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Context: Testing highly-configurable software systems is challenging due to a large number of test con-
figurations that have to be carefully selected in order to reduce the testing effort as much as possible, while
maintaining high software quality. Finding the smallest set of valid test configurations that ensure suffi-
cient coverage of the system’s feature interactions is thus the objective of validation engineers, especially
when the execution of test configurations is costly or time-consuming. However, this problem is NP-hard in
general and approximation algorithms have often been used to address it in practice.

Objective: In this paper, we explore an alternative approach based on constraint programming that will
allow engineers to increase the effectiveness of configuration testing while keeping the number of configu-
rations as low as possible.

Method: Our approach consists in using a (time-aware) minimisation algorithm based on constraint pro-
gramming. Given the amount of time, our solution generates a minimised set of valid test configurations that
ensure coverage of all pairs of feature values (a.k.a. pairwise coverage). The approach has been implemented
in a tool called PACOGEN.

Results: PACOGEN was evaluated on 224 feature models in comparison with the two existing tools
that are based on a greedy algorithm. For 79% of 224 feature models, PACOGEN generated up to 60%

fewer test configurations than the competitor tools. We further evaluated PACOGEN in the case study of
large industrial highly-configurable video conferencing software with a feature model of 169 features, and
found 60% fewer configurations compared with the manual approach followed by test engineers. The set of
test configurations generated by PACOGEN decreased the time required by test engineers in manual test
configuration by 85%, increasing the feature-pairs coverage at the same time.

Conclusion: Extensive evaluation concluded that optimal minimisation of pairwise-covering test config-
urations is efficiently addressed using constraint programming techniques.

Keywords: Configuration testing, configurable software systems, constraints programming

1. INTRODUCTION
Motivations. Modern software systems often contain a base functionality common to

a set of related products and a number of specific functionalities and features that in-
troduce variability within a set of software configurations. Highly-configurable systems
are thus those systems that can be configured in many different ways and adapted to
diverse user needs by a configuration process. Testing highly-configurable systems is
challenging due to a large number of possible test configurations that must be min-
imised in order to reduce the testing effort, while not compromising the effectiveness
of the testing process. If validation engineers ignore commonalities within the products
when selecting test configurations, the overall testing effort/time usually exceeds the
available testing time. A practical approach to cope with this problem is to abruptly cut
off the number of test configurations, given the available testing time. This approach
may cause missing serious software faults that are due to the interaction of specific
software features. Moreover, in highly-configurable systems, particular failures can be
detected only by testing specific software configurations [Qu et al. 2008], as different
combinations of features lead to different functionality/products.

The MVPF problem. In a highly-configurable software setting, adopting a system-
atic testing methodology is of paramount importance for ensuring software quality.
This means adopting well-recognised testing criteria to build a software testing pro-
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cess based on rational choices. In our work, we aim at selecting the smallest subset
of valid test configurations ensuring that each possible pair of feature values is cov-
ered at least once. We call this problem the Minimum Valid Pairwise-Feature-values
coverage (MVPF) problem. Through a specific constraint optimisation model, MVPF
problem aims at finding true optima (not an approximation to the optimal solution) of
a configuration sampling problem, which is one differentiating characteristic of our ap-
proach over most of the existing work. Furthermore, MVPF problem incorporates the
requirement for the validity of test configurations, satisfying the constraints existing
among the features (including physical and business constraints).

Solving the MVPF problem is regarded as a minimum requirement when testing
highly-configurable systems. Indeed, as observed in several studies [Kuhn et al. 2004;
Klaib et al. 2008], having covered all 2-way feature interactions increases the con-
fidence of validation engineers in the quality of tested products (assuring, at least,
against 2-way errors). Solving the MVPF problem also means finding a set (not neces-
sarily unique!) of valid test configurations of minimum cardinality. The rationale is to
minimise the overall test effort by minimizing the number of considered test configu-
rations, while maintaining their ability to detect failures.

NP-hardness of the MVPF problem. Unfortunately, as soon as constraints are in-
volved among the features, the problem of generating exactly the minimum number
of test configurations that cover all pairs of feature values is NP-hard. This is shown
by the reduction to the boolean satisfiability problem [Batory 2005]. There are several
classes of approaches to such problems [Cohen et al. 2007b]. Greedy algorithms [Cohen
et al. 2008; Oster et al. 2010; Perrouin et al. 2010; Johansen et al. 2012b], consider one
by one the configurations that cover the most pairs, checking their validity. This means
that once a configuration has been included in the current set of valid configurations, it
cannot be deleted and replaced by another configuration covering fewer but different
pairs. Being approximations, these algorithms can only seldom reach the true mini-
mum number of valid test configurations. In domains where test configurations take a
long time to execute, finding an optimal number of test configurations becomes essen-
tial to decrease the overall testing effort. Meta-heuristic searches [Cohen et al. 2003],
as more sophisticated heuristics, can often find good solutions with less computational
effort than simple heuristics, but still not guaranteeing a globally optimal solution.
Mathematical construction are fast approaches [Williams 2000], but they do not han-
dle arbitrary feature constraints, and often they are not well suited for a large number
of parameters and bigger covering arrays [Bryce et al. 2005]. Moreover, contemporary
mathematical constructions do not handle arbitrary feature constraints well.

Solving an industrial problem. The MVPF problem was identified in the domain of
large highly-configurable networking software by Cisco Systems Norway, an indus-
trial partner of the Certus Centre1. Testing highly-configurable networking systems
in a continuous integration environment requires not only selecting the relevant con-
figurations to test (configurations that underwent changes), but also fitting the testing
process for a limited testing time. For our partner, the ability to control (at any stage
of the testing process) the time needed to complete testing is mandatory. As test con-
figuration execution often requires manual hardware setup, which may take up to 30
minutes, finding an optimal set of valid test configurations is of paramount importance.

1Certus Centre, hosted by SIMULA Research Laboratory, is a research-based innovation center aiming at
developing methods and tools in the domain of validation and verification of software-intensive systems, in
collaboration with industrial and public administration partners.
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The proposed solution. To deal with this problem, we propose a novel Constraint
Programming (CP) approach that manages test configurations from feature models.
Feature modelling is a common approach for representing variability within a soft-
ware product line, while Constraint Programming (CP) is a well-known programming
paradigm dedicated to the resolution of hard combinatorial problems. Given the avail-
able time, our approach seeks for the minimum set of valid configurations solving the
MVPF problem. A special data structure composed of finite-domain variables is used to
encode a set of valid configurations. We introduce a dedicated combinatorial constraint
(called pairwise global constraint) to enforce feature pairwise coverage over the data
structure, while other logical constraints are used to capture hierarchical and cross-
tree links between features. We also introduce special heuristics to order the feature
pairs and to select the variable to enumerate first (Pair-ordering and Variable-selection
heuristics). Finally, a constraint optimisation procedure, called branch and bound, is
used to find the minimum number of test configurations. This characteristic allows
continuing the constraint solving process after the first solution has been found, until
a timeout occurs, which is the second differentiating characteristics of our approach
over the most of the existing work. Our approach can find a candidate set of mini-
mum cardinality and prove that there is no smaller set. However, as the problem is
NP-hard, time spent in constraint optimisation should be balanced with the time re-
quired to test a single configuration. This approach proved to be successful in solving
the MVPF problem in practice.

Implementation and experimental results. We implemented the approach in a freely
available tool called PACOGEN2. The tool results from a two man-year development
effort and incorporates subtle optimisations that are discussed in detail in Section 4
and evaluated in Section 6. We performed the experimental comparative study with
the two existing greedy approaches that aim at solving the same problem, MosoPolite
tool [Oster et al. 2010] and SPLCAT tool [Johansen et al. 2011; 2012b]. The compar-
ison was performed using a large benchmark consisting of 224 feature models from
SPLOT [Mendonça et al. 2009]. Our results show that PACOGEN produces up to 60%
fewer configurations on average, respecting the MVPF problem, for 79% of the bench-
mark feature models for one approach, and up to 42% fewer test configurations for 6
of 7 feature models for the another approach. Furthermore, we applied and validated
PACOGEN on an industrial case study provided by Cisco. The feature model of a Cisco
video software system consists of 169 features and more than 109 possible configura-
tions (valid and invalid). The experimental results show that PACOGEN produces 60%
fewer configurations, compared with the manual approach followed by Cisco, while
substantially increasing 2-way feature coverage. The automatically generated set of
configurations decreased the time required by validation engineers in manual config-
uration specification by 85%.

Contributions. The idea of using CP to solve the MVPF problem was introduced by
the authors in [Hervieu et al. 2011]. We have further enhanced the initial idea by intro-
ducing a dedicated algorithm for filtering invalid pairs (Section 4.3), and by proposing
new search heuristics (Section 4.4). We have also developed a new version of PACO-
GEN that significantly improved the experimental results presented in [Hervieu et al.
2011]. We have applied and verified PACOGEN in a new industrial context. In sum-
mary, this paper makes the following contributions:

2http://hervieu.info/pacogen.
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(1) Defining combinatorial configuration sampling in its full generality as a problem
amenable to standard constraint optimisation techniques, and finding a true min-
imum solution of the sampling problem;

(2) Verification in an industrial context, showing that favouring sample size over sam-
ple generation time has practical relevance;

(3) Enhanced time-aware method to generate the minimum-cardinality set of test con-
figurations (addressing the MVPF problem). The method incorporates common CP
techniques such as constraint propagation and filtering, but also dedicated ap-
proaches such as global constraint design (pairwise) and search heuristics (Pairs-
ordering and Variable-selection heuristics);

(4) Industry-strength prototype implementation of the proposed method (PACOGEN);
(5) Extensive experimental evaluation and comparison with two state-of-the-art ap-

proaches;

The rest of the paper is structured as follows: Section 2 presents a motivating ex-
ample for test configuration selection in highly-configurable software systems. Section
3 describes the theoretical concepts and notations used in our approach, and gives
an overview of the related work. Section 4 details the CP model used for generating
the minimum set of valid test configurations. Section 5 describes PACOGEN imple-
mentation. Section 6 contains an extensive experimental evaluation of the proposed
approach, while Section 7 concludes the paper.

2. A MOTIVATING EXAMPLE
To illustrate the challenges that appear in testing highly-configurable software sys-
tems in practice, we present the case study of video-conferencing (VC) systems, pro-
vided by our industrial partner Cisco Systems.

We describe the industrial software system under study, C90 codec, as illustrated
in Figure 1. C90 comprises core functionality (providing basic video-conferencing),
common to all VC variants, and a set of features that can be used to configure the
software according to users’ specific needs, requirements or preferences. As a highly
configurable system, C90 offers a very wide range of options to configure the VC soft-
ware for its purpose, what makes it difficult for validation engineers to ensure that all
configurations are working correctly. According to the variability model built together
with system domain experts, C90 consists of 169 software features with mutually ex-
clusive and inclusive relations. For example, the touch panel feature of the C90 video
system allows users to interact with the video system through the physical contact
on the panel. On the contrary, the remote control feature allows users to operate the
video system remotely, through the remote control device. There is a design constraint
that forbids coexistence of these two software features in one video system. This con-
straint is modelled as exclude feature relation. Similarly, C90 cannot be configured for
1080p60 video resolution without the high definition feature support. This constraint is
modelled as require feature relation. The constraints among features must be respected
when specifying configurations, in order to select only the valid ones.

VC software is configured in two stages. First, the product-line engineers select fea-
tures for a final product based on the product type or product price. The example of a
variation point at this early configuration stage is the video conferencing call type. A
product of more expensive series supports the multi-site calls (more than two video
units in a call), whereas a product from cheaper series supports only the point-to-
point calls. Second, after the product has been delivered, users are offered a number of
parameters, each with a range of values, to configure particular software features of
the product. For example, a user can choose a video input format or a video resolution
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Fig. 1. Software variability of the video conferencing system C90

for the supported video codec. We refer to features as both the VC core functionalities
and user-configurable software parameters.

In our partner’s testing practice, a typical scenario for a validation engineer is to
manually select and combine features into the valid test configurations and execute
the test cases for these configurations in a continuous integration framework. In this
process, the validity of the generated configurations highly depends on the engineer’s
interpretation and understanding of documentation. If feature dependencies have not
been taken into account and there are failing tests in execution, it is difficult to inter-
pret the results; the failures can be due to faulty software, but also due to an invalid
combination of features. Another challenge that validation engineers face in manual
test configuration is avoiding test case redundancy. Good testing practice aspires to
cover as much software functionality under test as possible with as few tests as possi-
ble. We have observed that the set of manually specified test configurations contains
repeating configurations, as the set was specified some time ago and was not main-
tained regularly. Similarly, if validation engineers do not perform coverage analysis
for the generated test configurations, some test configurations will appear more than
once in the test set, while some others will not exist in the set at all. Furthermore, test
configurations should be able to detect failures that are specific for a particular com-
bination of software features (a.k.a. feature interaction problem) [Qu et al. 2008]. For
example, a validation engineer detected that a VC configuration with SIP call protocol
and 128 call rate leads to a failure in establishing a video call, while the configurations
with all other combinations of call protocols and call rates work correctly. This particu-
lar failure can be detected only by testing the interaction between the SIP call protocol
and the 128 call rate features. Additionally, testing in a continuous integration envi-
ronment imposes limited testing time. Specifying valid test configurations manually is
a time consuming task, as it requires selecting and combining many software parame-
ters. Defining a valid VC configuration takes on average one man-hour. The execution
of tests for one configuration takes up to one hour on average and testing all configu-
rations must be completed within 16 hours (over-night). To comply with these realistic
timing constraints, an automated technique that could help generate the minimum set
of valid test configurations is of core interest for our partner.
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3. BACKGROUND
In this section we describe the theoretical concepts and notations used to address the
MVPF problem. We also give an overview of the related approaches.

3.1. Feature models for specifying configuration variability
Although initially proposed to represent products in software product lines [Kang et al.
1990], feature models can also specify variability and commonalities in software con-
figurations. In this case, feature models are used to capture: (i) configurable software
parameters (features), and (ii) dependencies between features. There are various vari-
ability modelling notations [Pohl et al. 2005] and feature model notations [Czarnecki
et al. 2005], [Eriksson et al. 2005] proposed in the literature, but we selected a formal-
ism that extends the metamodel of [Perrouin et al. 2008], based on the Free Feature
Diagram [Schobbens et al. 2007]:

— A feature model (FM) is a hierarchical organisation of a set of features;
— A feature is an abstraction that represents a composition element or a configuration

parameter;
— A configuration is a selection of features from an FM;
— A valid configuration is a configuration that satisfies all constraints of an FM;
— A constraint is a relation between two or more features in an FM. We distinguish

between several types of constraints, such as hierarchical constraints, cross-tree
constraints and CNF constraints:
(1) A hierarchical constraint is a relation between a father and its children features

based on the following operators NT = {AND,OR,XOR,OPT,CARD};
(2) A cross-tree constraint is a binary relation between any pair of features in an

FM based on the operators GCT = {REQUIRE,MUTEX};
(3) A CNF constraint is a non-binary relation among any subset of features that

can be expressed as a boolean formula in Conjunctive Normal Form (CNF).

Figure 2 represents a partial feature model of the VC software from our
case study. The model specifies that the VC software supports making calls,
which can be either P2P or Multisite calls. For the Multisite calls, possible set-
tings are either 3x1024x576max or 3x720p30max or 1080p30–720p60max. Option-
ally, the VC software can support the 720p60 premium resolution, the 1080p30
premium resolution, or both resolutions. The configuration that supports the
3x720p30max or the 1080p30–720p60max resolution for the multisite calls must have
the Premium resolution feature.

For the feature model shown in Figure 2, the set of features
S = {V CS,Call,Multisite, 3x1024x576max} is a valid configuration, but the config-
uration S = {V CS,Call,Multisite, 3x720p30max} is invalid, because the constraint
between the 3x720p30 max and the Premium resolution features is not satisfied.

For the sake of simplicity, we will consider only feature models that have homoge-
neous nodes. This means that all children features are related to their father feature
using a single relation. When a feature model is not homogeneous, it can be easily
transformed by introducing an intermediate feature. For example, the feature model
shown in Figure 2 can be transformed with an intermediate feature, a mandatory child
of the VCS, so that the root node becomes homogeneous (currently it has two children
related to two distinct operators, namely mandatory and optional).

3.2. Pairwise testing of highly-configurable software
3.2.1. Combinatorial Interaction Testing. Combinatorial Interaction Testing (CIT) is an ef-

fective technique to test highly-configurable software that has many dependencies be-
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Fig. 2. Simple feature diagram for a video conferencing software

tween configuration parameters. The effectiveness of CIT is based on the observation
that software failures are often due to interactions between only few (N ) software pa-
rameters [Kuhn et al. 2004], [Bell and Vouk 2005], [Grindal et al. 2005]. The tests
generated using CIT, therefore, cover all N -way combinations of input parameters and
are able to detect faults that arise from the interactions of N or fewer components. CIT
has been successfully applied to various problems [Czarnecki and Eisenecker 2000], in-
cluding large distributed systems [Kuhn et al. 2004], GUI testing [Memon and Soffa
2003], and fault localisation [Yilmaz et al. 2006]. More recently combinatorial testing
has been applied to a highly configurable system [Johansen et al. 2012a]. Pairwise
testing is a special case of CIT, widely used by practitioners, that subsets a test in-
put domain into the set that covers every combination of values for each pair of input
parameters. Introduced by Cohen et al. [Cohen et al. 1997], pairwise testing aims at
detecting failures triggered by interactions between two parameters (2-way tests). It is
known that a pairwise-covering test suite can have lower error detection capabilities
compared with the test suites with higher interaction strength (3-way, 4-way). How-
ever, 3- and 4-way CIT techniques entail high computational complexity and produce
a larger number of test configurations. In some contexts, this can impose limitations
on wider practical application of such techniques [Batory 2005], [Cohen et al. 1997],
[Cohen et al. 2008] and if there are no requirements to test the interaction coverage
higher than pairwise, pairwise coverage is a good compromise [Kuhn et al. 2004; Klaib
et al. 2008].

3.2.2. Testing highly-configurable systems. In the context of highly-configurable software
testing, CIT can be used to generate a set of configurations that cover all pairs of soft-
ware features. For example, in the VC software from our industrial case study, the con-
figuration [Call, ¬P2P , Multisite, ¬3x1024p576max, 3x720p30max, ¬1080p30–720p60,
Premium resolution, 720p60, ¬1080p30] covers the interactions between 30 pairs of val-
ues: (Call, Multisite); (Call, ¬P2P ); (Call, 3x720p30max), to present a few.

Pairwise testing with feature models uses a mathematical structure called a binary
covering array, which is n × k (0,1)-matrix M , where n denotes the number of test
configurations and k denotes the number of features of a feature model. The matrix M
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is defined as follows:

M(i; j) =

{
1 iff feature j belongs to configuration i

0 otherwise.

With no constraints among features, the minimum number of rows n in the covering
array to cover all combinations between features is the least positive integer such that:(

n− 1

dn2 e

)
≥ k (1)

where k is the number of features [Lawrence et al. 2011]. When applied to configurable
software with constrained features, pairwise testing faces a challenge to determine the
value for n. For example, the pair (3x720p30 = selected, Premium resolution = unse-
lected) is not a valid pair according to the feature model in Figure 2.

3.2.3. Existing approaches for CIT. Researchers have proposed various approaches for
generating test configurations that cover N-wise interactions among the set of vari-
ables. Many of the proposed approaches in the literature are greedy methods [Bryce
et al. 2005; Bryce and Colbourn 2009]. AETG [Cohen et al. 1997], based on a greedy
algorithm, is able to efficiently generate N-wise covering arrays for a set of parame-
ters, taking their values in finite domains. However, greedy approaches do not guaran-
tee reaching the true minimum number of test configurations with pairwise coverage.
Every time a new pair of parameter values is considered, the algorithm seeks the
pair among already selected test configurations. If found, the pair is just discarded,
while if not, a new test configuration covering that pair is added. Note that once a
configuration is added to the current set of configurations, it cannot be withdrawn
from the set, in order to use some other configuration covering that pair. Greedy tech-
niques have also been combined with heuristic search techniques to generate more
accurate results [Bryce and Colbourn 2007]. These techniques start from a given test
suite and apply calculations until all combinations have been covered. They can of-
ten generate fewer test configurations than greedy methods, but usually have longer
runtime. TConfig and CTS, as mathematical methods, have been proposed for gener-
ating covering arrays [Hartman 2005; Williams 2002]. However, these approaches do
not handle constraints among parameters. One of the approaches dealing with this
problem, was proposed by Hnich [Hnich et al. 2006], using constraint programming
techniques. However, this approach suffers from two drawbacks. Firstly, the notion
of side constraints corresponding to hierarchical and cross-tree constraints is men-
tioned as an extension, but neither properly introduced nor evaluated. Secondly, this
approach faces scalability problems for bigger CIT problems. Handling CIT problems
with constraints has been extensively studied in [Cohen et al. 2007a; 2007b; 2008].
Further, CTE-XL tool 3 allows users to generate pairwise and triple-wise covering test
sets from a category-partition of the input domain. CTE-XL handles additional con-
straints over the input parameters, but only in a passive way, by checking afterwards
if generated test cases satisfy the constraints or not. On the contrary, several authors
have proposed the tools handling constraints in an active way, either by solving them
or using their evaluation to compute values of a fitness function. IPOG is a tool for gen-
erating covering arrays based on the 0-1 linear programming model [Lei et al. 2008],
while CASA is an approach to constrained interaction testing based on simulated an-
nealing [Garvin et al. 2011]. Authors proposed an approach for multi-objective optimal
test suite computation based on integer linear programming [Lopez-Herrejon et al.
2013]

3http://www.berner-mattner.com/en/berner-mattner-home/products/cte-xl.

, Vol. V, No. N, Article A, Pub. date: January YYYY.



Optimal Minimisation of Pairwise-covering Test Configurations Using Constraint Programming A:9

More recently, Perrouin proposed transforming feature models into Alloy declara-
tive programs, in order to select only valid configurations, with respect to the initial
model [Perrouin et al. 2010]. This is one of the first approaches proposing the usage of
pairwise testing in the context of feature modelling. However, the approach exhibited
insurmountable scalability issues [Perrouin et al. 2012]. Firstly, using a generate-and-
test approach to select uncovered valid pairs involves too many repeated calls to the
underlying constraint solver (i.e., SAT-solver). Secondly, transforming Alloy models
into boolean formula under CNF provokes a combinatorial explosion on some mod-
els. The approach by Oster [Oster et al. 2010] does not rely on SAT solver to gen-
erate pairwise-covering test configurations. Instead, it uses greedy and ad-hoc algo-
rithm, based on a selection of test configurations, that maximises the number of valid
pairs within each configuration. In [Oster et al. 2010], the author provides the ex-
perimental results showing that the approach is effective in selecting a small num-
ber of configurations over large feature models in a reasonable time. MosoPolite is an
industry-strength implementation of Oster’s approach exploited in the Automotive do-
main [Steffens et al. 2012]. Another tool for constructing N-way combinatorial test sets
is ACTS 4, which is based on a greedy approximation algorithm. Johansen recently pro-
posed several optimisations to the classical greedy approach to efficiently generate test
configurations with 1-3-way coverage for large feature models [Johansen et al. 2012b],
with a relatively low running time. The approach is supported by SPLCAT, which is
able to generate a set of pairwise-covering test configurations for the Linux kernel FM,
containing more than 6000 features. According to our knowledge, Johansen’s method
and tool is one of today’s most advanced approaches available for generating valid test
configurations meeting N-wise criteria.

However, none of these approaches guarantee the selection of the minimum num-
ber of configurations to cover N-wise interactions. Given a feature model, addressing
the MVPF problem involves two distinct problems: (i) finding the true minimum num-
ber of configurations, and (ii) making sure that every configuration is indeed valid.
In [Johansen et al. 2011], Johansen reports that solving the first problem is equiv-
alent to the Set Cover problem, known to be NP-hard. Although Lawrence suggests
that restricting to pairwise interactions might be less complex [Lawrence et al. 2011],
we are not aware of any tractable algorithm able to solve it. There is an approxima-
tion algorithm for this NP-hard problem, known as Chavtal algorithm [Chvatal 1979].
The algorithm prioritises configurations by starting from the ones covering the most
of uncovered pairs, until all pairs are covered. However, in the presence of constraints
among features, this algorithm does not necessarily generate valid configurations. In
fact, relating to the second problem mentioned above, generating a valid configura-
tion from a feature model is equivalent to general SAT-solving [Batory 2005], which
is known to be NP-hard as well. Even if Mendonca reported that SAT-based analysis
of realistic feature models is feasible in practice [Mendonca et al. 2009], we still have
to solve as many SAT-instances as there are configurations in a pairwise covering set
of test configurations. This means that solving the MVPF problem not only involves
solving the optimisation problem, whose generalisation is known to be NP-hard, but
also a number of satisfiability problems.

3.3. Constraint programming
Constraint programming (CP) is a paradigm describing the relations between vari-
ables in the form of constraints. Modelling and solving a constraint problem is based
on a three-step scheme: (i) defining variables and specifying their variation domain, (ii)
identifying constraints between the variables, and (iii) solving the constraint system

4http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html.
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using well-defined processes such as constraint propagation and labelling. Constraints
represent relations among variables and are classified as logical (and, or, not, . . .), arith-
metic (A < B,B = C, . . .), global or symbolic (AllDiff, Element, . . . ), etc. A global con-
straint is a relation defined by an interface (operator’s name and constrained vari-
ables), a filtering algorithm, and awakening conditions. A solution of a CP system is
a full assignment of variables to the values within their domain, satisfying all con-
straints. Constraint propagation is an efficient process5 ensuring that some invalid
combinations of variable values are discarded from its domain. It is only a partial test
for satisfiability, as it does not guarantee that all invalid combinations will be filtered
out from the domains. This is a reason why constraint propagation is interleaved with
a labelling process, which can instantiate all possible variables to the values from their
domain.

The reason why we chose CP to address the MVPF problem is that it allows defining
new special-purpose constraints (global constraints) for fine-tuned modelling and time-
aware optimisation, in order to deal with NP-hardness. It has been recognised that CP
is versatile for managing variability in software product lines [Salinesi et al. 2009].
In contrast to the SAT-solving, which implies the reformulation of relations in terms
of boolean formulas, CP enables global constraint design, constraint optimisation and
more generally, a higher level of abstraction for solving specific problems. Several ex-
isting approaches use a constraint model to reason on feature models [Benavides et al.
2005], [Karatas et al. 2010].

Labelling strategies. Constraint propagation prunes a variable domain but does not
necessarily give a solution. To obtain the solution, we need to evaluate some assump-
tions regarding the values of variables. This process is called labelling and consists of
adding a constraint X = v to the constraint system, where X is an unbound variable,
and v is a possible value from its domain. The order in which variables and values
are selected for labelling is configurable. In general, constraint solvers propose several
general-purpose labelling strategies, based on two parameters: (i) the selection order
of variables, which can be selected statically or dynamically during the constraint solv-
ing process, and (ii) the exploration order of the domain: from the lowest to the highest
value, or the opposite, from a randomly chosen value, or from a split of the domain, etc.

Time-aware optimisation in CP. Finding an optimal value for a cost function in CP
can be achieved by implementing a branch and bound procedure. First, during the
search process, when the solution is found, the value of the cost function being min-
imised can be recorded. Later, using a backtracking mechanism, other solutions can
be enumerated to find better values of the cost function. The process can be controlled
by a timeout value, allowing a search interruption when a defined time threshold has
been reached. In other words, CP and labelling enable anytime optimisation problem
solving, also known as time-constrained or time-aware optimisation. These capabili-
ties are essential for minimizing the number of test configurations within the given
time bounds, while enforcing pairwise coverage.

4. A CONSTRAINT OPTIMISATION MODEL FOR TEST CONFIGURATIONS GENERATION
This section provides a detailed description of our constraint optimisation model for
automatic generation of valid test configurations with pairwise interaction coverage,
thus, addressing the MVPF problem. First, we introduce the notations and relations
modelled in this constraint optimisation model. Second, we propose a special global
constraint enforcing the coverage of pairs in a set of configurations. Third, we ex-

5Constraint propagation runs in O(N ∗M ∗ D) where N is the number of variables, M is the number of
constraints, and D is the size of the largest domain. It is thus a process of polynomial complexity.
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Fig. 3. An example matrix containing up to N configurations, created for the FM presented in Figure 2.

plain how to filter invalid pairs during the constraint optimisation process. Fourth,
we present a heuristic to pre-compute the ordering of features to be labelled. Finally,
we explain our time-aware optimisation process to minimise the selection of test con-
figurations.

4.1. Notations and relations in an FM
Our constraint optimisation model is composed of a structured set of boolean variables,
marked with capitals (e.g., A,B, ...), a set of finite-domain variables representing in-
dexes, marked with I1, I2, ..., and a set of constraints or relations. Variables take their
values in domains, denoted as I in m..n, where m,n are integers and where m..n rep-
resent the integers in the range (i.e., all i such that m ≤ i ≤ n).

4.1.1. Variables and matrix data structure. In our model, boolean variables denote the se-
lection/unselection of a feature in a configuration. Formally speaking, if variable A is
associated with a feature, then A = 1 means that A is selected, while A = 0 means the
opposite. We define a special matrix data structure to capture the status of configu-
rations, composed of variables representing the features. The matrix is incrementally
filled with values so that each of its rows represents a test configuration. The example
matrix presented in Figure 3 is filled with boolean variables (A1, B1, ...) that are asso-
ciated with the corresponding feature. Index variables I1, I2, ... correspond to indexes
of this matrix data structure. Their domain is 1..N , if N denotes an upper bound on
the number of configurations. The goal of our constraint optimisation model is to incre-
mentally instantiate variables to values in this matrix, such that rows fulfil pairwise
coverage criterion and the number of test configurations is minimised.

4.1.2. Relations. All configurations of the matrix have to satisfy the set of relations
coming from the feature model, in order to represent valid configurations. To fulfil this
requirement, we implemented dedicated constraints for capturing the relations in a
feature model. These constraints filter domain information over the boolean variables,
while constraint propagation is used to remove inconsistencies throughout the matrix
data structure. We distinguish three types of relations: hierarchical constraints, such
as and, or, xor,mand, opt, and card, cross-tree constraints, such as require and mutex, and
CNF constraints, such as CNF. CNF constraints extend previous work [Hervieu et al.
2011] by enabling N-ary constraints, i.e., logical combinations of constraints over an
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arbitrary number of features. This characteristic contributes to the better expressive-
ness of our approach and does not impact its performance.

Hierarchical constraints. Constraints such as and, or, and xor express relations be-
tween a parent feature A and its sub-features B,C, .... For example, xor(A, [B,C, ...] is
true iff6 (B ⇒ A) ∧ (C ⇒ A) ∧ ... ∧ (A ⇔ B xor C xor ...). An alternative approach to
model such constraints could have been the usage of ternary boolean operators that
are available in most constraint solvers. However, we wanted to capture a global hier-
archical relation between a parent feature and its sub-features, in order to propagate
as far as possible the information in the constraint solving process. For example, con-
sidering an xor relation between 10 features permits us to instantiate all unbounded
feature variables to false at once, after detecting that one sub-feature is true. Corre-
spondingly, relation mand(A, [B,C, ...]) is true iff A,B,C, ... are all true, opt(A, [B,C, ...])
is true iff either at least one of B,C, ... is true and A is true, or all B,C, ... are false,
whatever be the value for A. The Cardinality relation takes two integer variables, N and
M , for constraining the minimum and maximum number of sub-features with a value
true. Note that Cardinality constraint is available in most CP solvers [Hentenryck and
Deville 1991].

Cross-tree constraints. These relations include requires and mutex, where
requires(A,B) is true iff A ⇒ B, and mutex(A,B) is true iff A xor B. The differ-
ence between cross-tree and hierarchical constraints lies in the absence of parental
relationship between the features. Cross-tree constraints relate the parts of a feature
model that are distinct.

CNF constraints. Relation CNF ([A1, A2, . . .], [B1, B2, . . .]) captures a disjunctive
clause in a CNF expression: it is true iff ¬A1∨¬A2∨ . . .∨B1∨B2∨ . . . is true. Note that
CNF constraints generalise cross-tree constraints and can be used to replace them.
In our framework, cross-tree constraints are kept for the sake of generality and ex-
pressivity. Note also that in an FM, whenever neither a cross-tree constraint nor a
CNF constraint is present, the FM necessarily contains at least one valid configura-
tion [Mendonca et al. 2009].

4.2. Enforcing pairwise coverage
In our approach, enforcing pairwise coverage requires that each pair of values is
present at least once in the matrix data structure. For this purpose, we introduce a
new global constraint called pairwise. The pairwise relation holds over an index variable
I, representing a row in the matrix, and two vectors of feature variables (to address
2-way feature coverage). The pairwise constraint forces a specific pair of boolean values
to be included at some location in the vectors, depending on the variable I. For ex-
ample, pairwise(I, ([X1, X2, X3], [Y1, Y2, Y3]), (1, 1)) constrains the unknown row I of the
matrix to contain the pair (1, 1), for the features associated with rows [X1, X2, X3] and
[Y1, Y2, Y3], meaning that the corresponding pair must be included within the test con-
figuration of a rank I. During the solving process, if I is instantiated to value 2 then
(X2, Y2) = (1, 1), while if X3 is instantiated to value 0, then value 3 will be removed
from the domain of I, because the pair of variables (X3, Y3) cannot be equal to (1, 1)
in this case. The filtering algorithm shown in Alg. 1 represents the implementation
of the global constraint pairwise(I, (L1, L2), (v1, v2)), where I, L1[i], L2[i] represent the
sets of integers (a.k.a., finite domains), and (v1, v2) represents boolean constants. This
algorithm is launched each time the domain of any of the variables I, L1[1], L1[2], .. is

6In Constraint Programming, adding redundant constraints is a convenient way to speed-up the resolution
process.
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ALGORITHM 1: A filtering algorithm for the pairwise constraint
Input: I: a finite domain, L1, L2: two lists of finite domains of the same size and (v1, v2): a pair

of boolean values
Output: Fail or pruned domains for (I, L1, L2)

function pairwise(I, (L1, L2), (v1, v2))
I ′ ← I;
foreach i ∈ I do

L′
1[i]← ∅, L′

2[i]← ∅;
if (v1 6∈ L1[i]) or (v2 6∈ L2[i]) then

I ′ = I ′\{i}
else

L′
1[i]← L1[i];

L′
2[i]← L2[i];

end
end
if I ′ = {a} then

L′
1[a]← {v1}; L′

2[a]← {v2};
return ({a}, L′

1, L
′
2);

else if (I ′ = ∅) then
return Fail

else
return (I ′, L′

1, L
′
2)

end

reduced (a.k.a., awakening conditions). The idea behind this algorithm is to explore all
possible values for I and to determine whether these values are still consistent with
the domain information for other variables. The complexity of this algorithm is linear
in the size of the domain for I, as it iterates on its values. Other operations imple-
mented in the algorithm are performed on finite domains and can be bounded by a
constant, equal to the domain’s largest size. Note that our approach has similarities
with the usage of global-cardinality constraints proposed by Hnich [Hnich et al. 2006];
the difference being that the pairwise global constraint makes no use of costly net-
work maximum flow computations during domain filtering. As mentioned above, the
complexity of pairwise algorithm is linear, while the complexity of global-cardinality
filtering algorithm is at least quadratic in the number of nodes of a flow network.

In general, several pairwise constraints are posted in the constraint solving process
and the ordering in which these constraints are posted impacts the resolution time, but
not the final result. In our framework, we have introduced the pairs-ordering heuristic
to manage the order in which pairwise constraints are posted. This heuristic is described
in detail in Section 4.4.

4.3. Filtering invalid pairs
The pairwise global constraint presented above is used to enforce the presence of all
pairs within the matrix data structure. However, in the presence of constraints be-
tween features in an FM, some pairs become invalid. Thus, covering all pairwise in-
teractions requires filtering invalid pairs in the selection process. In this section, we
present how to detect and remove invalid pairs.

A pair of features from an FM is invalid if there are no valid configurations contain-
ing this pair. For example, two features linked with the mutex operator are necessarily
invalid, as they cannot be selected at the same time in a valid configuration. In or-
der to remove invalid pairs, we introduce the following two-step procedure. Firstly,
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constraint propagation is used to remove some invalid pairs through inconsistency de-
tection. Secondly, a selective labelling procedure allows us to eliminate residual invalid
pairs. More specifically, constraint propagation is an efficient yet an incomplete process
for detecting inconsistencies (i.e., invalid configurations), therefore, it may not be able
to eliminate all invalid pairs. Still, all inconsistencies can be detected by complement-
ing constraint propagation with a labelling procedure (i.e., giving a concrete value to
the selected variables). The labelling procedure is built on a failure-driven backtrack-
ing. This means that if an added hypothesis (e.g., choosing a value for a variable) leads
to a contradiction, then the labelling procedure automatically reverts the choice and
makes a different hypothesis (e.g., choosing another value for a variable).

REQUEST: or(A, [B,C]), B = 1, solve().

RESULT: A = 1, C in 0..1.

Fig. 4. A constraint propagation example

Consider the simple example shown in Figure 4. The first line is a typical request
to the constraint solver, where or(A, [B,C]) denotes a hierarchical constraint between
feature A and sub-features B,C, and B = 1 entails the selection of feature B in
the configuration. The second line is a result returned by the constraint solver. Con-
straint propagation, as launched by a call to the constraint solver (i.e., solve), leads to
A = 1, C in 0..1, meaning that feature A must be selected in the configuration, while
feature C is left unspecified. Implicitly, constraint propagation removed the invalid
pair (A = 0, B = 1), which was never considered in the process. We say that constraint
propagation pruned the search space of some invalid pairs. However, as mentioned
above, constraint propagation may not discard all invalid pairs. Figure 5 shows an in-
teresting example, including three operators and two CNF constraints, that illustrates
this principle.

REQUEST: and(R, [A,B]), xor(B, [B1, B2, B3]), xor(A, [A1, A2]), CNF ([B1], [A1]),

CNF ([B2, B3], [A2]), R = 1, A1 = 0, solve().

RESULT: A = 1, B = 1, A2 = 1, B1 in 0..1, B2 in 0..1, B3 in 0..1.

Fig. 5. An example where constraint propagation does not discard all invalid pairs

In this example, the feature R is selected (R = 1) and the feature A1 not selected
(A1 = 0). Consequently, constraint propagation instantiates the features A,B and A2,
leaving the features B1, B2 and B3 uninstantiated. From the result (the second line), it
can also be deduced that the following pairs are valid: (A1 = 0, B1 = 0), (A1 = 0, B = 1),
(A1 = 0, B2 = 0), (A1 = 0, B2 = 1), (A1 = 0, B3 = 0), (A1 = 0, B3 = 1). However,
the result does not exclude the pair (A1 = 0, B1 = 1), which is invalid. In fact, if
B1 = 1, then the relation xor(B, [B1, B2, B3]) leads to B2 = 0 and B3 = 0. As A2 = 1, the
CNF constraint CNF ([A2], [B2, B3]) is violated (i.e., instantiated to false). This result
illustrates that the constraint propagation, although efficient, must be completed by a
labelling procedure that can backtrack on the choice B1 = 1.

This labelling procedure aims at checking the validity of every pair containing at
least one uninstantiated variable. The idea simply consists in reusing constraint prop-
agation while making additional hypothesis, and backtracking when an inconsistency
is detected. For the example in Figure 5, to detect an inconsistency, it suffices to call
solve(), when B1 = 1 is added to the constraint system (Result: false). On the contrary,
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Table I. Pairs-ordering metrics for two pairs of features

Pairs ]1 : 3X1024X576 max; 1080p30 ]2 : 720p60; 1080p30
depth father 0 1

depth features 7 4
common operator mand xor

adding B1 = 0 to the system does not lead to any inconsistency, meaning that the pair
(A1 = 0, B1 = 0) is actually valid.

4.4. Search heuristics
Labelling procedures come with search heuristics, i.e., techniques to explore a search
space in an optimised way. In this section, we investigate the definition of a search
heuristic, taking advantage of the structure of an FM to improve the labelling process.
In our framework, enforcing pairwise coverage involves considering two types of con-
straints: (i) Pairwise constraints, such as pairwise(I, (L1, L2), (v1, v2), and (ii) Relations
extracted from an FM. Both types of constraints are considered together during the
constraint propagation and labelling processes. Still, some options, such as introduc-
ing the constraints in the constraint solver or selecting variables to enumerate first
are left to the user, which can improve the performance of the constraint model.

Pairs-ordering heuristics. In our framework, we observed that introducing Pairwise
constraints in different order impacts the performance of the solving process. To exam-
ine this phenomenon more thoroughly, for each pair of features from an FM we defined
three metrics, all making use of the notion of a depth of a feature. For a feature F ,
depth(F ) denotes the number of its ancestors to the root of an FM structure.

(1) depth features: for a given pair of features (F1, F2), depth features represents
depth(F1) + depth(F2). This metric intends to capture the following intuition: as
soon as a feature is selected, its parent feature is automatically selected through
constraint propagation and thus, labelling the children features first may acceler-
ate the solving process;

(2) depth father: for a given pair (F1, F2), depth father represents the depth of the
closest common ancestor of F1 and F2 in an FM structure. This metric captures the
value representing the distance between two features;

(3) common operator: for a given pair (F1, F2), common operator represents the type of
the closest common operator of F1 and F2. We order distinct relations that can be
found in an FM as follows:

mand > and > xor > card > or > opt

Regarding the metric common operator and the proposed ordering, when selecting a
pair to be labelled first, an and relation has higher priority than an opt relation. This is
due to a higher deduction capability of and over opt. For example, in and(R, [A,B])), if
R is set to 1 during the resolution process, then, through constraint propagation, both
A and B are set to 1 as well. This obviously does not happen when an opt operator is
used instead of and. Hence, it is preferable to start labelling the and relations before
the opt relations. The ordering proposed above reflects these priority levels.

Table I shows the values of these three metrics for two pairs of features extracted
from the FM shown in Figure 2. The Pairs-ordering search heuristics prioritise the
selection of pairs using these metrics. The goal of these heuristics is to maximise the
deduction capabilities of the reasoning engine. The metrics can be used individually or
in combination, leading to different Pairs-ordering heuristics. Of course, these metrics
are only indicators and using them while selecting pairs does not guarantee achieving
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the most efficient pair selection process in all cases. However, our experiments show
that using the Pairs-ordering heuristic with these metrics is advantageous for the res-
olution process, as described in Section 6.3.

Variable-selection heuristics. In our framework, we propose two variable-selection
labelling heuristics: left-most and first-fail (provided by the constraint solver).

(1) left most heuristic takes the first element in the list of finite-domain variables, X,
and assigns it the smallest value in its domain, v. Then, the constraint X = v is
added to the constraint storage and propagated through the constraint network. As
a result, other variables may become instantiated. After that, the process selects
the next unbounded element in the list and further iterates until all variables have
been labelled. This strategy implements a static selection of variables to enumerate
first, as the list is set before the constraint solving process has been started;

(2) first fail heuristic selects the element with the smallest domain and assigns it
the smallest value in its domain. This strategy is dynamic as the domain of an
unbounded variable can be reduced by the propagation of the constraint X = v.

Both heuristics use the same domain covering order, from the lowest to the highest
value. In our framework, the ranks of a generated pair (i.e., index variables) are un-
known and correspond to the variables of the constraint system. In this context, trying
to instantiate index variables with the lowest values is preferable, as this will ensure
that the minimum number of configurations is reached faster. This helps to minimise
the number of test configurations required to cover pairwise. In Section 6.3, we eval-
uate the heuristics in order to determine the optimal performance of the constraint
model.

4.5. A time-constrained minimisation problem
The constraint model described above is used to find the minimum number of test
configurations fulfilling pairwise coverage criterion. First, we explain how to formu-
late the problem as an optimisation problem. Afterwards, we show how to solve this
problem using a time-constrained algorithm with various search strategies.

Solving the MVPF problem can be seen as the following question:

Find I1, ..., I4n2 such that f is minimised and ∀i, j in 1..n, ∀k in 1..4n2 such that (k mod 4) = 1

PAIRWISE (Ik, Ci, Cj , (0, 0)), PAIRWISE (Ik+1, Ci, Cj , (0, 1)),

PAIRWISE (Ik+2, Ci, Cj , (1, 0)), PAIRWISE (Ik+3, Ci, Cj , (1, 1)).

where n denotes the number of features, while Ci, Cj represent the columns of the
matrix data structure. In our model, a new pairwise constraint with a new index vari-
able is introduced for each pair of feature values that must be present in the minimized
set of configurations. Since many pairs can be found in a single configuration, the over-
all objective is to minimize the number of distinct values used for indexes. In our pro-
posed approach, we explore the usage of two distinct cost functions, f1 =

∑
k∈1..4n2 Ik

and f2 = Maxk∈1..4n2Ik. Both functions can be used to find the minimum number of
values for the Ik, such that the pairwise coverage criterion is satisfied in the matrix.
Formulating the problem as a generic optimisation problem gives the advantage of us-
ing several optimisation techniques, while keeping a single problem formulation. We
base our approach on the branch and bound method, which consists in exploring fea-
sible solutions while maintaining the cost function as low as possible. Generally, at
each search tree node, branch and bound method evaluates the cost function, prunes
the sub-trees for which the cost will be clearly higher than the current value, and
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Fig. 6. PACOGEN architectural overview

selects the sub-tree that has the lowest cost. There is a timeout value set for the algo-
rithm, after which the minimisation process is automatically stopped. This is a prop-
erty common to anytime algorithms [Zilberstein 1996]. The timeout value provides a
time-controlled way to solve the minimisation problem. This idea is based on the fact
that branch and bound method provides near-optimal solution very quickly and most
of the remaining time is used to prove that no better solution exists. It may, however,
happen that a better solution will be found if more time is allocated, but the proposed
solution is a good compromise in cases where there is a need to control the test gener-
ation/execution time.

5. TOOL IMPLEMENTATION
We implemented our approach for optimal minimisation of valid test configurations
with pairwise-interaction coverage presented in Section 4 in a software prototype tool
called PACOGEN. The tool is mainly developed in Prolog and Java with approximately
7K LOC. We used SICStus Prolog clpfd library to resolve the constraint optimisation
problem, since it is known as one of the best finite-domain constraint solving libraries.
PACOGEN is available as a free open-source tool 7.

In Figure 6 we present a general architecture of PACOGEN and a flow that relates
its core components. PACOGEN comprises four main components:

(1) FM Analyzer transforms a feature model (FM) into a constraint model (CM), as an
abstract syntax tree. This component transforms all cross-tree relations into a set
of constraints specified in the SICStus Prolog concrete syntax. The CM generated
from the FM shown in Figure 2 is presented in Figure 7. FList parameter corre-
sponds to the list of features, while CList represents the relations between fea-
tures. solver method represents the call of constraint solver that triggers the reso-
lution process. The method has 5 parameters. FList is the list of features, CList is
the list of relations between the features, Size is the matrix size. The Size param-

7http://hervieu.info/pacogen.
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eter represents an over-estimated value of the global minimum solution, sought
by our approach. In Section 6.3, we discuss how to initially set this input param-
eter value. The TimeOut parameter allows users to specify the time available for
the minimisation process. In practice, this parameter is selected depending on the
time available for the overall testing process and the time required to test each
configuration. For example, it is pointless to allocate hours for minimizing the set
of test configurations if the time required to test a single configuration is less than
a few seconds. On the contrary, if the time needed to test a configuration is more
than an hour, then spending some more time to further minimise the set of test
configuration is beneficial. Finally, Minimisation parameter allows users to specify
the minimisation function, e.g., f1 or f2. If the parameters are not specified by the
user, default values are used in the tool.

FList = [VCS, CALL, P2P, MULTISITE, 3X1024X576 MAX, 3X720P30 MAX, 1080P30–720P60 MAX,
PREMIUM RESOLUTION, 720P60, 1080P30],

CList = [mand (VCS, [CALL]), opt (VCS, [PREMIUM RESOLUTION]),
xor (CALL, [P2P, MULTISITE],
xor (MULTISITE, [3X1024X576 MAX, 3X720P30 MAX, 1080P30–720P60 MAX]),
or (PREMIUM RESOLUTION, [720P60,1080P30])
require (3X720P30 MAX, PREMIUM RESOLUTION),
require (1080P30–720P60 MAX, PREMIUM RESOLUTION)]

solver (FList, CList, Size, TimeOut, Minimisation).

Note: Logical variables are in upper-case; Constants and predicate calls are in lower-case.

Fig. 7. Constraint model generated for the video conferencing system FM

(2) Consistency checker evaluates the consistency of the constraint model and pro-
duces a constraint matrix data structure. The matrix is of K × N size, where the
number of columns K is the number of features, and the number of rows N is a
user-specified value for the number of configurations. For example, the constrained
matrix generated for the VC software FM is shown in Figure 8. Since each row rep-
resents a valid configuration, PACOGEN automatically generates the constraints
over the variables from a row, forcing the corresponding configuration to satisfy
the constraint model.


V CS1 CALL1 P2P1 MULTISITE1 . . . 720P601 1080P301
V CS2 CALL2 P2P2 MULTISITE2 . . . 720P602 1080P302

...
...

...
...

...
...

...
V CSn CALLn P2Pn MULTISITEn . . . 720P60n 1080P30n


[mand(V CS1, [CALL1]), opt(V CS1, [PREMIUM RESOLUTION1]),
xor(CALL1, [P2P1,MULTISITE1],
xor(MULTISITE1, [3X1024X576MAX1, 3X720P30MAX1, 1080P30–720P60MAX1]),
or(PREMIUM RESOLUTION1, [720P601, 1080P301])
require(3X720P30MAX1, PREMIUM RESOLUTION1),
require(1080P30–720P60MAX1, PREMIUM RESOLUTION1)]
[mand(V CS2, [CALL2]), opt(V CS2, [PREMIUM RESOLUTION2]),
xor(CALL2, [P2P2,MULTISITE2],
xor(MULTISITE2, [3X1024X576MAX2, 3X720P30MAX2, 1080P30–720P60MAX2]),
or(PREMIUM RESOLUTION2, [720P602, 1080P302])
require(3X720P30MAX2, PREMIUM RESOLUTION2),
require(1080P30–720P60MAX2, PREMIUM RESOLUTION2)]

ll

Fig. 8. Resolution matrix and the constraints for the first two rows of the matrix, for the VC system FM
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(3) Pairwise constraint generator takes as input the constraint matrix and adds a
set of global constraints enforcing pairwise coverage. For a given pair of features,
four possible pairs of values are (0, 0), (0, 1), (1, 0), (1, 1). Before adding a pairwise
constraint enforcing the presence of a pair of values in a set of test configurations,
each pair is evaluated for validity. However, to keep the process as efficient as
possible, we have implemented only a partial validity test as follows: after a pair
is selected and labelled, constraint propagation automatically resumes and drives
the process to an early detection of inconsistencies. Using constraint propagation,
PACOGEN can eliminate invalid pairs when the corresponding constraint system
is shown to be unsatisfiable. As explained in Section 4.3, not all invalid pairs can
be removed in this way, as constraint propagation is incomplete in essence. Still,
our experience shows that most of the invalid pairs are removed. This process is
applied to all pairs, so that at the end, in the worst case, only few invalid pairs
are among the pairs to be enforced. For the VC example provided by our indus-
trial partner, 97 pairwise constraints were generated in total, each of them corre-
sponding to a valid pair. Figure 9 shows three examples of pairwise constraints.
In the first example, the pair (1, 1) is enforced at the rank I1 for the pair of fea-
tures (CV CS,CCALL) of the matrix shown in Figure 8. Note that I1 is unknown
at the time of pairwise constraint generation and will be instantiated later by the
constraint resolution process.

PAIRWISE(I1, ((CV CS,CCALL), (1, 1)),

PAIRWISE(I2, ((CV CS,CPREMIMUM RESOLUTION), (1, 1)),

PAIRWISE(I3, ((CV CS,CCPREMIMUM RESOLUTION), (1, 0)), ...

Fig. 9. Created pairwise constraints

(4) Time-constrained pairwise-covering test configuration generator launches
the constraint optimisation process aiming to find the minimum set of test config-
urations that satisfy pairwise feature coverage. The process fills the constraint
matrix by assigning possible values for the pairs of features and for the ranks in
pairwise constraints. At the end, the matrix contains only the valid test configu-
rations that satisfy pairwise feature coverage. The constraint optimisation model
finds the minimum of the cost function in a given contract of time. The set of test
configurations is provided in CSV format.

6. EXPERIMENTAL EVALUATION
In this section, we present the experimental study performed to evaluate PACOGEN.
We first compare PACOGEN with the two related approaches for generating test con-
figurations with pairwise-interaction coverage. Then, we evaluate PACOGEN on a real
case study of large highly-configurable video-conferencing software, provided by our in-
dustrial partner. Finally, we evaluate different PACOGEN search heuristics, in order
to propose a tool configuration that maximises its efficiency. Note that we present the
summary of the experiments, which are available online8. The experiments were per-
formed on a standard 64-bit Linux machine, with 2 CPU Intel Xeon E5520 (quad core),
with 16GB memory.

Research questions. The research questions addressed in this evaluation are:

— RQ1: Can PACOGEN generate a smaller set of test configurations compared with
greedy approaches?

8http://hervieu.info/pacogen.
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— RQ2: Does PACOGEN prove the potential for automating the generation of test
configurations in an industrial context?

— RQ3: Does the capability of configuring PACOGEN for different minimisation prob-
lems improve the effectiveness of the approach?

6.1. Minimizing the number of configurations
To answer RQ1, we designed an experimental study where PACOGEN was compared
with two competitive approaches: SPLCAT [Johansen et al. 2011; 2012b] and MosoPo-
lite [Oster et al. 2010]. The comparison was made in terms of the number of generated
test configurations and generation time.

6.1.1. Experiment subjects. The comparison between PACOGEN and SPLCAT was per-
formed on the FMs from SPLOT repository [Mendonça et al. 2009]. At the time we ran
the experiments, there were 224 FMs available, ranging from 9 to 290 features. The
comparison between PACOGEN and MosoPolite was performed on 7 FMs used by the
author in his evaluations [Oster et al. 2010].

6.1.2. Experiment setup. First we ran SPLCAT and then PACOGEN without the min-
imisation process on 224 FMs from SPLOT. Next, we ran PACOGEN in two itera-
tions: (i) with the minimisation and time-contract set to 4 ∗ ResolutionT ime, where
ResolutionT ime corresponds to the time taken to find the results without minimisa-
tion (in Section 6.3, we explain how to set the time-contract for the minimisation), and
(ii) with a three-minute minimisation. All experiments were run on the same machine.
Finally, MosoPolite tool was not available to reproduce the experiments. Hence, we
ran PACOGEN on 7 FMs that the author used to evaluate his tool and we compared
the results with the experimental results reported in Oster’s publication [Oster et al.
2010].

6.1.3. Results and analysis. Table II shows an excerpt of the experimental results: 17
FMs have been selected to illustrate the most interesting results, while the complete
experimental results are available online. The first three columns of the table show
FM properties: the number of features, the number of valid configurations, and the
number of 2-way combinations (pairs). The next two columns present the number of
valid test configurations, found by SPLCAT and MosoPolite respectively. The next col-
umn presents the number of valid test configurations generated by PACOGEN. The
last two columns of Table II show the difference in the number of test configurations
found by PACOGEN versus SPLCAT and MosoPolite respectively, in percentage. Neg-
ative values indicate that PACOGEN found less configurations than the other tools.
Table III shows the resolution time for PACOGEN and SPLCAT for the same 17 FMs.

The comparison of PACOGEN with SPLCAT on 224 FMs showed that PACOGEN
generated fewer test configurations for 79% of 224 FMs. For only 2% of FMs, SPLCAT
provided better results and for 18% of FMs both tools obtained the same number of
configurations. The results further show that PACOGEN found up to 60% fewer con-
figurations than the SPLCAT. Figure 10 illustrates the difference in the number of test
configurations found by these two tools across 224 FMs. X-axis represents the differ-
ence in the number of test configurations in percentage, grouped in 9 groups. Negative
values on an x-axis mean that PACOGEN generated fewer configurations, while posi-
tive values mean the opposite. Y-axis represents the number of FMs. The group of FMs
labelled with 0% in the figure represents the models where both tools gave the same
results.
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Fig. 10. Difference in the number of configurations found by PACOGEN and SPLCAT (in percentage) for
224 FM. Settings: labelling = first fail; sort; minimisation function 1; matrix size = 200.

In the comparison of PACOGEN with MosoPolite on 7 FMs, PACOGEN obtained up
to 42% fewer test configurations for 6 FMs and the same number of test configurations
as MosoPolite for 1 FM. The results are presented in Table II.

The comparison of PACOGEN and SPLCAT in terms of resolution time shows that
PACOGEN is slower than the other two tools. The average resolution time for PACO-
GEN is 132 074 ms, and the median time is 9 855 ms. The average resolution time for
SPLCAT is 611 ms, while the median time is 326 ms. However, since PACOGEN is
the approach that aims at finding a true optima and not approximations, it is not ap-
propriate to compare generation times. The trade-off between sample size and sample
generation time depends on the context, how expensive configurations are to test. In
this paper, we show that there are contexts where favouring sample size over sample
generation time is practically relevant.

In summary, the results of this experiment show that PACOGEN generates fewer
test configurations than the greedy approaches SPLCAT and MosoPolite.

6.2. Applicability to industrial context
To answer the research question RQ2, we performed the experimental study where
PACOGEN was applied to a large industrial highly-configurable networking software
described in Section 2. We evaluated the practical relevance of PACOGEN in the test-
ing process of our partner by two means: experimentally and through the set of in-
terviews. Relating to the later, we also discuss the challenges raised by the use of
PACOGEN in industrial context and we provide practical ways to address those chal-
lenges.

6.2.1. Experiment setup. We applied PACOGEN to Cisco highly-configurable network-
ing software, making the change to their traditional testing process. Instead of specify-
ing test configurations manually, validation engineers built a feature model and used
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Table III. Comparison of the resolution time in ms for
PACOGEN and SPLCAT.

Model Time [ms]
PACOGEN SPLCAT

Car PL 1240 340
Aircraft 3570 971

Movie App 12040 520
Search Engine 214340 596

Stack PL 198520 273
Connector 1019950 803

Fame 889930 574
Smart Home 198520 974

Inventory 295736 400
Sienna 134297 1 693

Doc generation 120287 734
Web Portal 176080 2 270

Arcrade Game 109009 2 559
Model Transformation 98457 3 165

Coche Ecologico 100336 4 724
UP Estructural 89447 3 320

Printers 78946 15 306

PACOGEN to automate the generation of test configurations. They built the model it-
eratively, through collaborative review iterations and continuous discussions between
the members of the test team, which almost completely assures the correctness of the
model. The feature model of the analysed VC software consisted of 169 features, which
corresponds to more than 109 configurations (valid and invalid). First, we measured
the time to generate test configurations and compared it to the time taken by the engi-
neers to generate the same number of configurations manually. Second, we compared
the number of test configurations generated by PACOGEN for the built FM with the
number of test configurations that the engineers use to test the software modelled by
the FM. Third, we measured a two-way feature coverage for the set of test configu-
rations used by the engineers to test the software modelled by the FM and compared
it with a full two-way feature coverage ensured by PACOGEN. The first two measure-
ments evaluate a practical benefit of PACOGEN’s capability to seek an exact minimum
and to halt with intermediate results, while also automating the process and thus de-
creasing the manual effort of test engineers. The third measurement evaluates the
benefit of pairwise configuration sampling.

In addition, we conducted the set of interviews to evaluate the interest of engineers
in applying PACOGEN in an industrial setting. The subjects consisted of 2 valida-
tion engineers and 3 managers, which had from 2 to 7 years of experience in testing
a video conferencing software. The subjects were selected to involve individuals with
different roles in the company and different level of experience. The interviews were
conducted with the subjects, both separately and in a group. The interviews were semi-
structured and were following a pyramid model, beginning with specific questions and
opening more general questions during the course of the conversation. All subjects
were involved in the experiment of applying PACOGEN in Cisco, to automate the pro-
cess of generating test configurations. In the interviews, the subjects were asked about
their opinion on the potential of PACOGEN for application in practice: decreasing the
time spent generating test configurations, increasing the quality (coverage, validity) of
test data, improving the quality of testing processes by providing a systematic method
for testing feature interactions, helping managers to plan and schedule delivery dead-
lines easier. The purpose of the interviews was to understand the engineers’ perceived
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usefulness of PACOGEN in practice, which is one of the most important factors deter-
mining the success of adopting new technology in an industrial context.

6.2.2. Results and analysis.

Decreased generation time of test configurations. Given the VC software FM, PACO-
GEN generated a minimum set of 35 valid test configurations in 12.3 hours. Time
taken for validation engineers to manually specify test configurations for the same
VC software is approximated by the engineers themselves to 87 hours. These results
show that PACOGEN can decrease the time required by manual test configuration
generation by 85%. Time taken by feature modelling has not been accounted for in
the calculation, since it is one-time effort in most cases, as an FM can be updated and
reused in consecutive test case generation processes.

Reduced number of test configurations. For the VC software FM used in the exper-
iments, PACOGEN obtained a minimum set of 35 valid test configurations (the first
computed solution consisted of 37 test configurations). The set of test configurations
specified manually and used by validation engineers contains 87 valid configurations.
These results show that PACOGEN can reduce the number of test configurations used
in our partner’s testing practice by 60%. Decreased number of test configurations di-
rectly decreases overall testing time, which has significant impact on efficiency in do-
mains where configurations are expensive to test. We use configuration count metric
for measuring overall testing effort, since in our context configurations are roughly
equally expensive. Otherwise, it would be necessary to measure actual testing time.

Complete 2-way feature coverage. In the VC software FM, there are 2625 possible
valid feature pairs. We analysed the manually specified set of test configurations and
extracted 505 feature pairs, which makes 19% of total pairwise feature coverage. These
results indicate a low pairwise feature coverage for the manually generated test con-
figurations, which means that there are many untested 2-way feature interactions. On
the contrary, PACOGEN can guarantee complete 2-way feature coverage of an FM.
However, we did not analyse the link between pairwise-coverage of a test suite and its
effectiveness in detecting errors, since the objective of the test engineers, at that point,
was to achieve pairwise coverage only.

In summary, the results of the experiment show that practical relevance of PACO-
GEN for an industrial testing process is attributed to three characteristics: (i) ability
of finding an exact minimum number of test configurations, thus reducing the time of
test execution, (ii) capability of pairwise configuration sampling, which increases the
confidence of test managers in the validity of tested software, and (iii) test genera-
tion automation, making the testing process more systematic and less prone to human
errors.

The interviews. The interviewees stated that PACOGEN helps them generate tests
faster and improves their confidence in the quality of the tested products, as the gener-
ation process is formal, systematic and offers precise coverage criteria. The used FMs
are constructed iteratively, through reviews and continuous discussions between the
members of the test team, to ensure the correctness of models. Therefore, PACOGEN
helps them assure that the used (generated) test configurations are valid, meaning
that the failures can be only due to incorrect software implementation (and not an in-
valid configuration or a model). Knowing that a minimum-size set of test configuration
(for a specified coverage level) is used in execution is valuable information, because
it assures that resources are not misspent in test execution. The interviewees with
managerial roles supported the idea of defining a time interval for generating test con-
figurations. Very often, in practice, engineers (especially in agile teams) are given a
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fixed time interval for testing. Having a way to specify the time for generating test
configurations would help them meet product release deadlines easier. However, the
interviewees also pointed to two particular issues they found difficult; the estimation
of the: (i) minimisation time, and (ii) matrix size parameters needed to start PACO-
GEN. If the allocated minimisation time is too short, PACOGEN will not be able to
find a solution. On the contrary, if the minimisation time is too long, it will lead to
inefficiency, as PACOGEN will find the solution and then spend the rest of the time
just proving that the found solution is the best one. Similarly, a matrix too small will
prevent PACOGEN from finding the solution, while a matrix too large will increase
the size of the constraint model and will degrade the performance of the algorithm.

In most cases, the product under test is an upgrade of a previously tested product
and validation engineers can reuse the values for the minimisation time and matrix
size from the previous runs. Later, when validation engineers become well experienced
with the tool, they will be able to manually update the previously obtained parameter
values with respect to the modifications in the feature model. Still, to respond to this
objection more formally, we provided several practical ways of estimating these two
parameters before launching PACOGEN (Section 6.3). These practical strategies are
meant to increase the usability of the tool and help validation engineers increase their
productivity.

6.3. PACOGEN best configuration
Launching PACOGEN involves specifying two parameters: the initial size of the con-
straint matrix, and time allocated to the constraint optimisation solver. Optimally se-
lecting values for these parameters can increase the performance of the constraint
optimisation process. We propose several ways to determine the best values for these
parameters.

The simplest approach consists of, first, running PACOGEN without minimisation,
providing us with the approximation of the solution size (matrix size) and the reference
time. These values can then be used to set up the minimisation process. We followed
this dedicated approach in all our experiments and it proved to be an efficient usage
process for PACOGEN. Another approach is to use the existing pairwise testing tools
to estimate the parameters. Also, the values for these parameters can be pre-computed
based on the number of features for a given FM. For example, we propose a function
to compute the time required to find a solution from the number of features of an FM.
The function has been empirically calculated based on the set of 224 feature models,
using polynomial regression of degree 3, as shown in Figure 11. The function can be
used to determine a time contract for the minimisation process by extrapolation. Of
course, it is only formally valid for the FM that we considered in the experiment, but
it seems reasonable to extrapolate the values for other FMs with similar size.

Furthermore, PACOGEN implements several different internal heuristics in or-
der to optimise the constraint solving process: depth father, common operator and
depth features as the pairs-ordering heuristics, first fail and left most as the
variable-selection labelling heuristics, and two cost functions: f1 = Maxk∈1..4n2Ik and
f2 =

∑
k∈1..4n2 Ik. The heuristics are listed in Table IV. We experimentally evaluated

these heuristics on 224 FMs from SPLOT, in order to find the best PACOGEN config-
uration that maximises the tool efficiency. First, we analyse how the pairs-ordering
heuristics affect the number of configurations found by PACOGEN. Second, we eval-
uate the performance of the variable-selection labelling heuristics. Last, we evaluate
two cost functions used in the constrained minimisation process.
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Fig. 11. Minimisation time estimation

Table IV. PACOGEN internal heuristics

Sort heuristics Labelling heuristics Minimisation cost functions
depth father first fail f1 = Maxk∈1..4n2Ik
depth features left most f2 =

∑
k∈1..4n2 Ik

common operator

Table V. Pairs-ordering heuristics evaluation. Settings: number of FM = 224; labelling = first fail; no minimisation;
matrix size = 200.

Heuristic common operator depth features depth father no sort
Average number of configurations 12.93 13.12 12.82 13.427

6.3.1. Pairs-ordering heuristics. In this experiment, we evaluated the three pairs-
ordering heuristics (sort heuristics) on 224 FMs, to sense which one gives the smallest
number of test configurations. For each considered FM, we fixed the labelling heuris-
tic to first fail and ran the process without minimisation, while changing the three
pairs-ordering heuristics. The results for all 224 FMs were compared with the results
obtained when PACOGEN is run without sorting. Table V shows the average number
of test configurations computed for the three pairs-ordering heuristics for 224 FMs and
the case without sorting. The results show that sorting allows us to generate up to 30%
fewer test configurations than if no sorting is used (this result was obtained for 28% of
224 FMs). Further, comparing the sorting heuristics individually, the results show that
the depth father heuristic gives the smallest number of test configurations, followed
by the common operator. The worst performance was observed for the depth features
heuristics.

6.3.2. Variable-selection heuristics. We evaluated two variable-selection heuristics on 224
FMs, in terms of their ability to minimise the number of test configurations. For each
FM, we fixed the pairs-ordering heuristic to depth father and ran the process without
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Table VI. Labelling heuristic evaluation. Settings:
number of FM = 224; sort = depth father; no min-
imisation; matrix size = 200.

Model first fail left most
Aircraft PL 9 9

Arcade game 13 35
Car PL 6 7

Coche Ecologico 90 93
Connector PL 14 14

Doc generation 12 18
Fame DBMS 10 10

Inventory 12 14
Model Trans. 23 49
Movie App PL 6 6
Search Engine 11 13

Sienna 20 22
Smart Home 11 18

Stack PL 9 14
Web Portal 15 20

minimisation, while we were changing the labelling heuristic. The results show that
the first fail heuristic consistently outperforms the left most heuristic. For 83% of
the FMs, the first fail heuristic provided up to 73% fewer configurations. For 17% of
the FMs, these two metrics obtained the same number of configurations. The results
for 15 FMs are shown in Table VI. We explain the better performance of the first fail
heuristic by its dynamic variable selection. This heuristic examines the domains of all
unlabelled variables before making the selection, and then fills the matrix with the
most constraint-sensitive pairs first.

6.3.3. Cost-functions. In this experiment, we evaluated how the cost-functions f1 and
f2 impact the performance of the minimisation process. The evaluation was performed
on 224 FMs. For each FM, we fixed the pairs-ordering heuristic to depth father and the
labelling heuristic to first fail, while we were changing the cost functions. The overall
results show that using the cost function f1 gives from 31% to 46% fewer configurations
compared with using the cost function f2.

Figure 12 shows the comparison of the cost functions f1 and f2 on the Applications
FM from SPLOT. X-axis represents time in seconds, while the Y-axis represents the
number of remaining pairs that have to be set in the matrix in order to cover all feature
interactions pairwise. For this FM, there are 1131 pairs initially. The solution of the
constraint optimisation problem is found when the number of remaining feature pairs
reaches 0. Figure 12 shows that PACOGEN found 9 different solutions using the cost
function f1, the smallest solution with 8 test configurations. Using the cost function
f2, PACOGEN found 2 solutions, the smallest with 16 configurations. The shape of the
curves illustrates the backtracking used in the labelling process.

From this experiment, we concluded that the cost function f1 performs better in the
minimisation process, compared to the cost function f2.

PACOGEN best configuration. Based on the experiments discussed above, we pro-
pose the following PACOGEN configuration: depth father as a pairs-orderings heuris-
tics, first fail as a variable-selection heuristic, and f1 as a cost function. Using a
PACOGEN methodology with these parameter values provides the most efficient us-
age of the tool in practice.
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Fig. 12. Performance of minimisation for the Applications feature model using: (a) cost function f1, and (b)
cost function f2.

7. THREATS TO VALIDITY
Combinatorial pairwise testing can be helpful to decrease the effort of testing, but at
the same time it can weaken the error-detection capability of a test suite, comparing
to higher interaction strength techniques. It can bring false confidence in the quality
of tested software, since it only protected against pairwise software errors. In this
paper, we do not advocate unconditional usage of pairwise testing in practice. The
benefit of pairwise testing is clearly context-dependent. Our motivation for the work on
pairwise testing comes from our observation of the state of the practice. Our experience
in working with industry shows that there are cases where approaches to generating
tests are still mainly manual and unsystematic, with no strict quality requirements.
Our experience also shows that in almost all cases, test managers are motivated to cut
down testing costs. In combination, these two arguments produce a reasoned basis for
applying pairwise testing.

PACOGEN time-out policy represents a capability of a tool to continue looking for a
minimum set of configurations after the first solution has been found, until a timeout
occurs. However, if the allocated timeout is too short, PACOGEN will produce subopti-
mal solution or, in a worst case, it will not be able to find a solution. On the other hand,
a timeout too long will increase the size of the constraint model and will degrade the
performance of the algorithm. Practising PACOGEN with feature models with differ-
ent properties (e.g. size, constraints) will enable more reliable estimate of a timeout
value.

8. CONCLUSIONS
Testing highly-configurable software is constrained by various factors, such as large
configuration space or multiple dependencies between configuration elements that can
make the generation of test configurations an inefficient process. In this paper, we
propose a method and tool PACOGEN that helps validation engineers to manage these
factors in automated, scalable and efficient manner. We model software variability
using a feature model and specify the dependencies between features of the model.
From the feature model, using the constraint programming techniques, our approach
generates the exact minimum number of valid test configurations satisfying 2-way
feature coverage.

We experimentally validated PACOGEN by comparing to the existing approaches
and by applying it to an industrial context. The experiments reveal that PACOGEN
outperforms the existing greedy approaches in minimizing the number of test configu-
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rations. In industrial application, PACOGEN proved to decrease the time required by
validation engineers in manual configuration by 85%, increasing the pairwise feature
coverage, compared with the manually specified test set. Validation engineers eval-
uated the time-aware functionality of PACOGEN as beneficial, stating that it helps
them to control and manage delivery deadlines easier.

In our experiments, we have observed that PACOGEN is less time-effective than the
competing approaches, SPLCAT and MosoPolite, in finding the minimum set of test
configurations. In fact, unlike the other two approaches, PACOGEN uses a constraint
model where variables are closely linked together with constraints, and special con-
straints are used to enforce pairwise coverage. As a consequence, setting up a value
for a given variable triggers numerous constraint propagations and value-assignment
processes. However, PACOGEN often returns the true minimum solution, which is one
of its main advantages over the other two approaches. This capability of PACOGEN
is greatly useful when testing a configuration takes a lot of time and therefore it is
important to generate as few configurations as possible. PACOGEN is also well suited
to testing domains where variability models can be built early in the development pro-
cess, so that longer test data generation time has low impact on the testing process.

In future work, first, we plan to extend PACOGEN to N-wise feature coverage, al-
lowing the generation of test configurations with higher or lower interaction strength
(e.g., N = 3 and N = 1). This involves the development of an algorithm to generate N-
tuples in addition to a special additional constraint to enforce the coverage of N-wise
interactions. Second, we plan to analyse the correlation between pairwise-coverage
and error-detection effectiveness of a test suite. Third, we plan to integrate PACOGEN
with the industry-strength variability management technology we are currently de-
veloping. We envision to fully integrate PACOGEN in our industrial partner’s testing
framework that runs in a continuous integration environment. However, this process
is challenging, as it requires not only technical adoption, but also organisational and
cultural changes at different levels in the company.
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