
HAL Id: hal-01350636
https://hal.inria.fr/hal-01350636

Submitted on 1 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CISE Tool: Proving Weakly-Consistent
Applications Correct

Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, Marc
Shapiro

To cite this version:
Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, Marc Shapiro. The CISE
Tool: Proving Weakly-Consistent Applications Correct. PaPoC 2016 - 2nd Workshop on the Prin-
ciples and Practice of Consistency for Distributed Data , Apr 2016, Londres, United Kingdom.
�10.1145/2911151.2911160�. �hal-01350636�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49353421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01350636
https://hal.archives-ouvertes.fr

The CISE Tool:
Proving Weakly-Consistent Applications Correct

Mahsa Najafzadeh
Sorbonne-Universités-UPMC

& Inria
France

mahsa.najafzadeh@lip6.fr

Alexey Gotsman
MDEA Software Institute

Spain
alexey.gotsman@imdea.org

Hongseok Yang
University of Oxford

UK
hongseok00@gmail.com

Carla Ferreira
NOVA LINCS, DI, FCT, U.

NOVA de Lisboa
Portugal

carla.ferreira@fct.unl.pt

Marc Shapiro
Sorbonne-Universités-UPMC

& Inria
France

marc.shapiro@acm.org

ABSTRACT
Designers of a replicated database face a vexing choice between
strong consistency, which ensures certain application invariants but
is slow and fragile, and asynchronous replication, which is highly
available and responsive, but exposes the programmer to unfamiliar
behaviours. To bypass this conundrum, recent research has stud-
ied hybrid consistency models, in which updates are asynchronous
by default, but synchronisation is available upon request. To help
programmers exploit hybrid consistency, we propose the first static
analysis tool for proving integrity invariants of applications using
databases with hybrid consistency models. This allows a program-
mer to find minimal consistency guarantees sufficient for application
correctness.

Keywords
Program Analysis; Consistency; Invariant

1. INTRODUCTION
To achieve availability and scalability, many modern distributed

systems rely on replicated databases, which maintain multiple repli-
cas of shared data. Clients can access the data at any of the replicas,
and these replicas communicate changes to each other using message
passing. For example, large-scale Internet services use data replicas
in geographically distinct locations, and applications for mobile de-
vices keep replicas locally to support offline use. Ideally, we would
like replicated databases to provide strong consistency, i.e., to be-
have as if a single centralised node handles all operations. However,
achieving this ideal usually requires synchronisation among replicas,
which slows down the database and even makes it unavailable if
network connections between replicas fail [1, 7].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases are commonly dubbed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PaPOC’16, April 18-21, 2016, London, United Kingdom
c© 2016 ACM. ISBN 978-1-4503-4296-4/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2911151.2911160

eventually consistent [14]. In these databases, a replica performs an
operation requested by a client locally without any synchronisation
with other replicas and immediately returns to the client; the effect
of the operation is propagated to the other replicas only eventually.
Unfortunately, this way of processing operations exposes applica-
tions to undesirable concurrency behaviours, which may cause bugs
such as state divergence or invariant violation [6].

For instance, consider a bank account replicated at different bank
branches, which supports operations deposit and withdraw. A pro-
grammer would like to ensure an integrity invariant that the balance
is never negative. Assume that the balance is initially e100. Even-
tual consistency will allow two users to concurrently withdraw e60
at different branches and thus violate the integrity invariant. To
ensure the invariant in this example, we have to introduce synchro-
nisation between replicas, and, since synchronisation is expensive,
we would like to introduce it sparingly. To allow this, some re-
search [3, 9, 12, 13] and commercial [2, 4, 10] databases now pro-
vide hybrid consistency models that allow the programmer to request
stronger consistency for certain operations and thereby introduce
synchronisation. For example, to preserve the integrity invariant
in our banking application, only withdraw operations need to use
strong consistency, and hence, synchronise to ensure that the account
is not overdrawn; deposit operations may use eventual consistency
and hence proceed without synchronisation.

Unfortunately, using hybrid consistency models effectively is far
from trivial. Requesting stronger consistency in too many places
may hurt performance and availability, and requesting it in too few
places may violate correctness. Striking the right balance requires
the programmer to reason about the application behaviour on the sub-
tle semantics of the consistency model, taking into account which
anomalies are disallowed by a particular consistency strengthen-
ing and whether disallowing these anomalies is enough to ensure
correctness.

To help programmers exploit hybrid consistency models, we pro-
pose the first static analysis tool (called CISE: ’Cause I’m Strong
Enough) for proving integrity invariants of applications using repli-
cated databases with a range of hybrid models. Our tool is based on
a novel proof rule, which we have proved sound [8]. The tool auto-
mates the proof rule by discharging its obligations using an SMT
solver. If an obligation fails, the tool provides a counter-example,
which the developer can use to understand the source of the problem.
Using the tool, we have verified several example applications that
require strengthening consistency in nontrivial ways [8]. These

http://dx.doi.org/10.1145/2911151.2911160

include an extension of the above banking application, an online
auction service and a course registration system. A demo of the tool
is available online [11].

In the rest of this paper, we explain our static analysis by the
example of the above banking application.

2. SYSTEM MODEL
An application consists of a set of operations Op over some set

of objects, and invariants over the objects. The database system
consists of a set of replicas, each maintaining a full copy of the
database state State.

The replication model uses a Read-One-Write-All (ROWA) ap-
proach [5]. A client operation is initially executed at a single replica,
which we refer to as its origin replica. This updates the replica
state deterministically, and immediately returns a value to the client.
After this, the replica sends a message to all other replicas contain-
ing the effector of the operation, which describes the updates done
by the operation to the database state. Upon receipt, the replicas
apply the effector to their state. Effectors of causally-dependent
operations are executed in the same order at every replica; effectors
of independent (concurrent) operations are executed in any order.

More precisely, the semantics of operations is defined by a partial
function

F ∈Op→ (State⇀ (Val× (State→State)×P(Token))).

Given a state σ ∈ State in which an operation o ∈ Op executes at
its origin replica, F(o)(σ) determines:

• The return value of the operation, from a set Val. We use a
special value ⊥ for operations that return no value.

• A function defining the effector of the operation. This will be
applied by every replica to its state: immediately at the origin
replica, and after receiving the corresponding message at all
other replicas.

• A set of tokens, used to introduce synchronisation. We explain
them later.

For instance, consider the naïve banking application in Figure 1.
A client can read the balance from the local replica, make deposits to
and withdrawals from the account, and compute interest, all without
communicating with the other replicas. Each operation is associ-
ated with a precondition—a predicate over the state of its origin
replica and parameters that determines when the operation can be
safely executed (and the F function defined). A minimal precondi-
tion of the deposit(amount) and withdraw(amount) operations is
amount ≥ 0. Their effectors add amount to (respectively, subtract
it from) the balance. The interest operation’s precondition is true
and its effector multiplies the balance by the interest rate. (As we
will see later, the analysis shows that the precondition of withdraw
needs to be strengthened, and that this effector of interest is unsafe.)

3. CISE ANALYSIS

3.1 Safety Analysis
The first CISE proof obligation, called the effector safety analysis,

verifies that the effector of every operation maintains the invariant
when applied to any state where the operation’s precondition is true
(not necessarily the one in which the operation was generated).

Let’s try out the effector safety analysis on the simple banking
application of Figure 1. According to the analysis, the effectors
of deposit and interest always maintain the invariant. However,

σinit = 0

I = (balance ≥ 0)

Token = ∅
Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+

amount), ∅)
Finterest()(balance) = (⊥, (λbalance′. (1.05∗

balance′)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), ∅)

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()
amount ≥ 0 withdraw(amount)

Figure 1: A simple banking application (incorrect).

for withdraw, the obligation fails and our tool produces a counter-
example: if the balance is zero, a non-zero withdraw operation
makes the balance negative. Therefore, we must fix the issue by
strengthening its precondition, so that the amount debited is less or
equal than the current balance.

With this correction, the effector safety analysis succeeds. The
corrected preconditions are shown at the bottom of Figure 2.

3.2 Commutativity Analysis
Effectors of concurrent operations may execute in different or-

ders at different replicas. The second CISE obligation, called the
commutativity analysis, checks if all pairs of effectors of such oper-
ations commute: executing them in any order yields the same result,
whatever the starting state.

Let us check this obligation for the specification in Figure 1. Pre-
dictably, applying the commutativity analysis proves that deposit
and withdraw effectors commute. However, the effector of interest
does not commute with that of the other operations, and the tool re-
turns a counter-example. Consider two replicas 1 and 2. The balance
is initially e100. Replica 1 is the origin for an interest operation.
Replica 2 is the origin for a deposit(20) operation. Replica 1 first
applies the effector of interest and then that of deposit, whereas
replica 2 applies them in the opposite order. Depending on the order
of execution, the result is different, and the replicas diverge.

We fix this by changing the interest operation to compute the
absolute interest at the origin replica and letting its effector add this
amount to the local balance of every replica (Figure 2). With this
corrected specification, our tool proves that the effector of interest
does commute with those of the other operations.

3.3 Stability Analysis
The effector safety analysis verified that that the effector of each

operation o maintains the invariant when executed in a state satis-
fying the precondition of the operation. The precondition holds at
o’s origin replica, but how do we know that it will hold when o’s
effector is applied at a different replica, which concurrently executes
effectors of other operations? The third obligation of CISE analysis,
called stability analysis, checks if executing the effector of any other
operation o′ maintains the precondition of o.

Let us illustrate the stability analysis of the withdraw operation
in Figure 1. The precondition of the withdraw operation is stable
under the effectors of deposit and interest, but it is not stable under
the effector of withdraw. The tool returns the following counter-
example. Let the balance bee2. The precondition to withdraw(1) is
verified. However, a concurrent withdraw(2) (whose precondition

σinit = 0

I = balance ≥ 0

Token = {τ}
./ = {(τ, τ)}

Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+
amount), ∅)

Finterest()(balance) = (⊥, (λbalance′. (balance′ + 0.05

∗balance)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), {τ})

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()
balance ≥ amount ≥ 0 withdraw(amount)

Figure 2: A corrected banking application.

is also OK) at a different replica makes the balance zero, now
violating the precondition of withdraw(1). If we were to continue,
and to apply the effector of the first withdrawal operation at the
second replica, the balance would become negative.

To fix the problem, the developer of the banking application may
disallow the execution of withdrawals without synchronisation. To
model such concurrency control, we use tokens Token = {τ, . . .}
and a symmetric conflict relation ./ ⊆ Token × Token between
pairs of them. In the banking application, we associate a token τ to
withdraw such that τ ./ τ (similarly to a mutual exclusion lock).
This ensures that any two withdrawals synchronise.

Figure 2 presents a corrected banking application, incorporating
all the changes outlined above. Our static analysis confirms that this
application indeed maintains the integrity invariant.

4. CONCLUSIONS AND FUTURE WORK
We implemented the CISE Tool to automatically discharge the

CISE analysis. The tool enables an application developer to check
whether her application maintains crucial application invariants,
over a replicated database with a given synchronisation protocol.

In the future, we plan to study proof rules for reasoning about
integrity invariants on consistency models weaker than causal consis-
tency. We also intend to automate the analysis of counter-examples
in order to generate corrections semi-automatically.

References
[1] D. Abadi. Consistency tradeoffs in modern distributed

database system design: CAP is only part of the story. IEEE
Computer, 45(2), 2012.

[2] Amazon. Supported operations in DynamoDB.
http://docs.aws.amazon.com/amazondynamodb/latest/
\developerguide/APISummary.html, 2015.

[3] V. Balegas, N. Preguiça, R. Rodrigues, S. Duarte, C. Ferreira,
M. Najafzadeh, and M. Shapiro. Putting consistency back into
eventual consistency. In Euro. Conf. on Comp. Sys. (EuroSys),
pages 6:1–6:16, Bordeaux, France, Apr. 2015.

[4] Basho Inc. Using strong consistency in Riak.
http://docs.basho.com/riak/latest/dev/advanced/strong-
consistency/, 2015.

[5] P. Bernstein, V. Radzilacos, and V. Hadzilacos. Concurrency
Control and Recovery in Database Systems. Addison Wesley
Publishing Company, 1987.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Fur-
man, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Symp. on Op.
Sys. Design and Implementation (OSDI), pages 251–264, Hol-
lywood, CA, USA, Oct. 2012. Usenix.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002.

[8] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and
M. Shapiro. ’Cause I’m strong enough: Reasoning about
consistency choices in distributed systems. In Symp. on Prin-
ciples of Prog. Lang. (POPL), pages 371–384, St. Petersburg,
FL, USA, 2016.

[9] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making geo-replicated systems fast as possi-
ble, consistent when necessary. In Symp. on Op. Sys. Design
and Implementation (OSDI), pages 265–278, Hollywood, CA,
USA, Oct. 2012.

[10] Microsoft. Consistency levels in DocumentDB.
http://azure.microsoft.com/en-us/documentation/articles/
documentdb-consistency-levels/, 2015.

[11] M. Najafzadeh and M. Shapiro. Demo of the CISE tool, Nov.
2015.

[12] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Symp. on Op. Sys. Prin-
ciples (SOSP), pages 385–400, Cascais, Portugal, Oct. 2011.
Assoc. for Computing Machinery.

[13] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K.
Aguilera, and H. Abu-Libdeh. Consistency-based service level
agreements for cloud storage. In SOSP, 2013.

[14] W. Vogels. Eventually consistent. CACM, 52(1), 2009.

http://docs.aws.amazon.com/amazondynamodb/latest/\developerguide/APISummary.html
http://docs.aws.amazon.com/amazondynamodb/latest/\developerguide/APISummary.html

	Introduction
	System Model
	CISE Analysis
	Safety Analysis
	Commutativity Analysis
	Stability Analysis

	Conclusions and Future Work

