
HAL Id: hal-01353205
https://hal.archives-ouvertes.fr/hal-01353205

Submitted on 10 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering technique for conceptual clusters
Brice Govin, Arnaud Monegier Du Sorbier, Nicolas Anquetil, Stéphane

Ducasse

To cite this version:
Brice Govin, Arnaud Monegier Du Sorbier, Nicolas Anquetil, Stéphane Ducasse. Clustering tech-
nique for conceptual clusters. IWST’16 International Workshop on Smalltalk Technologies, Aug 2016,
Prague, Czech Republic. �10.1145/2991041.2991052�. �hal-01353205�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49351081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01353205
https://hal.archives-ouvertes.fr

banner above paper title

Clustering technique for conceptual clusters

Brice Govin1,2

Arnaud Monegier du Sorbier1

1Thales Air Systems
{firstname.lastname}@thalesgroup.com

Nicolas Anquetil2 Stéphane Ducasse2

2Univ. Lille, CNRS, Inria, Centrale Lille,
UMR 9189 - CRIStAL,
F-59000 Lille, France

{firstname.lastname}@inria.fr

Abstract
Clustering aims to classify elements into groups called
classes or clusters. Clustering is used in reverse-engineering
to help to understand legacy software. It is also a tech-
nic used in re-engineering to propose gatherings of
software entities to engineers who can then accept them
or not. This paper presents a Pharo implementation of
an iterative and semi-automatic method for clustering.
Our method proposes, to an end-user, clusters that are
based on domain information and structural informa-
tion. The method presented in this paper has been ap-
plied in an industrial project of architecture migration.
We show that this method helps engineers to cluster
software elements into domain concepts. The cluster-
ing gives a result of 56% of precision and 79% of re-
call after the automated part in a high level clustering.
A deeper clustering gives a result of 51% of precision
and 52% of recall.

Keywords Clustering, iterative approach

1. Introduction
Research has shown that understanding and/or refac-
toring a large legacy software are fastidious tasks.
Since the early stages of reverse-engineering and re-
engineering research, scientists have provided solu-
tions to help engineers in such tasks. One of the many
existing methods to ease reverse-engineers and re-
engineers work is clustering.

[Copyright notice will appear here once ’preprint’ option is removed.]

Clustering is a method that aims to classify elements
according to a set of new elements called classes. It
is used in computer science to simplify the representa-
tion of a software into a manually manipulable set of
classes. Basically, clustering gathers software elements
(e.g. files or packages or functions) into modules that
are relevant for software engineers[1].

Such a gathering enables engineers to get an overview
of the existing software and to focus on the understand-
ing of one cohesive set of elements at a time instead
of the entire software. It also enables them to under-
stand separately each set of software elements and then
to dispatch more easily the tasks to several engineers.
However, defining what is “relevant” for a software en-
gineer strongly differs from software to software (de-
pending on the producer of the software or the soft-
ware team that has developed the software, for exam-
ple). Moreover, clustering a software according to the
libraries it uses or according to the concepts it uses
is very different. Clustering’s goal is another variation
point on what is “relevant” for a software engineers.
For instance, when the goal of a project is to delete
the coupling to a library, clustering aims to restructure
the physical software architecture. When the goal of a
project is to gather elements into concepts, clustering
aims to restructure the logical software architecture.
Clustering techniques are slightly different whether the
goal is to restructure the physical or the logical archi-
tecture of a software.

This paper presents an iterative and semi-automatic
clustering method for clustering software elements at
different hierarchical levels according to domain con-
cepts. Our method is based on an extended version of
Moose [7] for the Ada programming language. This
method has been applied on a large legacy software in
an industrial project of architecture migration in order

short description of paper 1 2016/5/22

to gather software elements for refactoring. Section 2
presents existing works on clustering techniques. Sec-
tion 3 presents our clustering method. The next two
sections present the application of our method on the
industrial project and the results obtained. Section 6
summarises this paper and presents future work.

2. Existing Clustering Techniques
Clustering is a method that aims to classify elements
according to a set of new elements called classes. It
enables the split of a large set of elements into groups of
similar objects in order to facilitate the understanding
of this large set [2].

Clustering techniques have been categorised [11]
into three main classes according to the kind of in-
formation used by the clustering techniques: domain-
based model approaches; dataflow-based approaches;
structure-based approaches. Structure-based approaches
are split into four subcategories: connection-based ;
metric-based; graph-based; concept-based. This classi-
fication is close to the one presented by Canfora et al.
[4] except that Canfora et al. put domain-based model
approaches, dataflow-based approaches and the sub-
categories of structure-based approaches at the same
level.

Koschke and Girard [10] used a connection-based
approach with a dominance analysis [5] over a graph
between variables and what they called routines (a pro-
cedure or a function). Dominance analysis is based on
the connections between nodes. This method enables
the finding of subprogram clusters that are consistent
according to the variables they are using. Clusters en-
capsulate subprogram with the variables they are using
to create components.

Canfora and Cimitile present a clustering approach
based on a metric [3]. Their metric uses the number of
connections in a sub-graph and the fan-in and fan-out of
an element. Their method consists in using this metric
over the relationships between variables and routines
to gather routines and variables into objects (a collec-
tion of software elements). The output of this method
is similar to the one of Koschke and Girard but the two
methods differs on how they decide the gathering, re-
spectively a metric and a dominance analysis.

Dunn and Knight describe a tool [8] meant to help
engineers identify software elements that are candi-
dates for a reuse library. Their tool is based on a
graph representation of the source code. They navigate

through the whole graph to cluster elements according
to a set of rules, that come from the design knowledge
of the engineers. Engineers can then assess about the
pertinence of the clusters and keep them or not.

Lindig and Snelting proposed an approach [12]
where legacy code is modularised according to a math-
ematical concept analysis. They construct a concept
lattice thanks to the relations between procedures and
variables and use this lattice to propose clusters (called
“modules”). They claim that the concept lattices can be
used to have cohesion and coupling between the clus-
ter candidates. Other papers [6, 9, 13] have shown the
usefulness of concept-based approaches for clustering.

3. The Iterative Clustering Method
The clustering method proposed in this paper makes the
strong hypothesis that the number of clusters and their
hierarchy are known by the engineers. This hypothesis
comes from the fact that when a reverse-engineering
or re-engineering task starts, engineers have a general
idea of the solution they want. Given that fact, the pro-
posed method considers domain information from the
engineers to compute a clustering at different hierar-
chical level of software elements. To do so, the pro-
posed method is split into iterations, which instantiates
a generic iteration.

Section 3.1 details the generic iteration used in our
method. Section 3.2 discusses the hypothesis we made
and how the proposed method is placed on the categori-
sation of clustering approaches[4, 11].

3.1 Generic Iteration of the Proposed Method
An iteration of our method consists in computing a
clustering at a certain level. Before starting the clus-
tering, the following points have to be defined:

i. Elements to be clustered (e.g. files, packages, func-
tions and variables or types and functions...)

ii. Connections between elements defined previously
(e.g. imports between packages...)

iii. A function for deciding whether an element is
allocated to a certain cluster or not

These points are the main characteristics of a spe-
cific iteration and can be viewed as the variations points
between the iterations. They lead to run the clustering
for an iteration as followed:

short description of paper 2 2016/5/22

Graph Extraction: A graph is extracted from the
source code. In this graph, nodes are elements of
i and edges are the connections of ii.

Clusters Kernels Selection: For each cluster, engi-
neers have to define a set of elements of i as the
kernel of a cluster. Elements of the graph are crys-
tallised around this cluster kernel. This selection re-
mains at the discretion of the engineers and two
different selections will lead to two different cluster-
ings. Kernels’ selection can be automated if it lies on
structural information (e.g. a naming convention).

Connections Navigation: From each kernel, the graph
extracted is navigated through the connexions de-
fined previously. This step consists in selecting the
target of an outgoing connexion.

Allocation Decision: For each element selected by the
previous step, a decision is made on whether the el-
ement is allocated to the cluster of the kernel from
where the navigation has started. The function de-
fined in iii is applied to decide the allocation. This
function can be based on a metric or on other rel-
evant information such as if the element is named
according to a given naming convention. For all the
newly allocated elements, the connections naviga-
tion step and the allocation decision step are recur-
sively performed until reaching a breakpoint.

Breakpoint: The iteration ends when all elements that
can be navigated from the chosen kernel have been
navigated. It means that for each kernel, navigated
elements have to be memorised.

At the end of an iteration, conflicts can occur in
the elements’ allocation. Conflicts are of two kinds:
a multi-allocated element or a non-allocated element.
A multi-allocated element is an element that is al-
located to several clusters while a non-allocated ele-
ment is an element that is not allocated to any cluster.
Multi-allocation conflict is due to the allocation deci-
sion function not considering previous allocation of an
element as depicted in figure 1. Non-allocation conflict
is due to either the allocation decision function putting
aside an element every time for some reason or to the
fact that the kernel elements might not be a root of the
extracted graph as depicted in figure 1.

In such cases, a conflict resolution is required to fin-
ish the clustering of an iteration. This conflict resolu-
tion can be automated if a method for conflict resolu-

Figure 1. Example of allocation conflicts that may
occur (each kernel element is associated to a different
cluster)

tion has been defined earlier but it is optional. If no
method has been defined for conflict resolution, it has
to be done manually by the engineers.

3.2 Discussion About the Proposed Method
Description of the generic iteration of our method, in
section 3.1, highlights points that should be discussed.

First, the required definitions i, ii and iii come from
a study on our method and others clustering methods.
This study is not a systematic review of all clustering
methods and, thus, a systematic review should be done
to prove that point. Nonetheless, we believe that at least
i and ii are two required points to define before starting
a clustering approach (unless the chosen clustering ap-
proach already defines that for the user). Moreover, our
method differs from the other methods we have found
because we do not fix i and ii.

Second, the optional definition of a function for con-
flict resolution differs also from other clustering meth-
ods found in literature. Methods in literature do not
consider a potential function for conflict resolution be-
cause the clustering methods cannot allocate a software
element to several clusters. We choose to allow multi-
allocation of software elements into clusters because, in

short description of paper 3 2016/5/22

a re-engineering task, it can be decided that software el-
ements will be reworked. Moreover, we do not believe
that conceptual clusters can be completely found auto-
matically but rather have to be completed and improved
by a domain expert. A multi-allocation can then orient
the choice of the domain expert and increase their pro-
ductivity.

4. Application of our Method on an
Industrial Project

We applied our method in the scope of an industrial
project of architecture migration. This project aims to
refactor an entire legacy software system written in Ada
95. Table 1 summarises structural characteristics about
the legacy software.

Table 1. Main structural characteristics of the legacy
software to which our method is applied (Variables are
global variables)
Programming
language

#
kLoC

#Packages #Subprograms #Variables

Ada 95 324 1537 14650 15362

It is important that the reader roughly understands
how the Ada programming language is constructed for
the rest of this section. The Ada programming lan-
guage, in its 95 form, is a procedural language, close
to C, that is constructed as follows: files contain pack-
ages or subprograms; packages contain packages, sub-
programs, types and/or variables ; subprograms contain
packages, subprograms, types and/or variables. Sub-
programs are functions and procedures. Packages and
subprograms are the only Ada entities with a behaviour
while types are the skeleton of a data and variables are
the data.

In the legacy software presented in table 1, pack-
ages are the highest container elements in the con-
tainment hierarchy of the software and subprograms
are contained within packages. Applying our clustering
method on this software aims to cluster subprograms
under a hierarchy of clusters. To have such a hierarchy
of clusters, we instantiate two times the generic iter-
ation described in section 3.1. The two iterations are
described in the next two sections.

4.1 First Instance of the Generic Iteration on the
Legacy Software

An instance of a generic iteration requires to define i, ii
and iii. For the first iteration these points are defined as
follows:

i. Elements to be clustered are packages

ii. Connections between elements are imported pack-
ages

iii. The function of allocation decision is that if the
importing package uses the imported package then
the imported package is allocated to the cluster of
the importing package

The definition of ii means that if a package A imports a
package B then A has a connection directed to B. The
definition of iii means that if package B is imported by
package A, B is allocated to the same cluster as A only
if A accesses a variable declared in B, A references a
type declared in B or calls a subprogram declared in B.
Concretely, figure 2 gives an example where package A
imports package C but does not use any of C’s children
(variables, types or subprograms). This function of al-

Figure 2. Example of a package imported but not used

location decision enables the selection only packages
that are used, such as package B in figure 2 No conflict
resolution function is defined for this iteration.

After these definitions, the instantiation of the generic
iteration is applied to the set of packages of the appli-
cation. The clusters kernels are selected according to a
naming convention in the legacy software. Each pack-

short description of paper 4 2016/5/22

age respecting this naming convention is a kernel for
one cluster; hence, the packages have to be clustered
into 44 clusters. The resulting clustering is compared
with a clustering done manually by engineers and rep-
resented by a hierarchy of folders. To compare the clus-
tering, Anquetil and Lethbridge define the intra-pairs
as a bidirectional connection between elements of a
same cluster [1]. The intra-pairs resulting from the first
instance of the generic iteration is compared in terms of
precision and recall with the intra-pairs of the manual
clustering. The results are summarised and commented
in section 5.

4.2 Second Instance of the Generic Iteration on
the Legacy Software

This iteration takes place in the context of one cluster
resulting from the first iteration. The goal of this second
iteration is to cluster a special subset of subprograms of
the application. Then, as for the first instance, required
points of section 3.1 have to be defined for this itera-
tion.

i. Elements to be clustered are subprograms contained
in packages that are allocated to a given cluster

ii. Connections between elements are calls between
subprograms

iii. The function of allocation decision is that if the
number of common used variables or types between
two subprograms are greater than a given threshold
then the two subprograms are allocated to the same
cluster

The threshold used in iii is defined subjectively, in our
case we used a threshold of 2. No conflict resolution
function is defined for this iteration.

Then this instance of the generic iteration is applied
to the set of subprograms of i. Clusters kernels are
selected amongst the roots of the dependency graph
and according to a naming convention. The resulting
clustering is compared with a clustering done manually
by engineers. This manual clustering is expressed in
a file as a configuration. The comparison is done as
described in section 4.1in terms of precision and recall;
and results are summarised in section 5.

5. Results of the Application of our Method
We have summarised the results of the two instances of
the generic iteration in Table 2.

Table 2. Results of our method on an industrial project

Precision Recall
1st instance of generic iteration 56% 79%
2nd instance of generic iteration 51% 52%

To avoid error combination, the second instance of
the generic iteration is performed from a cluster given
by the oracle. It means that if the second instance is
performed on a wrong cluster resulting from the first
instance, precision and recall can decrease.

We conducted a survey amongst the engineers and
architects of the industrial project in order to know
what could be the satisfaction threshold for the preci-
sion and recall. Engineers and architects consider that
a precision and recall greater than 50% is enough for
this experiment. They stated that their results are not
the absolute truth and they consider that a cluster dif-
ferent from theirs can be good as well. Nonetheless, as
explained in section 4.1 and 4.2, we consider their re-
sults as our oracle.

Recall between first and second instance of the
generic iteration goes from 76% to 52%. This decrease
can be explained by the fact that the clustering ora-
cle results from a semantic analysis of the functions.
On the contrary, the automated clustering results from
a structural analysis of the functions (function calls
and variable uses). Although the value of the recall is
greater than the given threshold of 50%, the decrease
can also be explained by the definition of the allocation
decision function. A function of allocation decision that
is better defined could increase the recall of the second
instance of the generic iteration.

6. Conclusions and Future Work
Clustering is a technique that enables the gathering of
elements into new ones. This technique is used in ev-
eryday life to understand and find information more
easily. It is also mainly used in reverse engineering of
software application to get a summarised view of an
application. However, automatic clustering into seman-
tical clusters is still a challenge.

We proposed in this paper a clustering approach for
software application that is semi-automatic and that
gives semantical clusters. Our approach is iterative and
is based on a generic iteration that can be adapted to
deeply cluster software elements. Adaptation of the

short description of paper 5 2016/5/22

generic iteration is based on i, ii and iii: definition of the
elements to cluster, how to navigate and how to allocate
the elements. Our approach differs from the existing
ones on the fact that we do not consider the clustering
to be fully automated. We strongly believe that seman-
tical clustering has to be done by including engineers
and their knowledge of the application in the process.
We applied our approach on a large legacy system in
the context of an industrial project of architecture mi-
gration. This application consists of running two differ-
ent instances of the generic iteration of our method on
the legacy software system. Then results of our method
are compared with the ones obtained by engineers of
the company which owns the software. Results of the
two instances are satisfying according to the engineers
and according to the precision and recall rate we obtain.

Although recall and precision are still greater than
the threshold given by the engineers, it could be im-
proved. We plan on the future to improve the precision
and recall by tuning the function that decides on the al-
location of a software element. Another improvement
track for the future is to provide tools to the engineers
to the engineers in order to analyse the resulting cluster-
ing. Therefore, these analysis tools have to be defined
and developed. A last lead for future works is to provide
our method as a working tool for a software engineers
team and check whether this method improves indus-
trial reverse engineering and re-engineering process.

Acknowledgments
This work was supported by Thales and Ministry of
Higher Education and Research, Nord-Pas de Calais
Regional Council, CPER Nord-Pas de Calais/FEDER
DATA Advanced data science and technologies 2015-
2020.

References
[1] N. Anquetil and T. Lethbridge. Experiments with Clus-

tering as a Software Remodularization Method. In Pro-
ceedings of Working Conference on Reverse Engineer-
ing (WCRE’99), pages 235–255, 1999. ISBN 0-7695-
0303-9. doi: 10.1109/WCRE.1999.806964.

[2] P. Berkhin. A survey of clustering data mining tech-
niques. In Grouping multidimensional data, pages 25–
71. Springer, 2006.

[3] G. Canfora, A. Cimitile, and M. Munro. An im-
proved algorithm for identifying objects in code. Softw.
Pract. Exper., 26(1):25–48, 1996. ISSN 0038-0644.

doi: 10.1002/(SICI)1097-024X(199601)26:1¡25::AID-
SPE994¿3.3.CO;2-K.

[4] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di
Lucca. A Case Study of Applying an Eclectic Approach
to Identify Objects in Code. In Proceedings of IWPC
’99 (7th International Workshop on Program Compre-
hension), pages 136–143. IEEE, IEEE Computer Soci-
ety, May 1999.

[5] A. Cimitile and G. Visaggio. Software salvaging and
the call dominance tree. Journal of Systems and Soft-
ware, 28:117–127, 1995.

[6] A. Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. In Proceedings of ICSE
’99 (21st International Conference on Software Engi-
neering), pages 246–255. ACM Press, 1999.

[7] S. Ducasse, M. Lanza, and S. Tichelaar. Moose:
an Extensible Language-Independent Environ-
ment for Reengineering Object-Oriented Sys-
tems. In Proceedings of the 2nd International
Symposium on Constructing Software Engi-
neering Tools, CoSET ’00, June 2000. URL
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf.

[8] M. F. Dunn and J. C. Knight. Automating the detec-
tion of reusable parts in existing software. In Proceed-
ings of the 15th international conference on Software
Engineering, pages 381–390. IEEE Computer Society
Press, 1993.

[9] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE Computer, 29(3):210–
224, Mar. 2003.

[10] J.-F. Girard and R. Koschke. Finding components in
a hierarchy of modules: a step towards architectural
understanding. In ICSM. IEEE Press, 1997.

[11] R. Koschke. An incremental semi-automatic method
for component recovery. In Working Conference
on Reverse Engineering, pages 256–, 1999. URL
http://citeseer.nj.nec.com/koschke99incremental.html.

[12] C. Lindig and G. Snelting. Assessing modular structure
of legacy code based on mathematical concept analysis.
In Proceedings of the International Conference on Soft-
ware Engineering (ICSE 97), pages 349–359, Boston,
1997.

[13] M. Siff and T. Reps. Identifying modules via concept
analysis. Transactions on Software Engineering, 25(6):
749–768, Nov. 1999.

short description of paper 6 2016/5/22

