximization measure can
be exploited to generate a powerful feature selection pro-
cess [22]. In our unsupervised (clustering) context, the se-
lection process can be used to describe or label clusters
according to the most typical and representative features.
This process is a non-parametrized process that uses both
the capacity of F-measure to discriminate between clusters
(FRc(f) index) and its ability to faithfully represent the
cluster data (FPc(f) index). The set Sc of features that are
characteristic of a given cluster c is belonging to a partition
C is translated by:

Sc =
{
f ∈ Fc | FFc(f) > FF (f) and FFc(f) > FFD

}
(9)

where

FF (f) = Σc′∈C
FF c′(f)

|C/f |
and FFD = Σf∈F

FF (f)

|F |
(10)

where C/f represents the subset of C in which the feature
f occurs.

Finally, the set of all selected features SC is the subset of
F defined by:

SC = ∪c∈CSc. (11)

In other words, the features judged relevant for a
given cluster are those whose representations are better
than average in this cluster, and better than the average
representation of all the features in the partition, in terms of
feature F-measure. Features which never respect the second
condition in any cluster are discarded.

A specific concept of contrast Gc(f) can be defined to
calculate the performance of a retained feature f for a given
cluster c. It is an indicator value which is proportional to
the ratio between the F-measure FFc(f) of a feature in the
cluster c and the average F-measure FF of this feature for
the whole partition1. It can be expressed as:

Gc(f) = FFc(f)/FF (f) (12)

The active features of a cluster are those for which the
contrast is greater than 1. Moreover, the higher the contrast
of a feature for one cluster, the better its performance in
describing the cluster content.

Below we give an example of the operating mode of
the method, on the basis of a toy-dataset encompassing
two classes (Men (M), Women (F)) described with 3 fea-
tures: Nose Size, Hair Length, Shoes Size. Figure 1 shows
the source data and how the F-measure calculation of the
Shoes Size feature operates in the Men class.

As shown in Figure 2, the second step consists in calculat-
ing the average F-measure of each feature over the clusters,

1Using p-value highlighting the significance of a feature for a cluster by
comparing its contrast to unity contrast would be a potential alternative to
the proposed approach. However, this method would introduce unexpected
Gaussian smoothing in the process.

Fig. 1. Principle of feature F-measure computation for sample data.

Fig. 2. Principle of computation of overall feature F-measure average and
elimination of irrelevant features.

and the overall average F-measure for the combination of all
features and all classes. In this Figure, notation F (., .) stands
here for overall average FFD presented in (Equation 9) and
notation F (x, .) stands for average of class x, which is itself
computed as:

F (x, .) = Σf∈Sx

FFx(f)

|Sx|
(13)

Features with F-measures that are systematically lower
than the overall average are eliminated. The Nose Size feature
is thus removed. Remaining features (i,e. selected features)
are considered active in the classes in which their F-measure
is above the marginal average:

1) Shoes Size is active in the Men’s class,
2) Hair Length is active in the Women’s class.

Contrast ratio highlights the degree of activity and passiv-
ity of selected features as regards their F-measure marginal
average in different classes. Figure 3 illustrates how the
contrast is calculated for the example presented. In the
context of this example, the contrast may be considered as a
function that will virtually have the following effects:

1) Increase the length of women’s hair,
2) Increase the size of the men’s shoes,
3) Decrease the length of the men’s hair,
4) Reduce the size of women’s shoes.

As already mentioned before, the active features in a



Fig. 3. Principle of computation of contrast for selected features.

cluster are selected features for which the contrast is greater
than 1 in that cluster. Conversely, the passive features in a
cluster are selected features present in the cluster’s data for
which contrast is less than unity2. A simple way to exploit
the features obtained is to use active selected features and
their associated contrast for cluster labelling as we proposed
in [22]. A more sophisticated method (as we shall propose
hereafter) is to exploit information related to the activity
and passivity of selected features in clusters to define
clustering quality indexes identifying an optimal partition.
This kind of partition is expected to maximize the contrast
described by eq. 12. Indeed, the more contrasted are the
features, the more compact and separated the clusters. Hence,
this approach leads to the definition of two different indexes.

The PC index, whose principle corresponds by analogy
to that of intra-cluster inertia in the usual models, is a
macro-measure based on the maximization of the average
weighted contrast of active features for optimal partition. For
a partition comprising k clusters, it can be expressed as:

PCk =
1

k

k∑
i=1

1

ni

∑
f∈Si

Gi(f) (14)

The EC index, whose principle corresponds by analogy
to that of the combination between intra-cluster inertia and
inter-cluster inertia in the usual models, is based on the
maximization of the average weighted compromise between
the contrast of active features and the inverted contrast of
passive features for optimal partition:

ECk =
1

k

k∑
i=1

 |si|ni

∑
f∈Si

Gi(f) + |si|
ni

∑
h∈Si

1
Gi(h)

|si|+ |si|


(15)

where ni is the number of data associated with the cluster
i, |si| represents the number of active features in i, and |si|,
the number of passive features in the same cluster.

2As regards the principle of the method, this type of selected features
inevitably have a contrast greater than 1 in some other cluster(s) (see eq. 9
for details).

III. EXPERIMENTAL DATA AND PROCESS

To objectively evaluate the accuracy of our new indexes,
we used several different datasets of varying dimensionality
and size for which the optimal number of clusters (i.e. ground
truth) is known in advance.

Part of the datasets came from the UCI machine learning
repository [3] and is more usually exploited for classification
tasks. The 4 selected UCI datasets represent mostly low to
middle dimensional datasets and small datasets (except for
PEN dataset which is large). The ZOO and SOY datasets
which includes variables with modalities are transformed
into binary files. IRIS is exploited both in standard and in
binarized version to obtain clearer insight into the behavior
of quality index on binary data.

VERBF is a dataset of French verbs which are described
both by semantic features and by subcategorization frames.
The ground truth of this dataset has been established both
by linguists who studied different clustering results and by a
gold standard based on the VerbNet classification, as in [29].
This binary dataset contains verbs described in a space of
231 Boolean features. It can be considered a typical middle
size and middle dimensional dataset.

The R8 and R52 corpora were obtained by Cardoso
Cachopo from the R10 and R90 datasets, which are de-
rived from the Reuters 21578 collection3. The aim of these
adjustments was to only retain data with a single label.
Considering only monothematic documents and classes that
still had at least one example of training and one of test,
R8 is a reduction of the R10 corpus (the 10 most frequent
classes) to 8 classes and R52 is a reduction of the R90 corpus
(90 classes) to 52 classes. The R8 and R52 datasets, with
respective size of 7674 and 9100 documents, and associated
bag of words description spaces of 1187 and 2618 words,
can be considered as large and high dimensional datasets.

The summary of overall datasets characteristics is provided
in Table I.

We exploited 2 different usual clustering methods, namely
k-means [24], a winner-take-all method, and GNG [11], a
winner-take-most method with Hebbian learning. For text
and/or binary datasets we also used the IGNGF neural
clustering method [20] which has already been proven to out-
perform other clustering methods, including spectral methods
[29], on this kind of data. We have reported on the method
that produced the best results in the following experiments.

As class labels were provided in all datasets and consider-
ing that the clustering method could only produce approxi-
mate results as compared to reference categorization, we also
used purity measures to estimate the quality of the partition
generated by the method as regards to category ground truth.
Following [29], we use modified purity (mPUR) to evaluate
the clusterings produced, which is computed as follows:

mPUR =
|P |
|D|

(16)

3http://www.research.att.com/∼lewis/reuters21578.html



TABLE I
DATASETS OVERALL CHARACTERISTICS (BINARIZATION OF IRIS DATASET RESULTS IN 12 BINARY FEATURES OUT OF 4 REAL-VALUED FEATURES).

IRIS IRIS-b WINE PEN SOY ZOO VRBF R8 R52
Nbr. class 3 3 3 10 16 7 12-16 8 52
Nbr data 150 150 178 10992 292 101 2183 7674 9100
Nbr feat. 4 12 13 16 84 114 231 3497 7369

where P = {d ∈ D | prec(c(d)) = g(d) ∧ |c(d)| > 1}
with D being the set of exploited data points, c(d) a
function that provides the cluster associated to data d and
g(d) a function that provides the gold class associated
to data d. Clusters for which the prevalent class has only
one element are considered as marginal and are thus ignored.

For the same reason, we also varied the number of clusters
in a range up to 3 times that determined by the ground
truth 4. An index which gave no indication of optimum in
the expected range was considered to be out-of-range or
diverging index (- out-). We finally designed a process which
consists in generating disturbance in the clustering results by
randomly exchanging data between clusters to different fixed
extents (10%, 20%, 30%) whilst maintaining the original size
of the clusters. This process simulated increasingly noisy
clustering results and the aim was to estimate the robustness
of the proposed estimators.

IV. RESULTS

The results are presented in Tables II-IV. Some com-
plementary information is required regarding the validation
process. In the Tables, MaxP represents the number of
clusters of the partition with highest mPUR value (Equation
16), or in some cases, the interval of partition sizes with
highest stable mPUR value. When a quality index identified
an optimal model with MaxP clusters and MaxP differed
from the number of categories established by ground truth, its
estimation was still considered valid. This approach took into
account the fact that clustering would quite systematically
produce sub-optimal results as compared to ground truth.
The partitions with the highest purity values were thus
studied to deal with this kind of situation. For similar reason,
all estimations in the interval range between the optimal
k (ground truth) and MaxP values were also considered
valid. When indexes were still increasing and decreasing
(depending on whether they were maximizers or minimizers)
when the number of clusters was more than 3 times the
number of expected classes, there were considered out-of-
range (-out- symbol in Tables II-IV). The Figure 4 draws the
trends of evolution of EC and PC indexes in the case of the
R52 dataset. It highlights what is a suitable index behaviour
(EC index) and in a parallel way what represents the out-of-
range index behaviour we mentioned before (PC index).

4We choose too discard models of size 1 (one single cluster) in our
experiments. First, the experimented indexes are not planed to produce
results (or only incoherent ones) for such specific case. Second, such models
are irrelevant because they correspond to trivial clustering operation.

Fig. 4. Trends of PC and EC indexes on Reuters R52 dataset.

When considering the results presented in Tables II-III,
it should first be noted that one of our tested indexes, the
Xie-Beni (XB) index never provides any correct answers.
These were either out of range (i.e. diverging) or answers
(i.e. minimum value when this index was a minimizer) in
the range of the variation of k, but too far from ground
truth or even too far from optimal purity among the set
of generated clustering models. Some indexes were in the
low mid-range of correctness and provide unstable answers.
This was the cases with the Davis-Bouldin (DB), Calinski-
Harabasz (CH), Dunn (DU) and Silhouette (SI) indexes.
With higher dimensions, these indexes were generally unable
to provide any correct estimation. This phenomenon has
already been observed in previous experiments with Davis-
Bouldin (DB) and Calinski-Harabasz (CH) indexes [16].
Davis-Bouldin (DB) performed slightly better than average
on low dimensional data. Our PC index was found to perform
significantly better than average on low dimensional data but
remains a better low dimensional problem estimator than a
high dimensional one. Help from passive features somehow
seems mandatory to estimate an optimal model in the case
of high dimensional problems. Hence, the EC index which
exploited both active and passive features was found to have
from far the best performance, with low (Table II) or high
dimensional data (Table III). According to our evaluation
criteria, this index only returns wrong results in the case of
the PEN dataset. However, even in this case its estimation
(model of size 9) is still in the close neighbour of the optimal
one (model of size 10). Additionally, the EC and PC indexes,
were both found to be capable of dealing with binarized
data in a transparent manner, which is not the case of some



TABLE II
OVERVIEW OF THE INDEXES ESTIMATION RESULTS ON LOW DIMENSIONAL DATA (BOLD NUMBERS REPRESENT VALID ESTIMATIONS).

IRIS IRIS-b WINE PEN SOY

Number
of

correct
matches

DB 2 5 5 7 19 2/5
CH 2 3 6 8 5 1/5
DU 1 1 8 17 8 0/5
SI 4 2 7 14 14 1/5

XB 2 7 -out- 19 24 0/5
PC 3 3 4 9 16 4/5
EC 3 3 4 9 16 4/5

MaxP 3 3 5 11 19
Method K-means K-means GNG GNG GNG

TABLE III
OVERVIEW OF THE INDEXES ESTIMATION RESULTS ON AVERAGE TO HIGH DIMENSIONAL DATA (BOLD NUMBERS REPRESENT VALID ESTIMATIONS).

ZOO VRBF R8 R52

Number
of

correct
matches

DB 8 -out- 5 58 1/4
CH 4 7 6 -out- 1/4
DU 8 2 -out- -out- 1/4
SI 4 -out- -out- 54 1/4
XB -out- 23 -out- -out- 0/4
PC 7 18 -out- -out- 1/4
EC 7 15 6 52 4/4

MaxP 10 12-16 6 50-55
Method IGNGF IGNGF IGNGF IGNGF

TABLE IV
INDEXES ESTIMATION RESULTS IN THE PRESENCE OF NOISE (UCI ZOO DATASET).

ZOO
ZOO
Noise
10%

ZOO
Noise
20%

ZOO
Noise
30%

Number
of

correct
matches

DB 8 4 3 3 1/4
CH 4 5 3 3 0/4
DU 8 2 2 2 1/4
SI 14 -out- -out- -out- 0/4
XB -out- -out- -out- -out- 0/4
PC 6 4 11 9 1/4
EC 7 5 6 9 2/4

MaxP 10 7 10 10
Method IGNGF IGNGF IGNGF IGNGF

of the usal indexes namely the Xie-Beni (XI) index, and
to a lesser extent, Calinski-Harabasz (CH) and Silhouette
(SI) indexes. One potential explanation is that binarization
process introduces some sparsity that is better dealt by our
indexes than by those which use Euclidean distance.

Interestingly, on the UCI ZOO dataset, the results of noise
sensitivity analysis presented in Table IV underline the fact
that noise has a relatively limited effect on the operation
of PC and EC indexes. The EC index was again found to
have the most stable behavior in that context. The Figure 5

presents a parallel view of the different trends of EC value on
non noisy and noisy clustering environment, respectively. It
shows that noise tends to lower the index value in an overall
way and to soften the trends relatively to changes in k value.
However, the index is still able to estimate, either the optimal
model in the best case, or a neighbour model in the worst
case. The usual indexes do not work as well at all in the same
context. For example, the Silhouette index firstly delivered
the wrong optimal k values on this dataset before getting out
of range when the noise reached 20% on clustering results.



The Davis-Bouldin (DB) and Dunn (DU) indexes were found
to shift from a correct to a wrong estimation as soon as noise
began to appear.

Fig. 5. Trends of EC indexes on UCI ZOO dataset with and without noise.

In all our experiments, we observed that the quality
estimation depends little on the clustering method. Morever,
we noted that the computation time of the index was one
of the lowest among the indexes studied. As an example,
for the R52 dataset, the EC index computation time was
125s as compared to 43000s for the Silhouette index using
a standard laptop with 2,2 GHz quadricore processor and 8
GB of memory.

V. COMPARATIVE EXPLOITATION OF THE INDEXES FOR
DIACHRONIC ANALYSIS

In this section, we propose a ”real life” estimation of the
accuracy of the cluster quality indexes, whenever they are
integrated in an operationnal data mining environnement.
We thus made the choice to compare their behaviour in the
framework of a diachronic analysis environnement working
in the context of scientific litterature. The role of such
environment is to highlight different kinds of research topics
changes or similarities that could occur between time peri-
ods (appearing topics, disappearing topics, splitting topics,
merging topics, stable topics).

A first version of this environnement working on indexer
keywords has been proposed by Lamirel [21] for demonstrat-
ing the feasabilty of a fully unsupervised approach exploit-
ing clutering and unsupervised Bayesian reasoning between
views (MVDA) for diachronic mining. A new version of
this environmement working on full-text of the papers is up
to now under developpement in the context of the ISTEX5

project. A demonstrator of this new environment is already
available online 6 and described in Dugué et al [8].

Figure 6 identifies the different steps of the proposed
diachronic analysis process 7.

5The ISTEX project (Excellence Initiative for Scientific and Technical
Information) is part of the ”Investments for the Future” program initiated
by the French Ministry for Higher Education and Research (MESR).

6See https://github.com/nicolasdugue/istex-demonstrateur
7Diachronic analysis and feature selection code can be found at

https://github.com/nicolasdugue/istex

Fig. 6. General architecture of the diachronic analysis environment.

Fig. 7. Overall view of the principle of identification of topic matching
between periods (the term label is used here for feature).

In this particular experiment, we first constitute a dataset
of bibliographic data from the ISTEX project. The ISTEX
database is queried to extract papers related to research in
medical care between years 1996 and 2010. This results
in a dataset of 9779 papers. A basic indexing is exploited
on the full text of the documents in order to produce
content metadata (single and multi-words indexing terms).
The resulting index size is 8347 terms with freq. > 4. A
random walk algorithm (here Walktrap [26]) exploiting the
relationship between the different extracted terms and the
publication years is used to extract meta-periods ([30]). At
the issue of this process, three meta-periods are extracted
(P1=1996-2000, P2=2000-2005, P3=2006-2010). This is be-
tween these periods that the diachronic analysis would be
lead. This process should allow to monitor topic evolution
in medical research across these periods. In each period,
we use clustering to group documents of same topics. GNG
clustering is therefore launched several times with standard
Fritzke parameters settings [11] on the data of each meta-
period (P1= 4054 data and 3023 terms, P2= 2012 data and
2036 terms, P3= 3713 data and 3288 terms) making varying



TABLE V
OVERVIEW OF THE INDEXES ESTIMATION RESULTS AND RESULTING QUALITY FOR DIACHRONIC ANALYSIS (THE HIGHER NUMBER OF MATCHES AND

QMA, THE BETTER)

Opt.
Period P1

Opt.
Period P2

Opt.
Period P3

Number
of

temporal
matches

QMA
evaluation

criteria

DB -out- -out- -out- 0 0
CH 3 4 4 5 15.26
DU 14 20 -out- 6 8.60
SI -out- -out- -out- 0 0

XB -out- -out- -out- 0 0
PC 23 23 -out- 9 10.61
EC 10 6 8 13 27.20

the number of clusters in a range from 2 to 50 clusters.
The different quality indexes are exploited to highlight an
optimal model in each period. On this optimal model, the
feature selection and contrast ([22]) method described in
Section II is used to extract characteristics and salient terms
for each cluster, i.e. describe cluster topics. These cluster
topics descriptions are then used to compute the diachronic
analysis and thus monitor the topic evolution across periods.

The diachronic analysis is made using unsupervised
Bayesian reasoning [21]. Basically, signals are propagated
between clusters of the different periods through the means
of the salient features (Figure 7). Matching rules between
clusters (topics) are based on the probability of activating a
cluster of a period knowing that a cluster of an alternative
period has been activated with the signal. Starting from a
cluster s of a source period and issuing on a cluster t of a
target period, this probability is computed as :

P (t|s) =

∑
f∈Ss∩St

Gt(f)∑
f∈St

Gt(f)
(17)

where Gt(f) is the contrast of the feature f for the
cluster t (Eq. 12).

A match between a cluster of a source period and a
cluster of a target period is detected if both source and
target cluster generate mutual activity which is superior to
the average activity they generate with the clusters of the
alternative period (see [21] for more details). If such match
exists, the set Sst = Ss ∩ St of salient features that are
shared between the two aforementioned clusters is called
the matching kernel.

The quality indexes have a major role in the process of
diachronic analysis because the more accurate will be the
choice of the optimal cluster model for each time period,
the better and the more accurate will be the temporal
alignment between periods and consequently the temporal
matching process between those latter. Our hypothesis (that
could be experimentally verified) is thus that an accurate
model selection will produce the larger number of matches,
with matching kernels of the largest sizes and with the

highest matching probability. We consequently exploit two
complementary criteria for the evaluation of the behaviour
of the indexes:

• The total number of matches that can be found between
the periods using the optimal clustering models provided
by the index.

• A matching quality criteria (QMA) combining the num-
ber of matches, the size of the matching kernels and the
matching probability. This criteria is expressed as :

QMA =
∑

(i,j)∈M

|Sij | ∗
P (i|j) + P (j|i)

2
(18)

where M represents the set of couples of clusters of
different periods for which a match has been detected.

In Table V, we give the results of our evaluation on the
corpus we constitued from the ISTEX database which is
related to medical care research. It highlights that, similarly
to our former experiments (see Section IV), some indexes
are unable to find any optimal model (being out-of-range)
whatever time period is considered. Some indexes, like Dunn
(DU) and our PC index, work partially, finding optimal model
only in some periods. Alternatively, Calinsky-Harabasz (CH)
and our EC index are able to identify optimal models in all
periods.

When the evaluation criteria figuring out the quality of
the diachronic analysis (i.e. temporal matches) is exploited, it
turns out that the best temporal matching results are produced
with the help of EC index that reached the best values both
for the number of detected matches and the richness and
the accuracy of the matches (QMA criteria). Additionally,
despite the number of considered periods, Calinsky-Harabasz
(CH), which identified optimal models for 3 periods, pro-
vided worth results than our PC index, which identified
optimal models only for two periods, relatively to the number
of matches. However, the exploitation of Calinsky-Harabasz
(CH) index produced better quality matches than PC index
as it is figured out by its higher values of QMA criteria.



VI. CONCLUSION

We have proposed a new set of indexes for clustering
quality evaluation relying on feature maximization approach.
This method exploits the information derived from features
which could be associated to clusters by means of their
associated data. The experiments we achieved showed that
most of the usual quality estimators do not produce sat-
isfactory results in a realistic data context and that they
are additionally sensitive to noise and perform poorly with
high dimensional data. Unlike the usual quality estimators,
one of the main advantages of our proposed indexes is that
they produce stable results in cases ranging from a low
dimensional to high dimensional context and also require
low computation time while easily dealing with binarized
data. Their stable operating mode with clustering methods
which could produce both different and imperfect results also
constitutes an essential advantage.

We have performed experiments in two different contexts
including a ”real life” context related to diachronic analyis
environment. Both experiments confirm the clear advantages
of our new indexes, especially the ones of our EC quality
index.

However, further experiments are required using both an
extended set of clustering methods and a larger panel of
high dimensional datasets to confirm this promising behavior.
Especially the influence of the sparsity and the one of cluster
overlapping ratio on the performance of our indexes must be
more precisely evaluated. Taking a larger panel of indexes,
including score functions and entropy based indexes would
be also a complementary and important issue.

Additionally, we plan to test the ability of our indexes
to discriminate between correct and degenerated clustering
results in the context of large and heterogeneous datasets.
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