
HAL Id: hal-01350525
https://hal.archives-ouvertes.fr/hal-01350525

Submitted on 30 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structured reactive programming with polymorphic
temporal tiles

Simon Archipoff, David Janin

To cite this version:
Simon Archipoff, David Janin. Structured reactive programming with polymorphic temporal tiles.
ACM International Workshop on Functional Art, Music, Modelling, and Design (FARM), 2016, Nara,
Japan. �10.1145/2975980.2975984�. �hal-01350525�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49353484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01350525
https://hal.archives-ouvertes.fr

Structured reactive programming with
polymorphic temporal tiles

Simon Archipoff & David Janin
CNRS LaBRI, Inria Bordeaux,

Bordeaux INP, Bordeaux University
F-33405 Talence

archipoff|janin@labri.fr

July 29, 2016

Abstract
In functional reactive programming (FRP), system inputs and outputs

are generally modeled as functions over continuous time (behaviors) whose
future values are governed by sudden changes (events). In this approach,
discrete events are embedded into piece-wise continuous behaviors.

In the field of reactive music system programming, we develop an
orthogonal approach that seems to better fit our need. Much like piano
keys can be played and combined both in sequence and in parallel, we
model system inputs and outputs as spatio temporal combinations of what
we call temporal values: continuous functions over time whose domain lays
between two events: a start and a stop event.

Various high level data types and program constructs can then be de-
rived from such a model. They are shown to satisfy robust algebraic and
category theoretic properties. Altogether, this eventually provides a sim-
ple, robust and elegant programming front-end, temporal tile program-
ming, for reading, memorizing, stretching, combining and transforming
flows of inputs into flows of outputs.

Although at its infancy, the resulting approach has been experimen-
tally validated for reactive and real-time music system programming.

1

Contents
1 Introduction 3

2 The QList data type 6
2.1 Definition . 6
2.2 Queue lists semantics . 7
2.3 Queue lists constructors . 7
2.4 Queue lists getters . 8
2.5 Functor like properties . 9

3 Real-Time/reactive kernel 10
3.1 From queue lists to lists of events 10
3.2 Reactive/real-time structured input 11
3.3 Freezable and updatable . 11
3.4 Updatable duration . 12
3.5 Reactive states and loops . 13
3.6 Taking and dropping queue lists 14

4 Category theoretic properties 15
4.1 Categorical product and weak sum 15
4.2 Categorical exponent . 17

5 The additive tile algebra 18
5.1 Primitive tiles from temporal values 19
5.2 Delay primitive tiles . 19
5.3 Primitive tile sum . 20
5.4 Negation and difference . 20
5.5 From queue lists to temporal tile 21
5.6 Parallel commutativity and idempotency laws 22
5.7 Delays and natural partial order 23

6 The multiplicative tile algebra 23
6.1 Resets and coresets . 24
6.2 Parallel fork and join . 24
6.3 Stretching product . 25
6.4 Num and Fractional instances . 25
6.5 Concluding example . 26

7 Related work 27

8 Conclusion 27

2

1 Introduction
In this article we consider the problem of programming timed reactive systems
that are stimulated by structured inputs such as, for instance, flows of notes
that may be produced by a piano keyboard.

With a view towards application in music system programming, we must
combine both data (or space) programming, that is, the values of the notes are
to be computed, and control (or time) programming, that is, the moments these
notes are to be played. This drastically contrasts with standard approaches
developed since the mid 70s, where, on the contrary, programming languages
tend to make a clear distinction between data and control.

Model-driven approaches. In terms of methodology, we aim at developing
an abstract model for reactive system behaviors from which we can derive a do-
main specific language (DSL) suitable for programming such a kind of systems.

The main advantages of such a model driven approach1 are that the resulting
DSL is:

robust: each application programming interface (API) derives from models of
programs and behaviors,

sound: programs semantics are based of well-defined mathematical model that
can be analyzed,

testable: primitive functions satisfy various invariant equations that can be
tested via automatic test generation tools such as QuickCheck [4],

pervasive: each application programming interface may evolve following en-
duser needs, but the underlying semantical model does not change over
time.

Of course, as secondary goals, such a DSL is also expected to be simple. This
means that the underlying model should also reflect user intuition. Ideally,
it can be taught to and understood by end-user: in our case, musicians and
composers.

We should insist on the fact that, following a model-driven approach, the
underlying model can be derived into various APIs, each of those being targeted
towards a given group of endusers: from children to engineers, via artists or
even just amateurs. Even more, the algebraic properties and category theoretic
properties of the underlying model and the related functions may also lead to
various kind of visual representations: the basis of efficient and well-defined
GUIs.

In such a research context, general functional programming languages and,
especially, pure typed functional programming languages such as Haskell [13],
offer, via the definition of an embedded domain specific language (DSL) [9],
one of the most rapid and robust way to put in practice and experiment the
underlying abstract model candidates.

1by opposition to, say, an enduser-needs based approach

3

A signal-based approach: FRP. Functional Reactive Programming (FRP)
is an example of such a model-driven approach. It provides a model of timed
reactive system behavior [6].

In this model, the flow of notes produced by a piano keyboard is viewed as
a piecewise continuous function

behav : D → P(N) (1)

from a given set D of time stamps2 into the powerset P(N) of the set of possible
notes N . At every time stamp t, the value behav(t) represents the set of active
notes at that time.

Pressing a key n at a given time t1 creates an On n event that adds the note
n to the set behav(t1) of active notes at time t1. At a later time t2, releasing
the key n creates an Off n event that removes the note n from the set behav(t2)
of active note at time t2. In this approach, discrete events are embedded into
piecewise continuous behaviors.

Assuming that notes are indeed active over intervals of the form [t1, t2[, we
obtain a faithful model of piano behaviors.

However, at the application programming interface level, with a view towards
application in computer music, one may question the relevance of such a model.
Shall a composer use such a model for describing the flow of notes created by a
piano and the transformations he may wish to apply on this flow of notes?

Basic musical elements such as played notes and their durations, generally
explicit in music application software,3 get a bit lost in such an approach. They
are not encoded as primitive objects.

An algebra-based approach: PTM. Of course, at the programming level,
music modeling has already been investigated. For instance, polymorphic tem-
poral media (PTM) is an expresive algebra [10, 11] for modeling both the spatial
and the temporal aspects of music pieces.

In such an approach, each played note4 is a primitive object. At run time,
it is defined by a start date, a value, and a duration, from which a stop date
can be derived.

In other words, as already observed by Hudak [10], a flow of notes produced
by a piano keyboard can be modeled as a function

behav′ : D → P(N ×D) (2)

At every time stamp t, the value behav′(t) ⊆ N ×D is a set of pairs of the form
(n, d) ∈ N ×D where n is a note that starts at time t for some duration d.

In contrast, with the above approach that is depicted in Equation (1), the
resulting behavior behav′ is a discrete function; we have behav′(t) = ∅ for most
time-stamp t. Indeed, altogether, the time stamps where notes are started form
a discrete set over the time scale represented by D. In this approach, continuous
behaviors are embedded between discrete pairs of events.

2or, equivalently, a set of duration such a rational numbers of seconds elapsed since some
origin of time

3via music score or piano roll visualizations interfaces
4or the related continuous signal heard when a note is played

4

Such an alternative does provide a handy application programming interface
as illustrated by Paul Hudak’s textbook on music programming [12]. However,
to the best of our knowledge, it has not yet been used for programming reactive
systems.

The main reason for this is rather simple. When a program may react upon
the reception of an On n event, that is, upon the start of a note, the duration of
that note is yet unknown. It depends on the reception of the Off n event that is
yet not received. It follows that in most (not to say all) available programming
languages, the duration of that note is not a primitive object. It must be
computed explicitly by recording all received On n events and by waiting for
the corresponding Off n. Durations can then be computed.

Our contribution. The main contribution of our paper is to provide a re-
active encoding of Paul Hudak’s notion of temporal media algebra suitable for
reactive programing. More precisely, we eventually design a domain specific
language (DSL) where durations are modeled as primitive objects.

This DSL is embedded in Haskell. Most of its features are directly trans-
lated into some Haskell functions and data types henceforth following a shallow
embedding style [8]. However, since duration may be unknown values before
being later updated, some duration comparisons, the associated conditionals
and, more generally, some function applications, may need to be postponed to
the last moment for durations to be known when computed. This implies that,
part of the encoding of our DSL is also syntactical, with explicit syntactic ap-
plication constructs, henceforth also following a deep embedding style [8]. Still,
durations are handled as primitive objects in the sense that these updates are
handled automatically via an adequate reactive and timed execution kernel.

In other words, our paper essentially describes: (1) a runtime that allows to
convert and execute on-the-fly functions over flows of notes and (2) an appli-
cation programming interface (API) based on a slight algebraic enrichment of
flows of notes.

The resulting domain specific language is called the T-calculus5, or temporal
tile programming. It has already been successfully experimented for reactive and
real-time music system programming6.

Organization of the paper. We first define in Section 2, the notion of timed
queue list (QList), a data type that implements flows of notes, or, more gener-
ally, the semantics of polymorphic temporal media as depicted in Equation (2).
Their constructors, their getters and basic properties of queue lists such as func-
tor properties are detailed in this section.

The reactive kernel is presented in Section 3. It essentially consists in con-
verting every function over timed queue lists into reactive function over lists
over timestamped events. This shows how queue lists can actually be used for
specifying and programming timed reactive systems. The underlying runtime
is implemented in Haskell over the UISF library [23].

More advanced category theoretic properties: categorical product, co-product
and exponents, of functions over queue lists are presented in Section 4. Each

5see http://poset.labri.fr/tcalculus/
6see http://poset.labri.fr/interpolations/

5

of these properties leads to the definition of various functions that act on these
functions. Their usage are illustrated by simple (reactive) system programs.

Last, extending queue lists with synchronization marks leads to the definition
of the temporal tiles algebra. Equipped with tile addition (Section 5) and tile
multiplication (Section 6), the resulting algebra, that also inherits from the
categorical properties of queue lists, constitute the high level font-end of our
proposal: temporal tile programming.

Comparison with existing work are summarized in the last section before
giving a brief description of what remains to be done as a conclusion.

2 The QList data type
The QList data type, whose values are simply called queue lists, is presented in
this section. It encodes flows of temporal values as in Equation (2).

2.1 Definition
Given a duration type d assumed to be an instance of the type class Num, given
a value type v and an additional7 input value type iv, queue lists are defined in
Haskell by:

data QList d iv v = QList [(d, v)] d (QList d iv v)
| QEnd

The data constructor QList takes as first parameter a list of temporal values
represented by pairs of durations and values. Theoretically, a value of type
v can be a time dependent function even though, in most examples, they are
constant values. The second parameter is the duration between the beginning
of the temporal values of the first parameter, and the very next beginning of
values (encoded by the third parameter, recursively). The data constructor
QEnd describes the empty queue list.

Example. An example of a finite queue list is depicted in Figure 1. In this

•

•

•

(3, a)

(5, b)

•4 •

•

(3, c)

•2 ••
•

•

(2, d)

(3, e)

Figure 1: A QList

example, at time 0 from the origin of the queue list starts a value a that last
for a duration 3, in parallel with an other value b that last for a duration 5. At
time 4 starts an third value c that last for duration 3. Then, after an additional

7only used for type constraint propagation as detailed in the next section

6

delay of duration 2, the temporal values (2, d) and (3, e) occur. From the origin
of the queue lists, these temporal values starts at time 4 + 2 = 6.

2.2 Queue lists semantics
In queue lists, lists of temporal values that start at the same time are called
bundles of temporal values. As far as semantics is concerned, these bundles are
understood as sets. This assumption have two important consequences.

First, the order into which temporal values occur in lists is irrelevant. This
assumption is called the parallel commutativity law.

Second, since sets have no multiplicity, every temporal values occurs at most
once. This assumption is called the parallel idempotency law.

The semantical equivalence over queue lists, denoted by ==, is thus defined
by the fact that, at every position in time, bundles of temporal values starting
at that time are equal. This way, we easily recover the semantical notion of flow
of temporal values that has been sketched in Equation (2).

Crucial invariants that should always be satisfied by queue lists are the fol-
lowing. All durations are greater than or equal to zero. Bundles of temporal val-
ues are necessarily non empty unless starting at the origin of the queue list. We
also assume that all durations between bundles of temporal values are strictly
greater than zero. This means that successive bundles of notes can be numbered
without any ambiguity. Last, the duration to the empty queue list QEnd is also
assumed to be zero. These invariants provide, up to the set-wise interpretation
of lists in queue lists, a canonical representation of classes of equivalent queue
lists.

2.3 Queue lists constructors
The main constructors for queue lists, in addition to the empty queue list, are
the following functions:

fromAtomsQ :: Num d ⇒ [(d, v)]→ QList d iv v
fromAtomsQ la = QList la 0 QEnd
shiftQ :: (Num d,Eq d)⇒ d → QList d iv v → QList d iv v
shiftQ 0 q = q
shiftQ d (QList [] d1 q) = QList [] (d + d1) q
shiftQ d q = QList [] d q
mergeQ :: (Ord d,Num d)⇒

QList d iv v → QList d iv v → QList d iv v
mergeQ QEnd q2 = q2
mergeQ q1 QEnd = q1
mergeQ (QList dv1 d1 q1) (QList dv2 d2 q2) =

let q = QList (dv1 ++ dv2)
in case compare d1 d2 of

EQ → q d1 (mergeQ q1 q2)
LT → q d1 (mergeQ q1 (QList [] (d2 − d1) q2))
GT → q d2 (mergeQ q2 (QList [] (d1 − d2) q1))

The fromAtomsQ function creates a QList from a single value and its duration.
The shiftQ function shifts a queue list by some (positive or null) duration in

7

time. The mergeQ function merges two queue lists such that each operand
becomes sort of sub queue list of the resulting merge. Observe that mergeQ is
a parallel composition function in the sense that, as a result of merge, temporal
values may occur in parallel.

Example. With these constructors, the beginning of the example depicted in
Figure 1 that contains the first three temporal values can be defined by

x = mergeQ (fromAtomsQ [(3, a), (5, b)])
(shiftQ 4 (fromAtomsQ [(3, c)]))

Remark. The code provided above has been simplified. For instance, applying
shiftQ over a negative duration creates a runtime error. Also, handling unknown
duration as described in the next section makes this code significantly more
complex. We refer the interested reader to the source code available on the
internet for more details.

Invariants. Thanks to the parallel commutativity law, the function mergeQ
is commutative, that is,

mergeQ q1 q2 == mergeQ q2 q1

Thanks to the parallel idempotency law, the function mergeQ is also idempotent,
that is,

mergeQ q q == q

In particular, as expected with our set-wise interpretation of bundles of temporal
values, two temporal values that occur at the same time and that are equal,
that is, they have the same duration and the same value, are always (implicitly)
merged into a single one.

2.4 Queue lists getters
The getters of QList are defined much in the same way head and tail are defined
over lists. More precisely, the analogous of head is defined as a pair of functions
atomsQ and delayToTailQ respectively describing the bundle of temporal values
starting at the beginning of the queue list and the delay from that beginning to
the next bundle of temporal values.

More precisely, these functions can be implemented as follows.
atomsQ :: QList d iv v → [(d, v)]
atomsQ (QList l) = l
atomsQ (QEnd) = []
delayToTailQ :: Num d ⇒ QList d iv v → d
delayToTailQ (QList d) = d
delayToTailQ (QEnd) = 0
tailQ :: QList d iv v → QList d iv v
tailQ (QList q) = q
tailQ (QEnd) = QEnd

8

As expected, over a non empty queu lists, the atomsQ function returns the
initial bundle of temporal values, that is, the list of pairs (d, v) that start at the
beginning of the queue list. In the case the remainder of the queue list is non
empty, the delayToTailQ function returns the duration between the beginning
of the queue list and the beginning of next bundle of temporal values. Finally,
the tailQ function returns the queue list defined from that next bundle, thus
pruning out the bundle of temporal values that start at time 0 (atomsQ) and
the delay to the next bundle (delayToTailQ).

Invariant. For every queue list q, given the queue list qa = fromAtomsQ ◦
atomsQ q, representing the bundle of temporal values starting at 0, given
dt = delayToTailQ q the delay to the tail of q and given tq = tailQ q the
tail of q, the invariant q == mergeQ qa (shiftQ d tq) is always satisfied.

2.5 Functor like properties
Queue lists of type QList d iv v can be seen as containers of durations of type
d and values of type v. As such, functor like properties allows defining lifts of
functions.

The first one, the function fmapQ, allows to lift a function over values to a
function over queue lists. It can be defined by

fmapQ :: (v1 → v2)→ QList d iv v1 → QList d iv v2
fmapQ f (QEnd) = QEnd
fmapQ f (QList l d q)

= QList (map (λ(d, v)→ (d, f v)) l) d (fmapQ f q)

This allows to define a Functor instance by
instance Functor (QList d iv) where

fmap = fmapQ

The second one, the function fmapDQ, lifts a function over duration into a
function over queue lists. It can be define by

fmapDQ :: (d → d)→ QList d iv v → QList d iv v
fmapDQ f (QEnd) = QEnd
fmapDQ f (QList l d q)

= QList (map (λ(d, v)→ (f d, v)) l)
(f d) (fmapDQ f q)

On purpose, its usage is limited to duration type preserving functions. Indeed,
in the reactive and real-time execution context we aim at achieving, a change
of time scale is not easy to define and handle.

An immediate application of the duration map fmapDQ is to define the
stretchQ function, that multiplies every duration in a queue list by a given
factor. It can be define by

stretchQ :: Num d ⇒ d → QList d iv v → QList d iv v
stretchQ d q = fmapDQ (λx → d ∗ x) q

In musical terms, all rests and notes in the queue list are stretched by a factor d.

9

Remark. The code above only applies to the case when d is positive. The
case when d is negative creates a runtime error, and, since duration invariants
must be preserved in queue lists, when d equals zero, all bundles must be merged
instead at the beginning of the queue lists, all the temporal values being set to
zero.

3 Real-Time/reactive kernel
Defined as bundles of temporal values separated by strictly positive delays,
queue lists, or rather functions over queue lists, should be enough for modeling
reactive system behavior. However, in a reactive execution, the duration of
a temporal value is not known until the reception of its end. Similarly, the
delay between two successive bundles of temporal values is not known until the
reception of the second bundle of temporal values.

This difficulty is solved in our implementation by allowing explicitly un-
known duration values, every application of a function to a partly unknown
argument being frozen so that this argument can be updated till the last mo-
ment. Doing so, we recover a notion similar to the improving values used in
some implementations of FRP [7].

3.1 From queue lists to lists of events
The proposed back end, that is, the execution layer of our DSL, is based on
well-bracketed events. The event data type is defined by

data Event v = Start | On VID v | Off VID | Stop

with an ad hoc value identification type (VID) for matching every Off event
to its corresponding On event. The parameter v bring by each On event is the
value associated with the corresponding pair of events. Start and Stop events
are added as global start and end markers.

Given the Event v type, one can define two functions
qListToEvents :: QList iv d v → [(d,Event v)]
eventsToQList :: [(d,Event v)]→ QList iv d v

where the type [(d,Event v)] denotes streams of timestamped events, that verify

eventsToQList ◦ qlistToEvents == id

and
qlistToEvents ◦ eventsToQList == id

in the case every stream starts with a Start event and ends with a Stop event.
In other words, queue lists can be converted back and forth into events.

Our goal in this section is to convert every function over queue lists to a
function over time-stamped stream of events that can be executed on-the-fly.
In other words, we aim at defining

runFunction :: (QList iv d iv → QList iv d v)
→ ([(d,Event iv)]→ [(d,Event v)])

that verifies the following property
eventsToQlist (runFunction f (qListToEvents q)) == f q

10

for all queue list. Then, the runtime of our language will just consist in writ-
ing and reading the events passing through “arrowized” functions of the form
runFunction f with f describing the system behavior at the queue lists level.

3.2 Reactive/real-time structured input
We present here the first component of our reactive kernel: the definition of an
explicit input that can be built upon reception of start and stop event, and its
translation into queue list.

This input is built on-the-fly according to the following data-type:
data InQList d iv = InQList [(d, iv)] d (InQList d iv)

| InQUndef | InQEnd

In this encoding, InQUndef describes the part of the input that is yet unknown.
Such an input structure is converted into a queue list by the function:

inputToQ :: InQList d iv → QList d iv iv
inputToQ (InQList ial d iq)

= QList al d (QRec inputToQ iq)
inputToQ (InQEnd) = QEnd
inputToQ (InQUndef) = error "Causality error"

One can observe that a call to (inputToQ InQUndef) creates a runtime error.
Indeed, in our implementation, such a call denotes a computation that requires
part of the input is yet not available. This corresponds to a runtime causality
error.

Additionally, we introduce here a new polymorphic queue list data-type con-
structor QRec of type:

QRec :: (Updatable p d iv)⇒
(p → QList d iv v)→ p → QList d iv v

which essentially amounts to freeze function application.
More precisely, in an expression of the form QRec f p, the application f p is

frozen until the moment it will be needed. The class constraints Updatable p d iv,
presented and detailed below, ensures that the argument of type p can be up-
dated until that last moment.

Remark. A large part of our DSL is implemented in a shallow way: program
constructs are directly translated into Haskell functions (see [8]). However,
the constructor QRec and the associated class Updatable mix such a shallow
embedding with a deeper one. Indeed, by freezing function application, the
QRec construct clearly gives a syntactic flavor to the queue lists data type.

3.3 Freezable and updatable
The class type Updatable p d iv mentioned above is simply defined by:

class Updatable p d iv where
update :: UpdateData d iv → p → p

where the type UpdateData d iv is defined by:

11

type UpdateData d iv
= (d → d, InQList d iv → InQList d iv)

This type specifies which kind of updates may be performed. The following
instance shows how these updates are applicable. The first argument updates
durations, the second argument is essentially used to replace the undefined input
InQUndef by a more defined one.

instance Updatable (InQList d iv) d iv where
update (f ,nq) (InQList al d q)

= InQList (fmap (λ(d1, v1)→ (f d1, v1)) al)
(f d) (update (f ,nq) q)

update (,) InQEnd = InQEnd
update (,nq) InQUndef = nq InQUndef

The role of the queue list constructor QRec becomes especially clear in the
following code for queue lists updates.

instance Updatable (QList d iv v) d iv where
update QEnd = QEnd
update (f ,nq) (QList al d q)

= QList (update (f ,nq) al) (f d)
(update (f ,nq) q)

update (f ,nq) (QRec g p) = QRec g (update (f ,nq) p)

Of course, the class type Updatable is closed under product, sums and list type
constructor as expected, thus allowing various types of updatable function ar-
guments.

Remark. Observe the type InQList presented above is only defined in terms
of one input value type iv. Then, the function inputToQ creates homogeneous
queue lists of type QList d iv iv. Then, keeping such a type annotation all
through functions acting over types allows us to remember the type of temporal
values that may be updated, especially in the frozen construct defined by QRec.

3.4 Updatable duration
As already mentioned, the duration type that is needed for reactive execution
should allow unknown durations. In our current implementation, these dura-
tions are simply encoded as a type Dur d of affine functions8 built over a basic
duration type d of the class Num and two sets of unknowns: one for input
temporal values and another for delays between bundles of temporal values.

The arrival of a new bundle of temporal values generates a new input of the
form

InQList [(Xi,j , vi,j)j∈Ji] Yi InQUndef
that will replace the former obsolete InQUndef occurences.

In this schema, i is the rank of such a new bundle, Ji is an ad hoc list of
identifiers for the arrived values, Xi,j is the unknown duration of the jth value

8though durations are instances of the Num and the Fractional class types, our (runtime
and ad hoc) restriction to affine functions leads to a more tractable type than the rational
functions that would arise from unrestricted duration combinations with unknowns

12

vi,j and Yi is the unknown duration to the next bundle of temporal values. Off
course, all variable indices are encoded by means of a single index type ID

Durations are then updated by means of two possible functions.
The shiftUnknown dt function, where dt is some elapsed duration, replaces

every duration variables X by X + dt. This way, all unknowns are measured
from the current timestamp now.

The closeUnknown i function, where i :: ID is the index of an unknown
variable, sets every occurence of the unknown variable Xi to zero. This allows
updating unknown duration upon reception of the Off event of a given temporal
value, or, for inter-bundle delays, the reception of a new bundle of such values.

Doing so, all unknowns are necessarily positive which allows a fairly simple
traitement of the underlying affine functions.

3.5 Reactive states and loops
We can describe now the heart of our reactive kernel: the on-the-fly application
of a function over queue lists to a time-stamped stream of events.

This kernel is based on the notion of reactive state, initialized by some
function over queue lists and a state loop that converts timed streams of input
events into timed streams of output event according to the specification provided
by the function f .

The data type QState for encoding reactive state is defined by:
data QState d iv v

= QState Int d (QList iv (Dur d) v) [(Dur d, v)]

with initializing function
initQState :: (QList iv (Dur d) iv → QList iv (Dur d) v)

→ QState d iv v
initQState f

= QState 0 0 (QRec (f ◦ inputToQ) InQUndef) []

The first parameter of QState is the rank of the last received bundles of temporal
values, the second parameter of type d is the current time-stamp, the third
parameter of type QList is the scheduled output, possibly built over unknown
durations, and the last parameter of type [(Dur d, v)] the list of temporal values
that are currently active as output and waiting for their ends.

The reactive loop updateStateOnEvent, launched upon every new input events
or elapsed timer on the output, can be informally described as the following se-
quence of tasks:

1. updates the internal queue list and the active temporal values according
to the time elapsed since the last update,

2. upon reception of Start, Stop or On events, creates the new bundles of
temporal values for replacing InQUndef , updates the input (and all frozen
parameter) accordingly,

3. upon reception of Off events, sets the corresponding unknown duration
to zero, both in the scheduled output queue list and in the list of active
output temporal values,

13

4. possibly unfreezing some function applications which values are needed
now, removes the atoms from the scheduled output that must be started
now and load them into the active output list,

5. output the On and Off events accordingly, removing from the active out-
put list every temporal values that is over,

6. and, in the case the delayToNextT value of the scheduled output queue
list is a non zero constant duration, set up a timer for a wake-up according
to that duration.

In other words, every function f over queue lists can be loaded into a QState, so
that, together with the function updateStateOnEvent, it has been converted into
a state machine defined over input and output streams of timestamped events.
Such a state machine can then be run over the UISF reactive library [24, 23].

3.6 Taking and dropping queue lists
A typical example of function over queue lists that, to be run on-the-fly, neces-
sitates to freeze its argument is the function takeQ d.

This function cuts all temporal values of a queue list that starts d units of
time after its beginning. It can be defined by

takeQ :: (Ord d,Num d)⇒
d → (QList iv d v)→ (QList iv d v)

takeQ QEnd = QEnd
takeQ d (QList al d1 q1) =

case compare 0 d of
GT → QEnd
EQ → atomsQ al
LT → mergeQ (atomsQ al)

(shiftQ d1 (QRec (λ(d, q)→ takeQ d q)
(d − d1, q1)))

In this code, one can observe that the recursive evaluation of takeQ is frozen
in such a way that both the duration d − d1 and and the queue list q1 can be
updated.

A function DropQ can be defined similarly in such a way that for every
duration d, every queue lists q, we have

q == mergeQ (takeQ d q) (shiftQ d (dropQ d q))

Remark. Observe that the function q 7→ dropQ d q with strictly positive d
cannot be run in a reactive system. Indeed, this function is expected to output
every temporal value d units before they have arrived. Quite similarly, the
function q 7→ stretchQ d q with 0 6 d < 1 cannot be run in a reactive way.

This illustrates the price we have to pay for the abstraction proposed here
via function over queue lists. Some of these functions cannot be run in a reactive
manner because they are temporally non causal, that is, there is an output value
to be produced at a given time that depends on an input value that is yet not
arrived.

14

The problem of analyzing causal vs non-causal properties of queue lists func-
tions is clearly fundamental when programing reactive systems. However, its
study, orthogonal to the purpose of the present paper and still to be completed,
is postponed to further work.

4 Category theoretic properties
We have just seen that (causal) functions over queue lists define reactive system
behavior. In this section, we aim at defining various operators that act on these
functions. These operators can then be used for combining simple reactive
system specifications into more complex ones.

For such a purpose, we review some categorical properties of functions over
queue lists. More precisely, we consider the category defined, for some fixed
types d and iv, by the types QList iv d v as objects and by the function types
QList iv d v1 → QList iv d v2, as arrows. This category is simply called the
category of queue lists, and the type QList iv d v1 → QList iv d v2 is shortened
into FuncQL d iv v1 v2.

Following an approach well established in typed functional programming
theory (see e.g. [2]), the properties of the category of queue lists induce numbers
of function combinators that can be used for programming.

More precisely, we will see how categorical product and co-product allows to
mix and separate queue lists at will. Then, combined with the functor property,
we will see how categorical exponent allows us to apply on-the-fly transforma-
tions on parts of some input, these transformations being simply commanded
by buttons that can be pressed and released on a GUI.

4.1 Categorical product and weak sum
Defining the type Void as the empty type, it is an easy observation that
QList d iv Void is, up to equivalence of queue lists, only inhabited by the
empty queue list QEnd. Then, one can check that the type QList d iv Void is
a terminal object in the category of queue lists: there is a unique arrow from
every object into that one. The type QList d iv Void is also weakly initial:
there is at least on arrow from that object into any other.

The existence of a terminal object suggests to seek for a categorical product.
The fact that the terminal object is also weakly initial suggests that such a
categorical product could also be a weak categorical sum. This turned out to
be true.

More precisely, let us now consider the type

QList d iv (Either v1 v2)

where Either v1 v2 is the Haskell type for the disjoint union of the types v1 and
v2. Let fromLeftQ and fromRightQ be the functions defined by

fromLeftQ :: (Eq d,Num d)⇒
FuncQL d iv (Either v1 v2) v1

fromLeftQ x
= let lf = [(d, v) | (d,Left v)← atomsQ x]

in mergeQ (map fromAtomsQ lf) $

15

shiftQ (delayToTail x)
(QRec (fromLeftQ ◦ tailQ) x)

fromRightQ :: (Eq d,Num d)⇒
FuncQL d iv (Either v1 v2) v2

fromRightQ x
= let lf = [(d, v) | (d,Right v)← atomsQ x]

in mergeQ (map fromAtomsQ lf) $
shiftQ (delayToTail x)

(QRec (fromRightQ ◦ tailQ) x)

Let also toLeftQ and toRightQ be the functions defined by
toLeftQ :: (Eq d,Num d)⇒

FuncQL d iv v1 (Either v1 v2)
toLeftQ = fmap Left
toRightQ :: (Eq d,Num d)⇒

FuncQL d iv v2 (Either v1 v2)
toRightQ = fmap Right

We easily observe that for every queue list q of type QList d iv (Either v1 v2)
we have

q == mergeQ (toLeftQ ◦ fromLeftQ q)
(toRightQ ◦ fromRightQ q)

This suggests that QList d iv (Either v1 v2) is both the product and the sum
of QList d iv v1 and QList d iv v2 with functions fromLeftQ and fromRightQ
as canonical projections, and functions toLeftQ and toRightQ as canonical in-
jections. This is almost true.

Product. Given the function factorProductQ defined by
factorProductQ :: (Eq d,Num d)⇒

(FuncQL d iv v v1)→ (FuncQL d iv v v2)
→ FuncQL d iv v (Either v1 v2)

factorProductQ f1 f2 t
= mergeQ (toLeftQ (f1 t)) (toRightQ (f2 t))

we indeed have

f1 == fromLeftQ ◦ factorProductQ f1 f2
f2 == fromRightQ ◦ factorProductQ f1 f2

for every queue list functions f1 and f2. Since it can be shown that no other
factorization exists, this ensures that QList d iv (Either v1 v2) with projections
fromLeftQ and fromRightQ is the expected categorical product.

Weak sum. Given the function factorSumQ defined by
factorSumQ :: (Eq d,Num d)⇒

(FuncQL d iv v1 v)→ (FuncQL d iv v2 v)
→ FuncQL d iv (Either v1 v2) v

16

factorSumQ f1 f2 t
= mergeQ (f1 (fromLeftQ t)) (f2 (fromRightQ t))

we observe that we have

factorSumQ f1 f2 (toLeftQ t) == f1 t
factorSumQ f1 f2 (toRightQ t) == f2 t

However, there exist other factorizations. By conditionally adding an arbitrary
temporal value to factorSumQ f1 f2 as soon as both left and right temporal values
have appeared on the input queue list, we indeed obtain another function that
satisfies the above equivalencies.

In other words, the type QList d iv (Either v1 v2) with injections toLeftQ
and toRightQ is a weak categorical sum in the category of queue lists.

Altogether, following category theory terminology, we could say that the
category of queue lists is a weak semi-additive category with weak biproducts. In
turns out that many more function combinators than those described here can
also be defined.

Application example. When building a reactive music system, one may need
to handle multiple inputs and outputs. Categorical sums and products allow
for doing this fairly easily.

For instance, the system we want to design may receive a musical input
from a keyboard, with temporal values of type a, as well as a On/Off control
input coming from some buttons in a GUI, with temporal values of type b. The
related events can thus be merged into events built over the type Either a b.
Then, as detailed in Section 3, these events will generate an input queue list of
type QList d iv (Either a b).

This means that, even though there are several input sources, the specifi-
cation of a system reacting to these inputs can still be defined by means of a
single function over queue lists. Indeed, thanks to the above projections, when-
ever needed, the mixed input can be projected either on its right component or
on its left component.

Quite symmetrically, the existence of weak sums allows recombining, still
within the same function over queue lists that specifies our reactive system,
various produced queue lists that are merged into a single output. For instance,
we can easily produce a queue list of type QList d iv (Either c d). Thanks to
our reactive kernel, this queue list is then translated in events of type Either c d.
These mixed events are then easily routed to their adequate destinations; events
of type c controlling, say, some music device and events of type c controlling,
say, some visualization device.

In other words, categorical products and weak sums allows internalizing
circuit like routing mechanisms within the definition of functions over queue
lists. As a matter of fact, this has been realized in interpolation experiments9.

4.2 Categorical exponent
The category of queue lists admits terminal objects and products. Is it also
cartesian closed? The answer to that question is also positive provided the type

9http://poset.labri.fr/interpolations/

17

of duration admits a maximal element: the infinite duration Top.
Indeed, with function applyQ defined below, one can show that the type

QList d iv (FuncQL d iv v1 v2) is the exponent object associated with functions
from QList d iv v1 to QList d iv v2.

applyQ :: QList d iv (FuncQL d iv v1 v2)
→ QList d iv v1 → QList d iv v2

applyQ (QList [] QEnd) t = QEnd
applyQ f q

= let dfl = getAllFromAtomsQ f
df = delayToTailQ f
evalA [] = []
evalA ((d1, f1) : l) q@(QList d ad tq)

= (f1 (QList d ad (takeQ (d1 − ad) tq))) :
evalA l q

in mergeQ (evalA dfl q) $
shiftQ df (QRec (λ(f , q)→ applyT f q))
(tailQ f , dropD df q)

with dropD d a function that cuts a QList by a duration d from its input.
Indeed, one can prove that, up to semantical equivalence, the property

applyQ (fromAtomsQ (Top, f)) q = f q

holds for every queue list function f and every queue list t with adequate types.

Application example. From a theoretical point of view, such a property is
certainly appealing though predictable in some sense.

With a view towards application, the interests of embedding queue list func-
tions into queue lists is of a much higher interest. Indeed, the activation duration
of a function embedded as a temporal value can also be finite. This means that
applying a queue list of functions over an input queue list means that each
function is applied to a certain portion of the input. In reactive music system
programing, the application possibilities are infinite.

For instance, receiving as input a queue list of type QList d iv (Either a b),
with an input type a describing some GUI buttons activation and deactivation,
and an input type b describing some musical content, one can easily transform
elements of type a into functions of type FuncQL d iv b c. Then, projections
and application of the function applyQ defined above allows for producing an
output of type QList d iv c which corresponds to the on-the-fly application on
the musical input of the functions activated by the GUI’s buttons. Again, such
a possibility is used in our experiments9.

5 The additive tile algebra
So far, we have defined the notion of queue lists to represent flows of temporal
values. We have also shown that functions over queue lists can be compiled,
thanks to our reactive kernel, into a reactive system runtime.

However, our presentation is yet not complete since we still lack of a conve-
nient front end for endusers such as composers to defined functions over queue

18

lists. In this section and the next one we show how queue list can be embedded
into a richer model: temporal tiles. These tiles are first informally described
below before their encoding over queue lists being formally defined.

5.1 Primitive tiles from temporal values
Simply put, embedded in a tile, a temporal value (d, v) can be depicted as in
Figure 2. In this picture, the value v is rendered from a start event, received

• •• •

(d, v)

Figure 2: A primitive tile.

at its input mark (), to a stop event, produced at its output mark (). The
duration d of the resulting tile x is denoted by |x|.

Writing Tile d iv v for the type of tiles built over the duration type d and
the value type v, the lift of temporal values into tiles is encoded as a function:

fromDurationAndValueT :: Num d ⇒
d → v → Tile d iv v

5.2 Delay primitive tiles
Delays are defined as tiled representation of temporal values bearing no value at
all but their duration. They play a crucial role in our proposal since they allow us
to view durations as a particular case of temporal tiles. The tile representation
of a delay is depicted in Figure 3. Again, the duration of the resulting tile is

• •• •

d

Figure 3: A delay.

the time elapsed from the start of the delay to its end.
The embedding of durations into temporal tiles is defined by the function:

fromDurationT :: Num d ⇒ d → Tile d iv v

that transforms every duration d into a delay. With the duration function, for
every duration d, we have

|fromDurationT d |== d

19

5.3 Primitive tile sum
The first operator defined over tiles is the tiled sum that combines two tiles
by synchronizing the output mark of the first one with the input mark of the
second one and by merging their temporal contents.

In the simplest case of primitive tiles, the sum can be depicted as in Figure 4.
The duration |x+y| of the resulting tile satisfies the equality |x+y| == |x|+ |y|.

• •• • •

x y

Figure 4: The sum x+ y of two primitive tiles x and y.

Such a property, taken as an invariant property, shall always be satisfied.
Observe that, in this example, the sum appears as a typical sequential com-

position operator. Having in mind that temporal values are rendered in time,
the sum is not commutative. It is however associative, that is,

x+ (y + z) == (x+ y) + z

This means that the function fromDurationT from durations to delays acts as
an additive morphism w.r.t. to tile. In particular, still denoting by 0 the zero
duration delays, we have

x+ 0 == x == 0 + x

that holds for arbitrary tile x. In other words, tiles equipped with sums form
an additive monoid with the zero delay 0 as neutral element.

5.4 Negation and difference
Non classical algebraic properties appear with the definition of the negation of
a tile defined by inverting the input mark and the output mark of that tile. In
the simpler case of primitive tiles, the negation can be depicted as in Figure 5.
The duration | − x| of a negated tile is simply defined as the negation −|x| of

• •• •

x

••• •

x

Figure 5: A primitive tile x (on the left) and its negation −x (on the right).

its duration |x|. We should insist on the fact that the content of the negated
tile has been left unchanged. There is no reverse construction that has been
performed. It is just a matter of synchronization marks exchange.

The true interest of negation appears when defining the difference x − y of
two tiles by x + (−y). This operation and its dual −x + y over primitive tiles
are depicted in Figure 6.

20

•

••

x

y

•

• •

•

•

x

y

•

•

Figure 6: Differences x−y (on the left) and −x+y (on the right) of two primitive
tiles x and y.

We easily check that −(x + y) == −y + −x, that is, the negation acts over
tiles as an anti-morphism. Concerning duration, we have |x− y| = |x| − |y| and
| − x+ y| = |y| − |x|. In particular, we have |x− x| = 0 = | − x+ x|.

As it shall become clear in the sequel, we do not expect that x − x == 0
for arbitrary tiles. On the contrary, the tile algebra implements a preservation
principle over temporal values in such a way that no temporal value that has
been produced shall ever disappear. . .

Remark. While the sum of two primitive tiles can be interpreted as a sequen-
tial composition, their differences introduce some parallelism. In the difference
−x + y, the two primitive tile are synchronized on their starts. Dually, in the
difference x − y, the two primitive tiles are synchronized on their ends. This
shows that, with negation, the sum is neither a sequential nor a parallel com-
position operator, it is both. This property constitutes the first main feature of
the notion of temporal tile programming.

5.5 From queue lists to temporal tile
Combining primitive tiles and their negation eventually creates zigzags [15].
Rendering a zigzag amounts to normalizing its content into a single queue list.
Such a tight relationship between tiles and queue lists is presented in this section.

Simply put, the type Tile d iv v is defined from the type QList d iv v by
the following constructor:

data Tile d iv v = Tile d d (QList d iv v)

An expression of the form Tile d ad q can simply be depicted as in Figure 7.
In this figure, we observe that the first duration value d denotes the distance

• •

• •

d

ad

• •

q

Figure 7: Embedding queue lists into tiles.

between the input and the output synchronization mark of the tile. The second
duration value ad denotes the distance from the input of the tile to the beginning

21

of the actual content of the tile: a queue list. In this example, ad is negative
hence the queue lists starts before the input root.

Functions fromDurationT and fromDurationAndValueT are simply encoded
by

fromDurationT d = Tile d 0 QEnd
fromDurationAndValueT d v

= case compare 0 d of
GT → Tile d 0 (fromAtomsQ [(−d, v)])
→ Tile d 0 (fromAtomsQ [(d, v)])

Then, tile sum and tile negation are simply encoded by:
sumT (Tile d1 ad1 q1) (Tile d2 ad2 q2)
= let s = ad1 − d1 − ad2

d = d1 + d2
in case compare 0 s of

LT → Tile d ad1 (mergeQ q1 (shiftQ s q2))
EQ → Tile d ad1 (mergeQ q1 q2)
GT → Tile d (d1 + ad2) (mergeQ (shift (−s) q1) q2)

negT (Tile d ad q) = Tile (−d) (ad + d) q

In other words, in the sum of two tiles, the queue lists representing the contents
of these tile are always merged, their synchronization in time before this merge
being automatically handled by tile synchronization marks: tiles input and
output roots.

Remark. Again, we have slightly simplified the code above, assuming that
duration are totally ordered. In presence of unknown durations, that is, when-
ever used in a reactive context, some durations may be incomparable. In this
case, we produce a runtime error for it means that the implemented function is
not causal.

5.6 Parallel commutativity and idempotency laws
Thanks to queue lists semantics, with bundles of temporal values understood as
sets, tiles also inherit from the parallel commutativity and idempotency laws.

Applied to tiles, these laws are interpreted as follows. Parallel commutativity
law: for all temporal tiles x and y we have

if |x| == |y| then x− y == y − x

This essentially says that the order in which x and y are rendered when posi-
tioned in parallel does not matter. In particular, this means that there is no
possible asymmetric covering (or alteration) of a temporal value by another one
when played in parallel.

Idempotency law: for all temporal tiles x we assume that

x− x+ x == x

Again, this axiom implies that rendering many times the same temporal value
in parallel is equivalent with rendering it only once.

22

The consequences of these two axioms are numerous (see [14] and [15]).
They imply in particular that, up to the induced equivalence, the tile −x is the
semigroup inverse of the tile x in the sense of inverse semigroup theory [19], that
is, the tile −x is the unique tile y such that x+ y+x == x and y+x+ y == y.

In other words, provided both axioms are satisfied, every type Tile d iv v
equipped with sum and negation is an inverse monoid [19] with the zero duration
delay as neutral element.

5.7 Delays and natural partial order
It is an easy observation that the function fromDurationT from arbitrary dura-
tions to delays is not only on-to-one, but it defines an additive group morphism
that preserves sums and negation. This suggest that, in our intended program-
ming language, durations can just be treated as delays. More precisely, we
define the function:

delayT :: Num d ⇒ Tile d iv v → Tile d iv v1
delayT (Tile d) = Tile d 0 QEnd

As expected, the function delayT is a morphism from the inverse monoid of
temporal tile into itself, that is,

delayT (x + y) == delayT x + delayT y

and

delayT (−x) == −delayT x

for every tiles x and y. Moreover, it is a projection since we have delayT ◦
delayT == delayT .

Inverse semi-group theory says a little more about the relationship between
a tile x and the delay defined by delayT x. More precisely, every inverse semi-
group can be equipped with a partial order relation, called the natural order,
defined by x 6 y when x == y − x − x or, equivalently, x == x − x + y. This
partial order is stable under sum, that is, if x 6 y then z + x 6 z + y and
x+ z 6 y + z. Then it appears that, for every temporal tile x, delayT x is the
maximum element above x in the natural order.

6 The multiplicative tile algebra
In Section 5 above, we have defined the additive algebra of temporal tile that
forms an additive inverse monoid. As already observed, the sum of two tiles is
not a sequential composition operator nor a parallel composition operator, but
both.

Combining stretches with more explicit parallel features deriving from the
tile sum leads to the definition of a multiplicative algebra over tiles. As a
result, tiles come equipped with sum, negation, product and division so that
they eventually form an instance of the Haskell classes Num and Fractional.

23

6.1 Resets and coresets
The idempotency law provides a fairly simple way to move the output to the
input (an operation we call a reset) or to move the input to the output (an
operation that we call coreset). These two operations are depicted in Figure 8.

••• •

x

••• •

x

Figure 8: The reset re [x] == x − x and the coreset co [x] == −x + x of a tile
x.

More generally, we define the functions reset and coreset over lists of tiles, by
re ::(Num d)⇒ [Tile d iv v]→ Tile d iv v
re [] = fromDurationT 0
re (x : xs) = x − x + re xs
co ::(Num d)⇒ [Tile d iv v]→ Tile d iv v
co [] = fromDurationT 0
co (x : xs) = −x + x + co xs

6.2 Parallel fork and join
From the reset and coreset functions defined above, we can derive two explicit
parallel operators defined by:

parForkT , parJoinT :: (Num d)⇒
Tile d iv v → Tile d iv v → Tile d iv v

parForkT x y = re [x] + y
parJoinT x y = x + co [y]

which are depicted in Figure 9.

•

•

•

x

y• •

•

••

x

y

•

•

Figure 9: Parallel fork (on the left) and parallel join (on the right) of two
primitive tiles x and y.

In general, these two operators are neither equivalent nor commutative. How-
ever, it is an easy observation that, in the case x and y have the same duration,
then, thanks to parallel commutativity axiom, the parallel fork and the parallel
join are equivalent commutative operators.

24

6.3 Stretching product
Though this departs from standard inverse semi-group theory, the previous ob-
servation allows us to lift the product over duration to a product over tiles. We
can define a stretch operation:

stretchT :: d → Tile d iv v → Tile d iv v

that just amounts to stretch, that is, to multiply by a given factor, all durations
in a tile. Handing in a distinct way the case of positive or negative duration,
this function can be defined in such a way that, for every positive duration d:

stretchT d (−x) == −(stretchT d x)

and

stretchT d (x + y) == stretchT d x + stretch d y

in the case d is positive with |stretchT d x| == d∗|x|. Then, we define the
product of two tiles by

(∗) :: (Num d)⇒ Tile d iv v → Tile d iv v → Tile d iv v
(∗) x y = parForkT (stretchT | x | y) (stretchT | y | x)

which turned out to be commutative. An example of product over primitive tile
is depicted in Figure 10. In this figure, with a bit of type abuse, we write d ∗ x

• •

|x| ∗ y

|y| ∗ x
• •

Figure 10: The product of two primitive tiles x and y.

the stretch of a temporal x by d units of time. Clearly, the product of tile offers
an alternative for the definition of parallel compositions of tiles.

6.4 Num and Fractional instances
Function fromDurationT is a one-to-one morphism the additive group d defined
by durations and the additive group formed by delays. It is a faithful embedding
of the types Integer and Rational into the type of polymorphic temporal tiles
Tile d iv v. Together with sum, negation and product, this leads to the instance

instance (Num d)⇒ Num (Tile d iv v)

with ad hoc abs and signum functions respectively defined by abs = const 1 and
signum = id.

Quite similarly, when |x| is non zero, we can define the multiplicative inverse
by

recipT :: (Fractional d)⇒ Tile d iv v → Tile d iv v
recipT x = stretchT (1/ | x |) (stretchT (1/ | x |) x)

25

which eventually leads the instance

instance (Fractional d)⇒ Fractional (Tile d iv v)

Again, embedding of arbitrary rational constant into tiles is done via the func-
tion fromDurationT .

6.5 Concluding example
The instances of Num and Fractional offer us a convenient syntax over tiles.
Most functions over queue lists such as atomsQ, delayToTailQ, tailQ or stretchQ,
as well as functions deriving from category theoretic properties, have straight-
forward lift to function over tiles. Moreover, functions over tiles can easily be
converted back into functions over queue lists.

It follows that functions over temporal tiles can also be used for specifying
reactive system behaviors. The expressive power and the succinctness of the
resulting DSL is illustrated by the following final example.

Based on sort of a comonadic property, we first define the function coJoinT
that lifts every input tile into a tile of tiles.

coJoinT :: Tile d iv v → Tile d iv (Tile d iv v)
coJoinT (Tile d QEnd) = Tile d 0 QEnd
coJoinT t

= let liftedAtoms = fmap
(λ(d, v)→ (fromDurationAndValueT 1

(fromDurationAndValueT d v))
(atomsT t)

in re liftedAtoms + delayToTailT t
+ recT coJoinT ◦ tailT t

Dually, based on sort of a monadic property, we also define the function joinT
that turns back every input tile of tiles into a tile.

joinT :: Tile d iv (Tile d iv v)→ Tile d iv v
joinT (Tile d QEnd) = Tile d 0 QEnd
joinT t

= let tileAtoms = fmap
(λ(d, ta)→ stretchT d ta) (atomsT t)

in re tileAtoms + delayToTailT t
+ recT joinT ◦ tailT t

Then, we can define the function over tiles:
finalEx :: Tile d iv v → Tile d iv v
finalEx t = joinT ◦ fmapT (λx → x + 2 ∗ x) ◦ coJoinT t

whose behavior, when applied to a flow of notes embedded into an input tem-
poral tile, is the following:

every input note is passed through to the output and then repeated
with a double duration.

26

Indeed, thanks to functorial properties, via fmapT , the function λx → x + 2 ∗ x
copies and repeats every single (tile lifted) note just as expected.

To the best of our knowledge, no other existing programing language offers
such a concise way to describe such a music system behavior.

7 Related work
The idea of using tiles as models for music goes back at least to the language
LOCO [5] although the induced algebra were first observed by the second au-
thor [16, 3]. Some experiments of controlling music systems based on tile spec-
ifications have been made [17, 1]. Although the principle of tiled programming
has already been sketched earlier [18] and experimented over Euterpea [14],
the implementation presented here is the first fully featured polymorphic and
reactive one implemented to far.

Our proposal share clear goals with functional reactive programming (FRP)
approaches [6, 7]. It is reactive in the sense that programs may react on the
start (or the stop) of input temporal values. It is also weakly real-time in the
sense that durations of temporal values, automatically computed on-the-fly, are
also embedded as first class citizens. More precisely, durations (or rather delays)
are automatically interpreted as timers. Delays can thus be used to schedule
outputs at known time.

However, by embedding (possibly continuous time dependent) temporal val-
ues between well-bracketed events, instead of embedding events into piecewise
continuous behavior, the resulting types are significantly distinct. This is espe-
cially clear in view of the algebraic layer that, defined over queue lists, eventually
leads to the definition of temporal tiles.

In terms of programming usability, the notion of tile modeling and tile pro-
gramming is in its infancy. To the best of our knowledge, as illustrated by
generalizations of our last example, no available real-time and reactive language
yet offers the same degree of succinctness.

However, despite such an apparent success, we need many more usage ex-
periments before achieving a fair evaluation of the benefits and the drawback of
our model-driven proposal, especially compared to somewhat more classical and
more robust event-based approaches (see e.g. [21, 20, 22]). Additional experi-
ments also suggest that a language like Reactive ML [20] could offer a simpler
embedding language thanks to its fairly generic multi-process reactive kernel.

8 Conclusion
We have defined the notion of queue lists, from which we have derived both a
reactive kernel, translating back and forth queue lists into streams of events, and
the temporal tiles front-end with rather robust algebraic properties. The result-
ing Domain Specific Language (DSL), we called the T-calculus10, is embedded
into Haskell.

The event-based layer has been built over the Euperpea/UISF libraries[12,
23] for concrete experiments in computational music. Non trivial music reactive

10see http://poset.labri.fr/tcalculus/

27

systems have been realized as programming examples11. However, we expect our
DSL to be applicable to many other application fields, especially those involving
temporal media [11].

Of course, the notion of temporal causality (yet quite implicit) arising from
defining functions over temporal tiles needs to be understood much more in the
depth. This is the purpose of an ongoing study.

Acknowledgement
This work is dedicated to the memory of Paul Hudak who showed us the way for
bridging the gap between clean mathematical models and cool reactive music
systems via pure typed functional programming.

References
[1] S. Archipoff. An efficient implementation of tiled polymorphic temporal

media. In Work. on Functional Art, Music, Modeling and Design (FARM),
pages 25–34. ACM, 2015.

[2] A. Asperti and G. Longo. Categories, types and structures - an introduc-
tion to category theory for the working computer scientist. Foundations of
computing. MIT Press, 1991.

[3] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio
or symbolic musical patterns: an algebraic approach. International Journal
of Semantic Computing, 6(4):409–427, 2012.

[4] K. Claessen and J. Hugues. QuickCheck: a lightweight tool for random
testing of haskell programs. In Int. Conf. Functional Programing (ICFP),
2000.

[5] P. Desain and H. Honing. LOCO: a composition microworld in Logo. Com-
puter Music Journal, 12(3):30–42, 1988.

[6] C. Elliott and P. Hudak. Functional reactive animation. In Int. Conf.
Functional Programing (ICFP). ACM, 1997.

[7] C. M. Elliott. Push-pull functional reactive programming. In Symp. on
Haskell, pages 25–36. ACM, 2009.

[8] J. Gibbons and N. Wu. Folding domain-specific languages: deep and shal-
low embeddings (functional pearl). In Int. Conf. Functional Programing
(ICFP), pages 339–347, 2014.

[9] P. Hudak. Keynote address - the promise of domain-specific languages. In
Proceedings of the Conference on Domain-Specific Languages (DSL), 1997.

[10] P. Hudak. An algebraic theory of polymorphic temporal media. In Pro-
ceedings of PADL’04: 6th International Workshop on Practical Aspects of
Declarative Languages, pages 1–15. Springer Verlag LNCS 3057, 2004.

11see http://poset.labri.fr/interpolations/

28

[11] P. Hudak. A sound and complete axiomatization of polymorphic temporal
media. Technical Report RR-1259, Department of Computer Science, Yale
University, 2008.

[12] P. Hudak. The Haskell School of Music : From signals to Symphonies. Yale
University, Department of Computer Science, 2013.

[13] P. Hudak, J. Hugues, S. Peyton Jones, and P. Wadler. A history of Haskell:
Being lazy with class. In Third ACM SIGPLAN History of Programming
Languages (HOPL). ACM Press, 2007.

[14] P. Hudak and D. Janin. Tiled polymorphic temporal media. In Work. on
Functional Art, Music, Modeling and Design (FARM), pages 49–60. ACM
Press, 2014.

[15] P. Hudak and D. Janin. From out-of-time design to in-time production of
temporal media. Research report, LaBRI, Université de Bordeaux, 2015.

[16] D. Janin. Vers une modélisation combinatoire des structures rythmiques
simples de la musique. Revue Francophone d’Informatique Musicale
(RFIM), 2, 2012.

[17] D. Janin, F. Berthaut, and M. Desainte-Catherine. Multi-scale design of
interactive music systems : the libTuiles experiment. In Sound and Music
Comp. (SMC), 2013.

[18] D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati.
The T-calculus : towards a structured programming of (musical) time and
space. In Work. on Functional Art, Music, Modeling and Design (FARM),
pages 23–34. ACM Press, 2013.

[19] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[20] L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In Int.
Symp. on Principles and Practice of Declarative Programming (PPDP).
ACM, 2005.

[21] H. Nilsson, J. Peterson, and P. Hudak. Functional hybrid modeling. In
Int. Symp. On Practical Aspects of Declarative Languages (PADL), pages
376–390, 2003.

[22] I. Perez and H. Nilsson. Bridging the GUI gap with reactive values and
relations. In Symp. on Haskell, pages 47–58. ACM, 2015.

[23] D. Winograd-Cort. Effects, Asynchrony, and Choice in Arrowized Func-
tional Reactive Programming. PhD thesis, Yale University, December 2015.

[24] D. Winograd-Cort and P. Hudak. Settable and non-interfering signal func-
tions for FRP: how a first-order switch is more than enough. In Int. Conf.
Functional Programing (ICFP), pages 213–225. ACM, 2014.

29

