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Abstract—We present a new fault localization algorithm, called
Vautrin, built on an approximation of causality based on call
graphs. The approximation of causality is done using software
mutants. The key idea is that if a mutant is killed by a test,
certain call graph edges within a path between the mutation
point and the failing test are likely causal. We evaluate our
approach on the fault localization benchmark by Steimann et
al. totaling 5,836 faults. The causal graphs are extracted from
88,732 nodes connected by 119,531 edges. Vautrin improves the
fault localization effectiveness for all subjects of the benchmark.
Considering the wasted effort at the method level, a classical fault
localization evaluation metric, the improvement ranges from 3%
to 55%, with an average improvement of 14%.

I. INTRODUCTION

Fault localization is the process of identifying the elements
of software that are faulty, i.e. elements that are responsible of
a bug. A classical way of stating the fault localization problem
is that the bug is reproduced and asserted by a failing test
case, and the goal is to predict the function that contains the
buggy code. Apart from small and contrived examples, fault
localization is not an error-less, fully analytic process. In a real
software, fault localization does not diagnose faulty elements
with certainty, it only predicts “suspicious elements” for which
there are pieces of evidence that they may be faulty, and hence
fault localization gives approximate and imperfect results.

In essence, the fault localization process tries to capture
causality relationships between code elements [1], [2]. Indeed,
early works in fault localization were based on program
slices [3], which are refined versions of the most obvious
causal relationship: the bug must lie somewhere in the code
that has been executed. Spectrum-based fault localization is
also causal to a certain extent, but with a really strong
approximation: the causal relations are only captured by the
fact that an element is covered by passing or failing test cases.
That is, fault localization is only an approximation of the true
cause-effect chain of error propagation that happens at run
time. To our knowledge, only Baah et al. [1] and Shu et al. [2]
have set notable milestones using causal inference for better
approximating causal effects in fault localization.

In this paper, we propose a novel approximation of causality
for fault localization. Our insight is that call graphs are also
approximations of cause-effect chains: if A calls B, a bug in
B might result in a buggy output for A. We introduce Vautrin,
a new fault localization algorithm that takes into account
both call graphs and program spectra (i.e. execution traces of

passing and failing tests [4]) to identify suspicious elements.
Vautrin works in two phases: a “causal graph inference phase”
during which mutants are used to track causality in call graphs.
The idea is that if a mutant is killed by a test, there must be a
path in the call graph between the mutation location and the
test, along which the error has likely been propagated. Then,
a “prediction phase” uses the graph-based causal knowledge
to better identify the faulty elements.

To evaluate our algorithm, we consider the fault localization
benchmark by Steimann et al. [5] published at ISSTA’13.
We show that our method-level fault localization algorithm
outperforms the most recent algorithms, including Ochiai [6]
and Naish [7]. The improvement ranges from a minimum of
3% to 55% less methods to consider after fault localization.
Also, we introduce a new evaluation metric which is the
number of perfect predictions, that is, the number of cases
in which the faulty element (a method in our case) is ranked
at the top of the list, i.e. at position #1 in the suspicious list.
Using our new technique, over the whole Steimann’s dataset,
the number of perfect predictions is 2,310 out of 5,836 which
means a percentage of 40% representing an improvement of
14% over the related work.

To sum-up, this paper makes the following contributions:

• a new fault localization algorithm, called Vautrin, that
uses a graph-based approximation of causality for fault
localization;

• an empirical evaluation of Vautrin on 5,386 faults from
the Steimann dataset, showing that Vautrin outperforms
the state-of-the-art, both in terms of wasted effort and
perfect fault localization prediction;

• a publicly-available implementation of our algorithm for
Java.

The paper is structured as follows. In Section II, we present
the concepts used in this paper and we introduce Vautrin,
our fault localization algorithm. In Section III, we present the
research questions under investigation, the empirical protocol
and results, and provide answers to the research questions. In
Section IV, we discuss the threat to validity of our work. In
Section V, we present the related works. Finally, we conclude
in Section VI.



Fig. 1. Example of (a) a call graph, and (b) the causal graph extracted from it using our technique. The causal graph only contains edges for which causal
evidence exists.

II. CONTRIBUTION

We introduce Vautrin, a novel fault localization approach
working at the method level. Vautrin uses a call graph to build
an approximate causal graph.

In this paper, a causal graph is defined as a directed graph
in which nodes are all methods of a program. An edge is
present in the causal graph between m1 and m2 if and only if
there exists evidence that an incorrect state change may happen
when m1 calls m2. The process of determining causal edges
is called causal inference. In this approach, we note that nodes
are never causal per se, only edges can be deemed as causal.
This definition is not exactly that of Bayesian causal graphs [8]
yet shares the same intuition. Our definition is tailored for the
system, Vautrin, that we now present.

A. Introductory Example

Fault Localization is a field of software engineering which
aims at automatically identifying a faulty element in a source
code. A faulty element can be of any granularity (e.g. state-
ment, method, class, etc.). In this paper, we focus on the
method granularity, i.e. we propose a fault localization that
predicts faulty methods. Most fault localization techniques
are spectrum-based techniques where “spectrum” refers to the
behavioral traces of the software when executing the tests [4].
Our technique uses another source of information, the call
graph.

A call graph contains information about the methods and
the way they call each others. Our intuition is that call graphs
are an approximation of causality: if A calls B, a bug in B
might result in a buggy output for A. Thus, Vautrin is built on
the assumption that if two tests fail, the bug might lie at the
intersection of the nodes reachable from both tests. However,
this assumption does not always hold in practice because the
ideal perfect causal graph is not known. A call graph is indeed
only an approximation of cause-effect chains. The figure 1(a)
illustrates a call graph for a simple program composed of 6
methods and 5 tests. Passing tests are nodes with a solid green
border, and failing tests are nodes with a dashed red border.
The faulty method is marked with an exclamation point. We
compute the transitive closure of each failing test t1, t2
and t4, that is the set of nodes reachable from each failing
test. This transitive closure is represented with dashed lines

on the figure. The intersection of the transitive closures gives
a set of three nodes m3, m4, and m6 (marked as plain black
nodes), which contains the faulty method. In this paper, the
methods in the intersection are called the graph suspicious
methods (as opposed to spectrum-suspicious ones which are
nodes determined using a spectrum-based fault localization
algorithm). Conversely, other application nodes are marked
with white nodes and are not suspicious.

In our example, method m2 calls method m5. Let us imagine
that method m5 is a logging method. In such a case, a logging
function is unlikely to propagate a fault as it only prints strings
to a file. Thus, there is a difference between the causality flow
and the method call flow. Some method calls may not alter
the state of the system and thus should not be considered as
causal. Moreover, a test may not call a method at run time.
This occurs when the method invocation is optional, e.g. when
located in a conditional block. In such cases, the causality of
those edges should also be reconsidered. Indeed, the call graph
contains all possible connections that are found by statically
analyzing the source code1. Our idea is to only keep the call
graph edges for which there exist pieces of evidence that they
are causal.

For that purpose, we have a “causal graph inference phase”
which consists in extracting a causal graph from the call graph.
Figure 1(b) illustrates such a causal graph extracted from the
call graph presented in Figure 1(a). This causal graph contains
the edges of the call graph except the ones between m2 and
m5, and between m3 and m6 for which causal evidence does
not exist (according to the process described in Section II-C1).
This extraction process will be explained in Section II-B and
Section II-C1. After the extraction, we observe that the set of
faulty nodes based on graph analysis, contains one less node
and still contains the faulty one.

B. Overview

We propose Vautrin, a new fault localization algorithm
based on call graphs considered under the light of causality.
Vautrin approximates causality by analyzing what happens
between a failing test and a method based on the call graph.

1Some calls may be missed which are not statically observable, such as
those resulting from the use of reflection.



When multiple methods are graph-suspicious, they are ranked
using standard spectrum-based suspiciousness scores.

Vautrin uses a class hierarchy analysis (CHA) static call
graph. This call graph is a directed graph which contains a
node per software method and an edge from a method A to a
method B if somewhere in the body of A, method B is called.
This goes along the same line as the classical definitions as
the one given in Grove et al. [9].

The causality is related to the propagation of an error in
the program. One way to observe the propagation of a fault
is to observe pairs of faults/failing tests: in Vautrin, they are
used to build a causal graph. Our idea is to use mutation
analysis for this. Mutation analysis [10] consists of assessing
test suite quality by applying minor changes to a program
resulting in what are called software mutants. A mutation in
a program can be seen as simulating the insertion of a fault
in the program. Thus, if we introduce a fault somewhere in
the program, we can observe the impacts of this fault on the
test cases. The propagation happens through method calls.
Thus, a path in the call graph between a mutation point and a
failing test is a potential path which has propagated the failure.
Consequently, Vautrin is based on the assumption that mutants
and their execution profiles do contain valuable information
that can be used to approximate the causality. As explained in
Section II-C1, Vautrin uses mutants to extract a causal graph
out of a call graph.

Then, when a fault has to be localized, Vautrin computes
the intersection of the transitive closure of each failing test
according to the call graph. The nodes belonging to this
intersection form the set of “graph-suspicious nodes”. If the
intersection is made of several nodes, Vautrin uses an external
spectrum-based fault localization algorithm to rank them.

C. Algorithms

In this section, we present the two algorithms used by
Vautrin for fault localization.

Vautrin uses software mutants to produce faulty execu-
tions. The mutants must be killed so as to observe (faulty
location, failing test) case pairs. The first algorithm produces
an approximate causal graph out of a call graph. To do so,
Vautrin analyzes faulty executions of the program in order to
identify which edges of the graph may be causal. To that end,
Vautrin makes use of controlled faulty executions for which
mutants involve certain tests to pass, some others to fail. From
that information, Vautrin infers causal relationships, that is
relationships like: given a set of failing tests, a set of passing
tests, and a call graph, then the methods at the origin of the
fault are likely to be this, and that. In Vautrin, edges are tagged
as causal if they are part of a call graph path going from the
failing test to a faulty method.

Once a causal graph has been inferred, the second algo-
rithm is the prediction one: it is used at a production stage.
This algorithm is executed at fault localization time within a
debugging session by a developer. During this phase, Vautrin
takes as input a set of failing tests and produces an ordered
list of suspicious elements. The first element of this list is

Algorithm 1: Building a causal graph from a call graph
by approximating causality with mutants.
Input: G a call graph. I a set of pairs (mutant m, failing

tests per mutant (Tf )).
Output: L: a causal graph

1 begin
2 L← all nodes of G and no edge
3 for each {m,Tf (m)} ∈ I do
4 for each t ∈ Tf (m) do
5 add edges of shortest path from t to m in L

6 return L

the most suspicious method, and the last element is the less
suspicious method.

1) Causal Graph Inference: The algorithm consists in
inducing a causal graph from a call graph. A causal graph
is a call graph which contains only the call graph edges for
which causal evidence exists according to mutation analysis.
This algorithm takes as input a set I of killed software mutants.
Each mutant m ∈ I lies in a method and a set of failing tests
(Tf ) that kills the mutant. If there exists a path between the
mutated method and one of the failing tests in the call graph,
the edges of the path are considered as potentially causal.
Algorithm 1 describes this process.

On line 2, a new graph is created with all the nodes from the
call graph and no edge. On line 3, we loop over each mutant
m. For each failing test t ∈ Tf (m) (line 4), we mark as causal
all edges belonging to the shortest path going from the test to
the mutated node method (line 5). At the end of the process,
L contains the causal graph and is returned (line 6).

To illustrate this, let us explain how one can obtain the graph
in Figure 1(b) starting from Figure 1(a). We assume that a first
mutant in method m3 results in 4 failing test cases: t1, t2,
t3 and t4. The algorithm will result in 4 paths: one from
t1 to m3, a second from t2 to m3, a third from t3 to m3
and a last one from t4 to m3. After processing this mutant,
the causal graph contains 6 causal edges. Let us now imagine
that we generate a second mutant occurring on m4 resulting
in two failing tests: t4 and t5. The graph analysis of this
second mutant results in two paths: the first from t4 to m4
and the second from t5 to m4, this results in adding two more
causal edges. With those two mutations, we obtain the causal
graph shown in Figure 1(b).

The rationale of using the shortest paths is twofold. First, it
is required so that the approach scales to large software (up to
thousands of nodes and edges as shown later in the evaluation).
Second, it reflects the idea that at run time, shortest paths are
more likely to be executed and propagate the error than longer
ones. Moreover, it may be theoretically possible to consider
all the paths, nevertheless it is impossible in practice.

2) Prediction: The prediction happens when a developer
wants to debug a new fault. The prediction algorithm takes as
input a set Tf of failing tests and returns the list of methods



Algorithm 2: Vautrin’s prediction algorithm using a causal
graph L and failing tests Tf to estimate the suspiciousness
of a method.

Input: L a causal graph. Tf the list of failing tests.
Output: I: ranked suspicious nodes

1 begin
2 I ← all nodes of L

/* Compute graph suspiciousness */
3 for each t ∈ Tf do
4 F ← transitive closure from t in L
5 I ← I ∩ {F}
6 S ← compute spectrum suspiciousness
7 sort elements in I according to S
8 return I

ranked according to their suspiciousness. It takes as input
the causal graph, first computes graph-suspiciousness, then
computes spectrum suspiciousness and combines both into a
localization diagnosis. This is given in Algorithm 2.

On line 2, all nodes in L are put into the set I , which means
that by default all nodes are considered as graph-suspicious.
Then, each failing test of the fault under debug is explored
(line 3). For each failing test, we compute the nodes belonging
to the transitive closure from the failing test (line 4). The
resulting set of nodes is intersected with I (line 5). In this
manner, by progressively exploring all failing tests, nodes are
removed from the set I , because they are not considered as
graph-suspicious.

Finally, a standard spectrum-based fault localization algo-
rithm is used to determine the score of each element in I
(line 6). This fault localization algorithm can be any spectrum-
based fault localization algorithm. According to our inves-
tigations, the best fault localization algorithm to use during
prediction phase is the Steimann one [5] (cf. Research Ques-
tion 5); thus, this is the one that is used by default in Vautrin
and that we consider in the evaluation. On line 7, elements
are ordered in descending order according to the spectrum
suspiciousness. The first element is the most suspicious. For
instance, considering again Figure 1(b), one can assume that a
good spectrum-based suspiciousness score ranks m3 as more
suspicious than m4.

Note that I may be empty if the causal graph is disconnected
or incorrect (that is, the approximation of the causality of some
edges is wrong). In such a scenario, Vautrin is not able to
predict anything based on graph suspiciousness. Thus, it uses
a fallback mode in which the scores are computed without
using the causal graph, only using spectrum suspiciousness.
Consequently, Vautrin necessarily gives results that are at least
as good as the one returned by the underlying spectrum fault
localization algorithm. In other words, Vautrin never degrades
the spectrum-based diagnostic if it is already good.

III. EVALUATION

We present the evaluation of Vautrin based on the following
research questions.

Research Question 1 Does Vautrin localize faults with less
wasted effort than the state of the art?

Research Question 2 Does Vautrin give better perfect pre-
dictions than the state of the art?

Research Question 3 What is the execution time cost of fault
localization with Vautrin?

Research Question 4 To what extent does Vautrin fall back
to the traditional, graph-less, fault localization?

Research Question 5 What is the best spectrum metric to
be used with Vautrin?

A. Evaluation Protocol

To evaluate Vautrin, we measure its ability to localize the
source of a fault. To that end, we use a dataset that has been
proposed by Steimann et al. at ISSTA’13 [5], and the empirical
results published therein.

This dataset is based on a set of 10 subject programs.
For each software, a set of mutants has been generated. For
each mutant, a set of tests is executed; some pass, others fail
leading to a “fault”. Then, the question is: which method is
at the origins of the fault? The performance measured by
a fault localization method depends on the set of mutants
being derived from software, and from the set of tests being
executed. Measuring this performance on a single set of
mutants and test nodes is not meaningful as it is not reflecting
the performance of the fault localization method in general,
that is for any set of mutants and for any set of tests. This
is a usual issue faced in machine learning which may be
addressed by performing a cross-validation. In our context,
this consists in partitioning at random the set of data into
10 subsets and repeatedly training the method with all but
one subset, and then measuring its performance on the 10th;
finally, the overall performance of the method is the mean of
these 10 measurements.

For the sake of open science and reproducible research, our
code and experimental data are publicly available on Github2.

1) Evaluation Metrics: In this section, we present the
metrics we use to evaluate our approach. We use the wasted
effort to determine the accuracy of a fault localization algo-
rithm. For each fault, the fault localization algorithm assigns
a suspiciousness score to each method. Let us denote m∗ the
method at the origins of the fault. Then for this fault, the
wasted effort is simply the number of methods that will be
investigated before m∗ is investigated; phrased in other terms,
the wasted effort is the number of methods which score is
larger that the score of m∗.

2https://github.com/v-m/PropagationAnalysis (causal graph inference and
evaluation framework), https://github.com/v-m/PropagationAnalysis-dataset
(dataset)

https://github.com/v-m/PropagationAnalysis
https://github.com/v-m/PropagationAnalysis-dataset


Graph
Program Version LOC #Classes #Tests #Mutants #Nodes #Edges

AC Codec 1.3 2,446 25 188 543 488 825
Daikon 4.6.4 147,153 1,109 157 352 48,689 63,250
Draw2d 3.4.2 22,895 317 89 570 12,298 16,091
Eventbus 1.4 3,572 53 91 577 2,377 2,930
Htmlparser 1.6 21,764 161 600 599 7,905 11,895
Jaxen 1.1.5 12,466 205 695 600 3,171 6,513
Jester 1.37b 1,621 46 64 411 467 645
Jexel 1.0.0b13 1,349 46 335 537 984 1,753
Jparsec 2.0 4,950 122 510 598 5,263 6,723
AC Lang 3.0 18,400 135 1,666 599 6,730 8,906

Total 236,616 2,219 4,395 5,386 88,372 119,531
TABLE I

DESCRIPTIVE STATISTICS OF THE FAULT DATASET USED IN THIS EXPERIMENT. # OF NODES AND EDGES RESPECTIVELY CORRESPOND TO THE NUMBER
OF METHODS AND THE NUMBER OF METHOD CALLS.

Equation (1) defines the wasted effort in a more formal way.
M is the number of methods being considered and S(m∗) is
the score for method m∗.

W (m∗) =

M∑
i=1

1[S(i) < S(m∗)] +

∑M
i=1 1[S(i) = S(m∗)]

2

(1)
The wasted effort estimates the effort for a developer to find

the origin of a fault if he/she considers all suspicious methods
ordered by their suspiciousness score. However, we think this
metric, even if valuable, is not representative of the ability of
a fault localization algorithm to assist fault localization. When
a developer uses a tool to assist him/her to localize a fault,
he/she wants to save time: if he/she gets a list of suspicious
methods, he/she will probably have a look at the first one, but
if this method is not the faulty one, he/she will hardly have a
look to the following method(s).

This is the reason why we use a second evaluation metric
we call the perfect prediction. This metric is the number of
faults for which the wasted effort is zero. In other words, this
metric is the number of faults for which the fault localization
algorithm proposes the faulty method (m∗) at the top of the
list of suspicious elements, at position #1. It corresponds to the
evaluation metric “is in top-k” (used e.g. in [11]) with k = 1.
Formally, the perfect prediction P is given in Equation (2)
with N being the number of faults being considered. An other
evaluation metric is MAP (mean average precision), but it
does not reflect as well as perfect prediction the fact that the
developer builds trust based on the top result.

P =

N∑
f=1

1[Wf = 0] (2)

2) Comparison: We conduct a comparative evaluation.
We consider 5 fault localization algorithms of the lit-
erature: Tarantula[12], Ochiai[6], Zoltar[13], Naish[7] and
Steimann[5]. Tarantula and Ochiai are largely used in the fault
localization literature, e.g. [6], [7], [14]. Thus, for historical
reasons, we consider those fault localization algorithms, even
if they are not among those performing the best. Zoltar, Naish

and Steimann are currently the most accurate fault localization
algorithm. Shu et al. [2] also do method-level fault local-
ization. We considered them for a quantitative comparison,
however, their heavyweight implementation is not available
(we have asked for it). Consequently, we only perform a
qualitative comparison in the related work section.

In the remaining of this section, we present these fault
localization algorithms. When running the software tests T ,
we obtain: Tp the set of passing tests and Tf the set of failing
tests. If we consider an execution from the point of view of a
specific code element e, only a subset of T does actually call
the code element e. Let E be the set of tests which actually
call e. Then, Ep is a subset of Tp made only of passing tests
actually calling e. Ef is a subset of Tf made only of failing
tests actually calling e. N is the set of tests which do not call
e, that is N = T − E, and accordingly Np = Tp − Ep and
Nf = Tf − Ef .

According to these sets, a fault localization algorithm is
used to assign a suspiciousness score to each code element e.
The higher the score, the higher the chance the code element
is faulty. As this suspiciousness is determined using the
spectrum-based fault localization, we refer to it in this paper
as the spectrum suspiciousness. In this paper, we consider the
following suspiciousness metrics: Tarantula which has been
proposed by Jones et al. in 2002 [12]; Ochiai, a biology metric
also used as fault localization algorithm by Abreu et al. [6];
Zoltar which has been proposed by Gonzalez in 2007 [13];
Naish et al. proposed a fault localization algorithm that is
perfect under certain assumptions [7]; and Steimann et al.’s
metric T∗ proposed in 2013 [5].

3) Dataset: We consider the dataset proposed by Steimann
et al. in ISSTA ’13 [5]. Their dataset is made of 10 subject
programs (they call them “probands”) totalling 5386 one-point
mutants. The dataset is composed of execution information
for the non-mutated subject program (i.e. the reference) and
a collection of mutated version of the subject program. It
provides information for each mutated version of the program:
(i) the list of executed tests, (ii) their execution result (passing
or failing), (iii) the list of methods contained in the program,
(iv) the mutation operator if applicable and (v) a list of



Software Tarantula Ochiai Zoltar Naish Steimann Vautrin Improvement
2002 2006 2007 2011 2013 2016

AC Codec 6.01 3.08 2.85 2.86 2.66 1.81 47%
Daikon 142.07 125.22 124.78 149.30 124.65 121.07 3%
Draw2d 35.41 25.26 23.98 34.12 24.01 15.46 55%
Eventbus 17.56 6.16 9.69 50.51 5.99 4.42 36%
Htmlparser 21.59 6.11 5.13 21.20 4.82 3.30 46%
Jaxen 49.62 18.29 9.27 12.00 11.30 7.59 49%
Jester 4.60 2.76 2.55 2.34 2.38 1.57 52%
Jexel 15.96 9.06 7.06 6.69 6.64 5.65 18%
Jparsec 15.62 3.95 3.00 21.90 4.39 3.53 24%
AC Lang 4.87 2.76 2.69 18.10 2.68 2.40 12%

Average 31.33 20.27 19.10 31.90 18.95 16.68 14%
TABLE II

AVERAGE WASTED EFFORT, IN NUMBER OF INSPECTED METHODS, FOR DIFFERENT FAULT LOCALIZATION ALGORITHMS OVER THE BENCHMARK OF [5].
THE LOWER, THE BETTER. THE BEST SCORES ARE BOLD-FACED.

methods executed by each test (the method-level spectrum).
We produce the subject program call graph using the soft-

miner tool of our framework. The dataset totals 88,372 nodes
and 119,531 edges. Table I shows the 10 subject programs
under study. The first column is the subject program name,
the second is the considered version, the third is the number
of lines of code3, the fourth is the number of classes for the
subject program, the #Tests column contains the number of
tests in the program, and the #Mutants gives the number of
available one-change mutants (i.e. a mutant where only one
point in the code has been changed). The last two columns
are the call graph information: the number of nodes and the
number of edges which correspond respectively to the number
of methods and the number of method calls. All the programs
are daily used ones and consist in a total of 230,000+ lines of
code and 4,000+ test cases. They can be considered as realistic.

B. Empirical Results

Research Question 1 Does Vautrin localize faults with less
wasted effort than the state of the art?

As presented in Section III-A1, the wasted effort is the num-
ber of wrongly predicted methods returned by the fault local-
ization algorithm before finding the good one. The lower this
value, the better, because it directly relates to the time spent by
a developer to analyze inaccurate results. For instance, if the
wasted effort is 5, this means that a fault localization algorithm
has reported 5 non-faulty methods before reporting the actually
faulty one.

Table II shows the average wasted effort for each subject
program of our dataset4. The first column is the program
name and the second to the sixth column give the average
wasted effort for respectively Tarantula, Ochiai, Zoltar, Naish
and Steimann (the unit is an absolute number of methods to
inspect, because in this paper, we perform fault localization
at the method level). The two last columns are the average

3computed using CLOC (http://cloc.sourceforge.net/)
4the lower the better in general, there may be isolated bugs that are better

localized with one approach even if the average performance over all bugs is
worse

wasted effort with our fault localization algorithm, Vautrin and
the relative improvement obtained using Vautrin compared to
Steimann.

As an example, if we consider the Jaxen subject program,
the faulty method is ranked on average at the 11th position
using Steimann’s fault localization algorithm. For the same
subject program, it is ranked at the 7th position with Vautrin.
From a software engineering point-of-view, this means that a
developer who uses our fault localization algorithm will have
to analyze 3.71 less methods on average if he uses Vautrin’s
fault localization algorithm instead of the Steimann’s one.

First, by comparing existing fault localization algorithm
listed in Table II (column 2-6), on this dataset, the best fault
localization algorithm so far is Steimann: it scores better in 6
cases out of 10. Thus, in the rest of this question, we always
refer to it for comparison, and consider it at “the state-of-
the-art” (we note that this is always qualified with respect
to the dataset under consideration, another system may be
better on another dataset). In all cases, Vautrin improves the
performances of Steimann’s fault localization algorithm as the
wasted effort values are always lower for Vautrin. The lowest
relative improvement is for Daikon which have a wasted effort
of 124.65 methods using Steimann and 121.07 methods using
Vautrin, which represents a relative improvement of only 3%.
The highest relative and absolute improvement is for Draw2d.
Its relative improvement is 55%, with a wasted effort of 24.01
using Steimann and 15.46 using Vautrin. This represents an
absolute improvement of 8.55 methods. In other words, a
developer would not waste his time in uselessly inspecting
8 methods. The only case on which Vautrin has worse results
than one of the other considered fault localization algorithms
is for Jparsec for which the wasted effort goes from 3 using
Zoltar to 3.53 using Vautrin.

Recall that our core intuition is that the spectrum-based
fault localization algorithm misses causal information about
the propagation of a fault in the program. Using our approach
based on call graph enriches the fault localization process with
causal information. Our empirical observations validate this
core intuition. Using a causal graph inferred from the call
graph for filtering out suspicious methods gives better results.

http://cloc.sourceforge.net/


Software #Faults Tarantula Ochiai Zoltar Naish Steimann Vautrin Improvement
2002 2006 2007 2011 2013 2016

AC Codec 543 77 221 228 237 237 251 6%
Daikon 352 27 38 38 39 39 42 8%
Draw2d 570 48 84 85 87 86 106 23%
Eventbus 577 26 131 135 103 148 163 10%
Htmlparser 599 113 193 197 200 204 237 16%
Jaxen 600 121 229 252 257 249 301 21%
Jester 411 30 45 45 49 49 105 114%
Jexel 537 86 293 301 341 331 349 5%
Jparsec 598 69 199 206 216 214 325 52%
AC Lang 599 233 384 392 407 408 431 6%

Total 5,386 830 1,817 1,879 1,936 1,965 2,310 18%
TABLE III

NUMBER OF PERFECT PREDICTIONS FOR DIFFERENT FAULT LOCALIZATION ALGORITHMS (I.E. THE FAULTY METHOD IS RANKED AT TOP). THE HIGHER,
THE BETTER. THE BEST SCORES ARE BOLD-FACED.

ANSWER TO RESEARCH QUESTION 1
On the considered dataset, Vautrin consistently improves the
wasted effort for method-level fault localization, from 3% to
55%, with an average of 14%.

Research Question 2 Does Vautrin give better perfect pre-
dictions than the state of the art?

As presented in Section III-A1, a perfect prediction is a
prediction where the faulty method is ranked at the top, and
is the single method predicted at rank #1 (i.e. has a wasted
effort equal to zero). In such a case, the developer does not
wait a single minute, and the method that he starts to analyze
is the one in which he will write the fix.

Table III reports the number of perfect predictions for
the faults in the dataset (on average of the cross-validation).
The first column is the subject program name, the second
column is the number of fault considered and the third to the
seventh column give the perfect prediction rate for respectively
Tarantula, Ochiai, Zoltar, Naish and Steimann. The two last
columns are the number of perfect predictions with our fault
localization algorithm, Vautrin and the relative improvement
obtained using Vautrin compared to Steimann.

As an example, if we consider the 598 faults for JParsec
subject program in the dataset, there are 214/598 of them
(36%) for which Steimann makes a perfect prediction. For
the same subject program, Vautrin’s perfect predictions are
325/598 cases (54%), which represents a relative improvement
of 52%.

If we observe only the fault localization algorithm under
comparison (and not our technique), we observe that Naish
and Steimann are the two fault localization algorithm with
the highest number of perfect predictions. In 4 cases out of
10 Naish gives the highest number of perfect predictions, in
3 cases out of 10, Steimann does, and in the 3 remaining
cases, both have the same number of perfect predictions.
Now, we compare against Steimann as we have done in
Research Question 1. Thus, the improvement may be slightly
overestimated in cases where Naish reports better perfect

prediction scores than Steimann.
For 10 programs out of 10, Vautrin obtains a higher number

of perfect predictions than using Steimann. The best relative
improvement is for Jester for which the number of perfect
predictions is 49 for Steimann and 105 for Vautrin, which
represents a relative improvement of 114% (more than twice as
many perfect perfections). The smallest relative improvement
is for Jexel which goes from 331 with Steimann to 349 with
Vautrin, that is, an improvement of 5%.

ANSWER TO RESEARCH QUESTION 2
To sum up, Vautrin also achieves the best result according to
the amount of perfect predictions. On the benchmark under
consideration, there are 18% more faults which are perfectly
predicted using our technique.

Research Question 3 What is the execution time cost of fault
localization with Vautrin?

As presented in Section III-A, our approach is composed of
four steps: generating the graph, performing mutation analysis,
inferring the causal graph and predicting faulty elements when
facing a fault. Since we use an existing dataset, we do not have
two important measures. The first is the time needed for the
generation of mutants. The second is the time required for
analyzing the subject program spectrum, i.e. the execution of
tests for obtaining the propagation paths. Those are used to
compute spectrum suspiciousness.

We compute the time cost for all steps but the two cited and
report them in Table IV. The first column is the name of the
subject program. The second column is the time for generating
the call graph. The third column is the time required for
computing causal edges based on mutation results. This time is
for one fold in our setup, i.e. for 90% of the available mutants
(e.g. 488 mutants for codec). The last column is the average
time for predicting the faulty method for one single fault. All
times are expressed in seconds. All experiments were made
on a HP EliteBook 8570w Mobile Workstation, i7-3740QM
quad core, 2.7Ghz, under Arch Linux. As an example, let us
consider Jester: each of the three steps lasts less than one



Offline Online
Graph Causal Inference Graph-Susp.

AC Codec 1s < 1s < 1s
Daikon 27s < 1s < 1s
Draw2d 2s 2s < 1s
Eventbus 2s < 1s < 1s
Htmlparser 2s 6s < 1s
Jaxen 2s 8s < 1s
Jester < 1s < 1s < 1s
Jexel < 1s < 1s < 1s
Jparsec 2s < 1s < 1s
AC Lang 4s < 1s < 1s

Average 4s 2s < 1s
TABLE IV

TIMES (IN SECONDS) REQUIRED FOR EACH STEP OF VAUTRIN FOR WHICH
WE HAVE THE MEASURES. THE MUTATION AND SPECTRUM ANALYSIS

TIME IS NOT REPORTED IN THE BENCHMARK PAPER [5].

second.
If we take a look at the graph generation times, we observe

that the generation of 9 out of 10 graphs takes less than
5 seconds. The only exception is Daikon with the slowest
time: 27 seconds. The average time is 4 seconds. The graph
inference time is generally fast as it takes less than a second
in 7 cases out of 10. In the three remaining cases, it takes up
to 8 seconds. These two phases are meant to be done offline,
for instance every night on a continuous integration server.
This experiment suggests that the graph building phase and the
graph inference phase do not take too long for this scenario.
However, we expect the time for mutation analysis to be much
larger.

Regarding the prediction times, it always takes less than 1
second (with an average time of 45ms). This step is meant
to be done on-the-fly within the development environment. To
this extent, it is acceptable for developers to wait for a couple
of milliseconds to get the fault localization diagnosis.

Considering that the main limitation is the time required
for generating and executing mutants, one may speed up the
mutation generation process using an alternative approach such
as one presented by Zhang et al. [15].

ANSWER TO RESEARCH QUESTION 3
For developer usage, Vautrin does not impose a significant
overhead compared to spectrum-based fault localization. In
addition to the time required to run the test suite, it adds a
step which lasts less than 1 second.

Research Question 4 To what extent does Vautrin fall back
to the traditional, graph-less, fault localization?

As presented in Section II-C2, Vautrin uses a causal graph
to filter out suspicious methods. However, it happens that the
intersection of reachable nodes is empty. In this case, Vautrin
returns fallback ranking from the Steimann fault localization
algorithm. We analyze the number of cases with fallback from
the results already discussed in Research Question 1 and 2. For
the sake of space, we do not report the whole data.

The worst case is Daikon, for which Vautrin falls back in
82% of the time which means that for 290 faults over 352,
we are not able to improve the score given by Steimann fault
localization algorithm. For Daikon, Vautrin is able to perform
graph-based causal reasoning in 62 cases. On the other side,
for 5 subject programs out of 10, fallback happens in less than
25% of the considered faults: Jester, Jexel, Codec, Htmlparser
and Eventbus which fall back in respectively 8%, 12%, 15%,
22% and 22% of the faults. For Jester, Vautrin does graph-
based reasoning in 378 faults over 411. In total, for 3,883
faults over 5,386, Vautrin predicts faulty elements based on
the intersection of transitively reachable nodes.

ANSWER TO RESEARCH QUESTION 4
For the majority of faults (72%), Vautrin has enough information
to go beyond simple spectrum-based analysis and to perform
graph-based reasoning.

Research Question 5 What is the best spectrum metric to
be used with Vautrin?

As presented in Section II-B, within an equivalence class
of graph-suspicious elements, Vautrin uses a spectrum-based
metric to assign scores to rank suspicious elements. In all
experiments, we have used Steimann for spectrum suspi-
ciousness, because it is the best according to the experiment
reported in Table II. What if we use Vautrin with the other fault
localization algorithm presented in Section III-A2? We now re-
port on the fault localization effectiveness with other spectrum
suspiciousness plugged into Vautrin. We note Vautrin/Ywhen
we consider Vautrin using the score obtained using the Y fault
localization algorithm. Thus, Vautrin/Steimann stands for our
approach using the scores obtained using the Steimann fault
localization algorithm. Due to space limitation, we do not
report the whole data.

We observe that Vautrin/Steimann is the best combination
in 4 cases out of 10 for the average wasted effort and 7
cases out of 10 for the perfect prediction. Vautrin/Zoltar is
the best in 5 cases out of 10 for the average wasted effort
and 1 cases out of 10 for the perfect prediction. Vautrin/Naish
is the best in 1 case out of 10 for the average wasted effort
and in 6 cases out of 10 for the perfect prediction. Regarding
wasted effort, Vautrin/Zoltar may be a better alternative (5
versus 4 for Vautrin/Steimann). But, we have to keep in
mind that this combination always produces worse results
when we consider perfect predictions. Regarding perfect pre-
diction, Vautrin/Naish is an acceptable alternative (6 versus
7 for Vautrin/Steimann), yet not good for wasted effort.
This observation suggests that those two evaluation metrics
are not necessarily completely correlated: they capture two
different aspects of the fault localization process. If we want to
maximize effectiveness with respect to both evaluation metrics
(wasted effort and perfect prediction), the best candidate seems
to be the Vautrin/Steimann fault localization algorithm, which
further validates the choice of Steimann’s suspiciousness met-



ric as default choice.
In addition, we setup a small experiment which consists

in using a random function for computing the suspiciousness
score. Naturally, this experiment shows that the wasted efforts
with such a random spectrum fault localization algorithm are
really bad (ranging from 74 to 1,058). But, we also observe
that applying the graph fault localization algorithm on top of
random scores, gives a minimum improvement of 19%, an
average improvement of 211% and a maximum improvement
up to 540%. This shows that the causality approximation by
computing causal edges is indeed effective, even using the
worst possible suspiciousness metric one can imagine.

ANSWER TO RESEARCH QUESTION 5
To sum up, to discriminate within an equivalence class of graph-
suspicious elements, the best spectrum-based metric to be used
with Vautrin is Steimann’s as it outperforms the other ones as
much with respect to the wasted effort as with respect to the
number of perfect predictions.

IV. THREATS TO VALIDITY

Our results are of computational nature. A major bug in
our software can invalidate our findings. We have published
all our code on Github so as to facilitate reproduction and
falsification of our results, if necessary.

Regarding causal graph inference, the quantity and the
characteristics of the mutants can impact our findings. The
characteristics of the mutation include the operator and the
candidate element for mutation. It may be possible that the
considered operators and elements may not be the best ones for
approximating the causality. However, to avoid being biased
by the dataset, we considered an external, peer-reviewed one,
that is unbiased with respect to our approach. Also, the dataset
may contain equivalent mutants leading to poor coverage or,
worse, to biases in the results due to “artificial inflation”
phenomenon [16].

We consider in this paper the 10 Java subject programs from
Steimann et al.’s dataset to conduct our experiments. However,
those 10 programs may have specific graph structures due to
developer choices and/or to the used programming language.
As a consequence, our results may only be valid for Java
subjects, or even worse, only valid for the subject programs
under study.

V. RELATED WORKS

Fault localization aims to localize the faulty position in
programs. Classical spectrum-based fault localization tech-
niques, already discussed in this paper, include Tarantula by
Jones et al. [12] and Ochiai and Jaccard [17]. Xie et al. [18]
propose a theoretical analysis on multiple ranking metrics
of fault localization and divide these metrics into categories
according to their effectiveness. None of them uses graph-
based approximation of causality as we do in this paper.

Santelices et al. [14] combine multiple types of code cov-
erage to find out the faulty statements in a program. Baah et
al. [19] employ an outcome model to find out the dynamic

program dependencies for fault localization. Xu et al. [20]
develop a noise-reduction framework for localizing faults.
DiGiuseppe and Jones [21] recently propose a semantic fault
diagnosis approach, which employs natural language process-
ing to detect the fault locations. Xuan and Monperrus [11] de-
velop a learning-based approach to combine multiple ranking
metrics for fault localizing. While they all use novel sources
of information for fault localization, they do not outperform
the best spectrum-based techniques as we do in this paper.

To improve fault localization, one can also select subsets of
tests or modify them. Baudry et al. [22] leverage the concept of
dynamic basic blocks to maximize the ability of diagnosing
faults with a test suite. Hao et al. [23] propose a test-input
reduction approach to reduce the cost of inspecting the test
results. Gong et al. [24] design a diversity-maximization-
speedup approach to reduce the manual labeling of test cases
and improve the accuracy of fault localization. Yoo et al. [25]
address the problem of fault localization prioritization. Xuan
and Monperrus [26] extract test slices related to failing as-
sertions to improve fault effectiveness. Those techniques are
orthogonal to the one presented in this paper. Future work
can combine test case selection and graph-based causality to
further improve fault localization.

Baah et al. [1] propose to use regression models as a fault
localization algorithm. Those models are built using spectrum
information and data extracted from a program dependence
graph (i.e. at the statement granularity). They assess their
approach on faults from the Siemens, Sed and Space datasets.
Shu et al. [2] use a similar approach but based on dynamic
call graphs (i.e. at the method granularity) mixed with dynamic
data dependencies. They assess their approach on faults ran-
domly selected from a bug database for four programs. Those
two papers, as us, consider that fault localization is a causal
inference problem in essence. Also, they use graph information
(respectively program dependence graphs [1] and dynamic call
graphs [2]) as basis for causal reasoning; in our case, we use
a different graph: a static class hierarchy analysis (CHA) call
graph. The key novelty of our approach is that we use mutation
analysis to approximate causal relationships. A quantitative
comparison is future work, because their implementation is
not publicly available, and having asked for it, is not yet ready
for sharing.

A. Mutation and Fault Localization

Mutation-based fault localization has been recently pro-
posed. The kernel idea of mutation-based fault localization
is to localize faults by injecting faults. Zhang et al. [27]
propose FIFL, a fault injecting approach to localize faulty
edits in evolving Java programs. Candidate edits are ranked
based on the suspiciousness of mutants. Papadakis and Le
Traon [28] develop Metallaxis-FL, a mutation-based technique
for fault localization on C programs. Their work shows that
test cases that are able to kill mutants can enable accurate fault
localization. Moon et al. [29] propose MUSE, an approach
based on both mutants of faulty statements and mutants of



correct statements. None of them explores the confluence of
mutants and graph analysis as we propose in this paper.

VI. CONCLUSION

We have presented Vautrin, a novel approach for fault
localization. Vautrin is based on the idea of approximating
causal effects at the method level: it consists of extracting
an approximate causal graph out of a call graph based on
execution information obtained from mutation testing. We
have evaluated our approach on the dataset by Steimann et
al. The evaluation setup results in 5,386 fault localization
diagnosis. Overall, Vautrin is able to make 2,310 perfect
predictions, which means that it predicts ranked methods on
which the top ranked one is indeed the faulty one.

Future work will explore how to speed up the causal graph
approximation process by tailored mutation analysis: where to
create mutants so as to maximize the quantity of new causal
information that is inferred.
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