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Abstract
Plurality consensus considers a network of n nodes, each having one of k opinions. Nodes execute a
(randomized) distributed protocol with the goal that all nodes adopt the plurality (the opinion initially
supported by the most nodes). Communication is realized via the Gossip (or random phone call)
model. A major open question has been whether there is a protocol for the complete graph that
converges (w.h.p.) in polylogarithmic time and uses only polylogarithmic memory per node (local
memory). We answer this question affirmatively.

We propose two protocols that need only mild assumptions on the bias in favor of the plurality. As
an example of our results, consider the complete graph and an arbitrarily small constant multiplicative
bias in favor of the plurality. Our first protocol achieves plurality consensus in O(logk·loglogn) rounds
using logk+ Θ(loglogk) bits of local memory. Our second protocol achieves plurality consensus in
O(logn·loglogn) rounds using only logk+ 4 bits of local memory. This disproves a conjecture by
Becchetti et al. (SODA’15) implying that any protocol with local memory logk+O(1) has worst-case
runtime Ω(k). We provide similar bounds for much weaker bias assumptions. At the heart of our
protocols lies an undecided state, an idea introduced by Angluin et al. (Distributed Computing’08).
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1 Introduction

Reaching plurality consensus is a fundamental problem in distributed computing. We consider
this problem in a networked setting, where a graph is given in which each node initially holds
one of k ∈ N opinions. The objective is the design of an efficient distributed protocol that
ensures that eventually all nodes agree on the initial plurality opinion, which is the opinion that
is initially supported by the most nodes. This problem is also referred to as majority consensus
or proportionate agreement [1, 3, 19]. In accordance with [5] and others, we prefer to refer to
it as plurality consensus, so as to make clear that the opinion eventually to be attained by all
nodes need not initially have been absolute majority. One need not stray too far from the core of
distributed computing to come across direct applications of plurality consensus: the handling of
fault tolerance in parallel computing or the implementation of majority-based conflict resolution
for CRCW PRAMs (and derivative models) are immediate examples.

Natural metrics for plurality consensus protocols are running time and memory overhead. The
latter is the additional amount of (local) memory needed by each node above and beyond the bits
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required to store its current opinion. Results are typically expressed in terms of the number of nodes,
the number of initial opinions, and the initial bias (between plurality and remaining opinions). Of
particular interest, to us and in general, are fast protocols with small memory overhead. As in [5] we
assume a synchronous Pull-based Gossip communication model on the underlying graph. Here,
in each discrete round, every node may contact one neighbor and query that neighbor’s opinion.
We mostly assume the complete graph, but using a construction of [5] we can easily extend our
results to regular expanders. We define the (relative) plurality gap γ>1 as the ratio between the
plurality opinion and the second most common opinion. We analyze two protocols in this paper:

A protocol with running time O
(
logk·loglogγn+loglogn

)
and memory overhead Θ(loglogk).

A protocol with running time O
(
logn·loglogγn

)
and memory overhead 4.

Plurality consensus is a member of the class of population dynamics, which are of great
interest in fields as varied as epidemiology, physics, statistics, biology, chemistry, or sociology. All
these have in common an initial population of agents with some initial properties and a protocol
(dynamics) that in some manner changes the properties of given agents usually based on those
of other agents. Specific models are as varied as the problems themselves; for instance, we may
or may not have an underlying graph structure, a prescribed timing model, or restrictions on the
amount and nature of communication. Other related dynamics are the lately en vogue voting
protocols and Moran-type processes.

1.1 Related Work
In [3], Aspnes et al. consider k=2 initial opinions {x,y} and the complete graph as neighborhood
structure. They introduce a third state, referred to as blank, b, which is a crucial ingredient in their
protocol and analysis. Their protocol works such that an activated node u picks another node
v at random. Given the opinions of those two nodes, the transition now proceeds as follows: If u
has a non-blank opinion and sees in v the other non-blank opinion then it changes to b, if it has a
non-blank opinion and sees in v the same non-blank opinion or b then it maintains its opinion, and
if it has the blank opinion then it just copies whatever it sees in v. The authors show that with high
probability all n nodes reach consensus within O(nlogn) many interactions (corresponding to paral-
lel convergence time O(logn)), and the consensus value is the plurality value provided its (absolute)
initial bias is at least ω(

√
nlogn). Each node needs to be able to store one of three values, x, y, or b.

In the case of two opinions the plurality problem can be solved by calculating the median of the
opinions. In [11] the authors present such a protocol that converges in O(logn) rounds and has con-
stant memory overhead, if the initial difference bias c1−c2 is at least Ω

(√
nlogn

)
. In [2] the authors

consider the plurality problem in a sequential setting where only one node can change its opinion
at a time. They present a new protocol called Average and Conquer (AVC) that solves plurality
exactly, in sequential time O(nlogn/(sε)+lognlogs), where εn (ε>1/2) is the size of the plurality
opinion and s the number of states. In [7] the authors generalize the former result to general
networks and k opinions. They introduce protocols that solve the plurality consensus problem that
are based on an interesting relationship between plurality consensus and distributed load balancing.

In [5] Becchetti et al. take the model of [3] and generalise it to k≥2 initial opinions. They still
use the blank state, which they however refer to as undecided. The authors express their results
in terms of md(c̄), the monochromatic distance of configuration c. Formally, md(c̄)=

∑k
i=1ci/c1,

where ci is the number of nodes with opinion i and c1≥ c2···≥ ck. Note that md(c̄) is always
between O(1) and O(k). Then authors show almost-tight bounds on convergence time. Formally,
let k=k(n) be any function such that k=O

(
(n/logn)1/3), and consider any initial configuration

with c1≥(1+α)·c2, where α≥0 is any arbitrarily-small constant. Their protocol converges in
O(md(c̄)·logn), rounds (w.h.p.) and it has only constant memory overhead. They also show
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that for k=O
(
(n/logn)1/6) and any initial configuration the convergence time of their protocol

is (w.h.p.) linear in the monochromatic distance. Finally, they show how to adapt their results to
regular expanders using random walks to sample the opinion of nodes. As with [3], they require one
state more than is necessary to store the actual opinion values. They conjecture that any protocol
using logk+O(1) bits of memory has runtime at least linear in k in the worst case — as discussed
later, we partially refute this conjecture. In [6] the authors consider the 3-majority dynamics. They
show that for k≤nα (with constant α) the 3-majority dynamics converges to an almost-consensus
state in time O

(
(k2√logn+kllogn)(k+logn)

)
. An almost-consensus state is defined as a state

where all but a subset of size O(nγ) (for constant γ<1) of the nodes support the same opinion.
In [4] the authors consider the undecided dynamics in complete graphs in an asynchronous setting.
They derive the time of convergence and an upper bound for the probability of error.

A line of research which is related to the plurality consensus problem is the voting problem. The
setting is the same, a network with n nodes is given and initially every node has one of k opinions.
Here the goal is that all nodes agree on one opinion, which is not necessarily the plurality opinion.
A sequential version of the voter model was introduced in [16]. The parallel voter model was first
analyzed in [15]. The authors of [15] bound the expected consensus time in terms of the expected
meeting time Tm of two random walks and show a bound of O(Tm·logn)=O

(
n3logn

)
. The authors

of [8] provide an improved upper bound of O
(
1/(1−λ2)·log4n+ρ

)
on the expected consensus time

for any graph G, where λ2 is the second eigenvalue of the transition matrix of a random walk on G,
and ρ=

(∑
u∈V (G)d(u)

)2
/
∑
u∈V (G)d

2(u) is the ratio of the square of the sum of node degrees over
the sum of the squared degrees. The authors of [9, 10] consider a modification of the standard voter
model with two opinions, which they call two-sample voting. In every round, each node chooses two
of its neighbors randomly and adopts their opinion only if they both agree. For regular graphs and
random regular graphs, it is shown that two-sample voting has a consensus time of O(logn) if the
initial imbalance between the nodes having the two opinions is large enough. In [13] the authors
consider a 2-choice voting protocol for k opinions in the complete graph. Their protocol converges
to the majority opinion in time O(k·logn), with high probability, if k=O(nε) for some small ε>0,
and the initial absolute gap between largest and second-largest opinion is Ω

(√
nlogn

)
. They also

show that there exist initial configurations where the Θ(k) bound on the run time is matched.
Independently, they also give a protocol which is similar to our simple, first protocol (cf. Section 3)
and has roughly the same voting time. Other related papers from literature about sensor networks
include [12] (which considers binary interval consensus, which can be used to solve majorization)
and [17] (which considers the plurality problem in a different distributed model and for constant k).

1.2 Our Contribution
In Section 3 we present and analyze protocol RepeatedCleanup, which in a complete graph of
n nodes and k opinions works in O

(
logk·loglogγn+loglogn

)
rounds and has a memory overhead

of O(loglogk) bits. The protocol is a synchronized version of the protocol from [6], in which the
nodes “lose” their opinion and adopt the state “undecided” whenever they sample a node with
a different opinion. Then they will adopt the “real” opinion of the next (i.e., not undecided) node
they sample. The nodes keep changing their opinion until all nodes agree on the plurality opinion.
In contrast, our protocol works in O

(
loglogγn

)
many phases, each of length Θ(logk). In the first

round of every phase the nodes sample a node and lose the opinion if the sampled node has a
different opinion. They then use the rest of the phase to find a new “real” opinion. In [5] the
authors show that for k=O

(
(n/logn)1/6) and any initial configuration the convergence time of

their protocol is linear in the monochromatic distance, which can be as large as O(k). Hence,
our protocol outperforms the lower bound for the protocol of [5]. Interestingly, the speed-up is
reached by synchronizing the protocol, which can also be regarded as slowing it down. In our
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protocol a node that just found a real opinion again waits until the beginning of the next round
to sample another node, instead of doing that immediately.

The drawback of our first protocol is that it uses a counter to determine the end of a phase.
In Section 4 we present a protocol that works in O

(
logn·loglogγn

)
rounds and has a memory

overhead of only 4 bits. The main idea of the protocol is to slow down the progress in the individual
phases by having nodes toss a biased coin with success probability 1/n, basically replacing the
deterministic counter by a probabilistic counterpart. Our result shows that a conjecture by
Becchetti et al. [5], implying that any protocol with constant memory overhead has worst-case
runtime Ω(k), does not hold if nodes have access to such a coin. Note that the coin toss is not
necessary if nodes can decide whether they sampled themselves (or a marked node/leader).

A very recent, independent result by Ghaffari and Parter [14] suggests a protocol for plurality
consensus with similar time and memory bounds as ours. They employ the same basic idea of
cleanup and decision-accumulation rounds (cf. Section 3), which they name selection and recovery
steps. Their final protocol differs in that they use some of the undecided nodes as clock nodes (which
use the logk bits normally used to store the opinion to count time) to help synchronize other nodes.

2 Model & Notation

We consider protocols in the complete graph with n∈N nodes. Each node u has one of k∈N opin-
ions opu∈{1,2,...,k}. We write opu=⊥ to indicate that node u is undecided. Time is modelled in
synchronous, discrete and parallel rounds and we assume a Pull-based Gossip model for communi-
cation (nodes can request information from one other node chosen uniformly at random). Note that
each node needs at least dlogke bits of local memory (to store its current opinion). Any additional
number of bits per node needed by a given protocol is called the protocol’s memory overhead.

Notation. In the following, ‖·‖1 and ‖·‖2 denote the L1 and L2 norms, respectively, that is,
‖x‖1 =

∑n
i=1|xi| and ‖x‖2 =

√∑n
i=1|xi|2 for an n-dimensional vector x. For a real value x>0,

its binary logarithm is denoted by logx and its natural logarithm by lnx. For an integer i, the
shorthand [i] :={1,2,...,i} denotes the set of the first i integers. The phrase with high probability
(w.h.p.) refers to probabilities of the form 1−n−Ω(1).

At any point in time, the system can be described by a k-dimensional vector x=(x1,x2,...,xk)∈
{0/n,1/n,...,1}k⊆ [0,1]k, where the i-th entry xi∈ [0,1] denotes the current fraction of nodes with
opinion i. We call such a vector x a configuration. Note that 1−‖x‖1∈ [0,1] is the fraction of
undecided nodes. Xi(t) is defined as the random variable that takes as its values the configuration
produced by the protocol at the end of round t∈N0. We use x̄ := X(0) to denote the initial
(fixed) configuration. The random variable Y (t):=1−‖X(t)‖1 with values in ∈ [0,1] denotes the
fraction of undecided nodes at the end of round t.

To measure how far we are from plurality consensus, we define two plurality gap notions:
Assuming (w.l.o.g.) that 1 is a most common opinion, let ψ(x) :=x1−maxi6=1xi∈ [0,1] be the
absolute plurality gap. Similarly, γ(x):=x1/maxi6=1xi≥1 is the relative plurality gap.

Assumptions. In order to guarantee convergence, we need some (mild) bias assumptions. Given
the initial configuration x̄, without loss of generality (w.l.o.g.), we assume x̄1≥ x̄i for all i∈ [k]
and refer to (the initially most common) opinion 1 as the plurality opinion. For most of the
analysis we assume
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1 sample a random node v
2 if t≡0 (mod T): {cleanup}
3 if opv 6=opu: opu←⊥
4 else : {decision−accumulation}
5 if opu =⊥: opu←opv

Listing 1 Protocol RepeatedCleanup as executed by node u in round t∈N. It works in phases
of length T=Θ(logk) and has memory overhead Θ(loglogk).

ψ(x̄)=ω
(

(logn)2
√
n

)
(1) and k=o

( √
n

(logn)2

)
. (2)

While Condition (1) is essential1, Condition (2) is without loss of generality (it can be achieved
by merging small opinions). We define ρ=ρ(n):=(logn)2/

√
n and call a configuration x biased

if ψ(x)=ω(ρ). Our analysis assumes n to be at least some sufficiently large constant.

3 Plurality Consensus with logk+Θ(loglogk) Bits

We divide time into phases, each consisting of T :=5+2logk rounds. In each round, every node
u uses a Pull operation to sample a random node v and checks its opinion opv. We distinguish
two types of rounds:

Cleanup rounds represent the first round of each phase. Here, u becomes undecided if opv
differs from u’s own opinion opu (and keeps its opinion otherwise).
Decision-accumulation rounds make up the remaining T−1 rounds of a phase. Here, only
undecided nodes act and simply adopt the pulled opinion opv.

The synchronization of the steps in which nodes lose their opinion and adopt opinions of sampled
nodes is key to the fast convergence. As we will see in the analysis they ensure that each phase
increases the relative plurality gap exponentially. We call this protocol RepeatedCleanup. See
Listing 1 for a formal description. In the remainder of this section we prove the following theorem.

I Theorem 1. RepeatedCleanup has a local memory overhead of Θ(loglogk) bits. If started
on a biased configuration x̄ with relative plurality gap γ :=γ(x̄), then (w.h.p.) plurality consensus
is achieved in O

(
log(k)·loglogγn+loglogn

)
rounds.

We use the shorthand X(τ,t):=X((τ−1)·T+t) to denote the configuration at the end of round
t in phase τ . Similarly, Xi(τ,t) and Y (τ,t) denote the corresponding fractions of nodes. The follow-
ing definition identifies opinions that are supported by only a small fraction of nodes (and, thus, are
likely to vanish in a cleanup round), and configurations that do not have too many undecided nodes.

An opinion i in configuration x is negligible if xi≤ρ (recall that ρ=(logn)2/
√
n).

A configuration x is alive if ‖x‖1≥1−e−1.

The following simple observation already hints at the basic change of configurations during
a phase: in expectation, the cleanup round squares the relative plurality gap (but reduces the

1 Our results hold also under the slightly weaker condition ψ(x̄)=ω
(√

log(n)/n
)
. However, Condition (1)

significantly simplifies some parts of the analysis.
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absolute support of each opinion), while the decision-accumulation rounds increase the absolute
support of each opinion (not changing the relative plurality gap).

I Observation 2. Consider a configuration x with y :=1−‖x‖1. If the configuration X results
from a cleanup round on x and Y =1−‖X‖1, then

E[Xi]=x2
i , E[‖X‖1]=‖x‖22, and E[Y ]=2y−y2. (3)

Similarly, if X results from a decision-accumulation round, then

E[Xi]=(1+y)·xi, E[‖X‖1]=2‖x‖1−‖x‖
2
1, and E[Y ]=y2. (4)

Analysis Overview. The bound on the memory overhead in Theorem 1 immediately follows
from the protocol description. The runtime bound is proven in three steps: Lemma 7 shows that
all non-plurality opinions become negligible during the first O

(
loglogγ(x̄)n

)
phases. Lemma 8

proves that all these negligible opinions vanish within an additional constant number of phases.
Lemma 9 shows that any remaining undecided nodes vanish in another O(loglogn) phases. Before
we prove these key lemmas (Section 3.3), we show how configurations evolve during single rounds
(Section 3.1) and single phases (Section 3.2).

3.1 Change During a Single Round
Our first two claims show concentration for the expected configuration change in cleanup and
decision-accumulation rounds we saw in Observation 2. They follow by standard Chernoff bounds.

I Claim 3 (Cleanup Round). Consider a configuration x at the beginning of phase τ. Let a>0
be a constant.

(a) Let i∈ [k] and δ :=
√

3a·log(n)/n·x−1
i . Then

Pr
[
Xi(τ,1)≥max

(
ρ2,(1+δ)·x2

i

)∣∣X(τ,0)=x
]
≤n−a and (5)

Pr
[
Xi(τ,1)≤(1−δ)·x2

i

∣∣X(τ,0)=x
]
≤n−a. (6)

(b) Let δ :=
√

3a·log(n)/n·‖x‖−1
2 . Then Pr

[
‖X(τ,1)‖1≤(1−δ)·‖x‖22

∣∣∣X(τ,0)=x
]
≤n−a.

I Claim 4 (Decision-accumulation Round). Consider a configuration x at the beginning of round
t+1>1 in phase τ. Let a>0 be a constant and y :=1−‖x‖1 the fraction of undecided nodes.

(a) Let i∈ [k], δ′ :=
√

13a·logn/(xiy·n), and δ :=max(δ′,δ′2). Then

Pr[Xi(τ,t+1)≥(1+δy)·xi·(1+y) |X(τ,t)=x]≤n−a and (7)
Pr[Xi(τ,t+1)≤(1−δ′y)·xi·(1+y) |X(τ,t)=x]≤n−a. (8)

(b) Assume y≤1−ρ. Then Pr
[
Y (τ,t+1)≥max

(
ρ2,y3/2)∣∣X(τ,t)=x

]
≤n−a.

3.2 Change During a Single Phase
Next, we use the effects of single rounds to show that (a) the property of being alive is (w.h.p.)
invariant from phase to phase (Claim 5) and (b) the relative plurality gap of a biased configuration
increases (w.h.p.) exponentially during a phase (Claim 6).
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I Claim 5. Consider a configuration x at the beginning of phase τ. Let a> 0 be a constant.
Assume ‖x‖1≥1−e−1 and ‖x‖22 =ω(ρ). Then

Pr
[
‖X(τ+1,0)‖1<1−e−1 ∣∣X(τ,0)=x

]
=n−a. (9)

Proof. Let us first consider the effect of the cleanup round. Claim 3(b) gives

Pr
[
‖X(τ,1)‖1≤‖x‖

2
2/2
∣∣∣X(τ,0)=x

]
≤n−a−1, (10)

where we used ‖x‖22 =ω(ρ)=ω
(√

log(n)/n
)
, such that the involved δ-term becomes o(1). Next, fix

the configuration x̃=X(τ,1) after the cleanup round. Let ỹ :=1−‖x̃‖1 and assume ỹ≤1−‖x‖22/2
(this holds with probability at least 1−n−a−1 due to Equation (10)). With the claim’s assumption
‖x‖22 =ω(ρ), this implies ỹ≤1−ρ and we can apply Claim 4(b) to get

Pr
[
Y (τ,t+1)≥max(ρ2,ỹ3/2)

∣∣∣X(τ,1)=x̃
]
≤n−a−1 (11)

for a decision-accumulation round t+1>1. A union bound over the T−1=O
(
logn

)
decision-

accumulation rounds, combined with Equation (10) via the law of total probability, gives

Pr
[
Y (τ,T)≥max

(
ρ2,
(

1−‖x‖22/2
)(3/2)T−1)∣∣∣∣X(τ,0)=x

]
≤n−a. (12)

The second term of the maximum is at most exp
(
−(3/2)T−1 ·‖x‖22/2

)
. For this to be at most

some value z>0, we need T−1≥ log3/2
(
2ln(1/z)/‖x‖22

)
. Choosing z :=exp

(
−k·‖x‖22/‖x‖

2
1
)
and

remembering our choice of T (see beginning of Section 3), we calculate

log3/2

(
2ln(1/z)
‖x‖22

)
=log3/2

(
2/‖x‖21

)
+log3/2(k)≤4+2log(k)=T−1, (13)

where we used the claim’s assumption ‖x‖1 ≥ 1− e−1 to bound log3/2
(
2/‖x‖21

)
≤ 4. Thus,

Equation (12) implies that with probability at least 1−n−a we have Y (τ,T)≤max(ρ2,z)≤e−1,
where we used ρ2 =o(1) and the Cauchy-Schwarz inequality to get z=exp(−k·‖x‖22/‖x‖

2
1)≤e−1.

The claim follows with this from ‖X(τ+1,0)‖1 =‖X(τ,T)‖1 =1−Y (τ,T). J

I Claim 6. Consider a configuration x at the beginning of phase τ. Let a>0 be a constant. For
an opinion i 6=1 assume x1−xi=ω(ρ) and let γi :=min(x1/ρ,x1/xi). Then

Pr
[
X1(τ+1,0)
Xi(τ+1,0) ≤γ

3/2
i

∣∣∣∣X(τ,0)=x

]
≤n−a. (14)

Proof. For a configuration x′ define the shorthands γi(x′):=x′1/x′i and ψi(x′):=x′1−x′i. We make
an inductive argument over γi during the phase (using ψi as an auxiliary tool for the induction).
Applying Claim 3(a) to both opinions (once the upper and once the lower bound) yields

Pr
[
X1(τ,1)≤(1−δ1)·x2

1
∣∣X(τ,0)=x

]
≤n−a−1 and (15)

Pr
[
Xi(τ,1)≥max

(
ρ2,(1+δi)·x2

i

)∣∣X(τ,0)=x
]
≤n−a−1, (16)

where δj :=
√

3a·log(n)/n·x−1
j for j∈{1,i}. Let δρ :=

√
3a·ln(n)/n·ρ−1 and δ :=min(δi,δρ). Note

that δ1≤δ, since x1≥xi+ω(ρ) by the claim’s assumption. With this, we bound the right-hand
side in the probability of Equation (15) by (1−δ)·x2

1 and, similarly, the right-hand side in the
probability of Equation (16) by (1+δ) ·max(ρ2,x2

i ). Using a union bound and the inequality
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(1−x)/(1+x)≥(1−2x) for x∈ [0,1], with probability at least 1−2n−a−1 we have γi(X(τ,1))≥
(1−2δ)·γ2

i . Similarly, we also have ψi(X(τ,1))=ω
(
ρ2). For xi≤ρ, this follows immediately from

Equations (15) and (16) (since x2
1 =ω

(
ρ2) and x2

i =O
(
ρ2)). For xi>ρ, we calculate

ψi(X(τ,1))=X1(τ,1)−Xi(τ,1)≥(1−δ1)·x2
1−(1+δi)·x2

i

=
(
x2

1−x2
i−x1·

√
3a·logn
n

−xi·
√

3a·logn
n

)

=(x1+xi)·
(
x1−xi−2

√
3a·logn
n

)
=ω(ρ)·(ω(ρ)−o(ρ))=ω

(
ρ2).

(17)

Next, fix the configuration x̃=X(τ,t) and let ỹ :=1−‖x̃‖1. Assume ψi(x̃)=ω
(
ρ2) and x̃i≥ρ2.

Applying Claim 4(a) to both opinions (once the upper and once the lower bound) yields

Pr
[
X1(τ,t+1)≤(1−δ̃′1ỹ)·x̃1·(1+ỹ)

∣∣X(τ,t)=x̃
]
≤n−a−1 and (18)

Pr
[
Xi(τ,t+1)≥(1+δ̃iỹ)·x̃i·(1+ỹ)

∣∣X(τ,t)=x̃
]
≤n−a−1, (19)

where δ̃′j :=
√

13a·logn/(x̃jỹ·n) and δ̃j := max(δ̃′j, δ̃′2j ) for j ∈ {1,i}. Note that δ̃′1 ≤ δ̃i, since
x̃1≥ x̃i+ω

(
ρ2) by our assumption. Thus, as before we can combine Equations (18) and (19)

via a union bound to get that with probability at least 1−2n−a−1 we have γi(X(τ,t+1))≥
(1−2δ̃iỹ)·γi(x̃) and – analogous to the calculation in Equation (17) – ψi(X(τ,t+1)) =ω

(
ρ2).

Now, define the error δ̃ :=2δ̃iỹ and note that

δ̃=max
(√

13a·logn
x̃in

·
√
ỹ,

13a·logn
x̃in

)
≤
√

13a·logn
x̃in

=O
(

(logn)−3/2
)
, (20)

where we used the assumption x̃i≥ ρ2 =ω(log(n)/n). In particular, this implies that (w.h.p.)
we have γi(X(τ,t+1))≥(1−δ̃)·γi(x̃), ψi(X(τ,t+1))=ω

(
ρ2), and Xi(τ,t+1)≥Xi(τ,t)= x̃≥ρ2.

Moreover, the error δ̃ is non-increasing in t (since x̃i is non-decreasing in t), such that we get the
largest error for t=1, such that we can apply the above recursively. Applying this via the chain
rule to the T−1=O(logn) decision accumulation rounds yields

Pr
[
γi(X(τ,T))≥(1−δ̃)T−1· x̃1

max(ρ2,x̃i)

∣∣∣∣X(τ,1)=x̃

]
≥1−O(logn)·2n−a−1. (21)

Since δ̃=O
(
(logn)−3/2), we can bound the error term (1−δ̃)T−1≥exp(−(T−1)·2δ̃)≥1−2T ·δ̃.

That is, the error due to the decision-accumulation rounds is 1−δ′ for δ′ :=2T ·δ̃=O
(
(logn)−1/2).

We now combine our result for the cleanup round and the decision-accumulation rounds via
the law of total probability to get that with probability at least 1−n−a we have γi(X(τ,T))≥
(1−2δ)(1−δ′)·γ2

i .
Using δ̌ :=2max(2δ,δ′)=O

(
log(n)·

√
log(n)/n

)
·min(x−1

i ,ρ−1), we get γi(X(τ,T))≥(1−δ̌)·γ2
i .

It merely remains to verify that 1−δ̌≥γ−1/2
i . This is equivalent to δ̌≤1−γ−1/2

i . If γi=Ω(1),
this holds trivially since δ̌= o(1). So assume γi= 1+ε for a suitable ε∈ (0,1]. For this range,
we have 1−γ−1/2

i ≥ ε/4, such that it is sufficient to show δ̌≤ ε/4. By the claim’s assumption
x1−xi=ω(ρ), we get ε=γi−1=x1/xi−1=ω(ρ)·x−1

i . On the other hand, we have δ̌=O
(
log(n)·√

log(n)/n
)
·min(x−1

i ,ρ−1)≤O
(√

(logn)3/n
)
·x−1
i =O(ρ)·x−1

i . This finishes the proof. J

3.3 Wrapping up the Analysis
We now have the tools to prove the three key lemmas mentioned before (which immediately
imply Theorem 1). We first show that after O

(
loglogγ(x̄)n

)
phases, (w.h.p.) all opinions i≥2

are negligible and the configuration is still alive.
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I Lemma 7. Consider an initial configuration x̄ that is alive and for which ψ(x̄)=ω(ρ). Define
τ1 :=log3/2logγ(x̄)n. Then Pr

[⋂k
i=2
(
Xi(τ1,0)≤ρ

)
∧‖X(τ1,0)‖1≥1−e−1

∣∣∣X(1,0)=x̄
]
≥1−n−2.

Proof. Fix a phase τ∈N and let x denote the configuration at the beginning of phase τ . Assume
x to be alive, biased, and 1 to be the plurality opinion. Let γ :=min(x1/ρ,γ(x)). By Claim 5,
with probability at least 1−n−3 we have ‖X(τ+1,0)‖1≥1−e−1. Combined with Claim 6 via
a union bound over all opinions we get

Pr
[
γ(X(τ+1,0))≤γ3/2∨‖X(τ+1,0)‖1<1−e−1

∣∣∣X(τ,0)=x
]
≤2n−3. (22)

Thus, as long as there is at least one non-negligible opinion i≥2, (w.h.p.) the relative plurality gap
increases exponentially and the configuration stays alive. Moreover, note that X(τ+1,0) being alive
and the increased relative gap between x1 and max(ρ,xi) for any other opinion i implies ψ(X(τ+
1,0))=ω(ρ). Thus, we can iterate this argument. To this end, for any τ∈N define the event

Eτ+1 :=
(
γ(X(τ+1,0))>γ3/2

τ

)
∧(‖X(τ+1,0)‖1≥1−e−1)∧ψ(X(τ+1,0))=ω(ρ), (23)

where γτ := min(X1(τ,0)/ρ,γ(X(τ,0))). Above we proved Pr[Eτ+1 |Eτ ,X(τ,0)=x]≥ 1−2n−3.
Using the definition of conditional probability, we get Pr[

⋂
τ≤τ1
Eτ ]≥

(
1−2n−3)τ1≥1−n−2, where

we used (by Assumption (1)) τ1≤2log logn
logγ(x̄)≤2log logn

log(1+ψ(x̄))≤2log2logn
ψ(x̄) =o(logn). Finally, our

choice of τ1 guarantees γ(x̄)(3/2)τ1 =n≥ρ−1, such that all opinions are negligible at the start of
phase τ1. J

The next lemma shows that once we are in a configuration that is alive and where all opinions
i≥ 2 are negligible, (w.h.p.) all these negligible opinions vanish within a constant number of
additional phases.

I Lemma 8. Consider a configuration x that is alive and for which xi≤ρ for all i 6=1. Define
τ2 :=τ1+3. Then Pr

[∑k
i=2Xi(τ2,0)=0∧‖X(τ2,0)‖1≥1−e−1

∣∣∣X(τ1,0)=x
]
≥1−n−2.

Proof. Applying Claim 6 yields Pr
[⋃

i6=1

(
X1(τ1+1,0)
Xi(τ1+1,0) ≤γ

3/2
ρ

)∣∣∣X(τ1,0)=x
]
≤ n−3, where γρ =

x1/ρ as in Claim 6. Since ‖x‖1≥1−e−1 but xi≤ρ for all i≥2, we must have x1 =Ω(1) (or ‖x‖1≤
k·ρ+o(1)=o(1) would contradict x being alive). In particular, we get γρ=Ω(1/ρ). Combining
this with Claim 5 via a union bound, with probability at least 1−2n−3 configuration X(τ1+1,0)
is alive and Xi(τ1+1,0)<γ−3/2

ρ =O
(
ρ3/2) for all i≥2. Now consider the cleanup round of phase

τ1+1 for an opinion i≥2 with Xi(τ1+1,0)=O
(
ρ3/2). The probability that even one node of such

an opinion remains decided after the cleanup round is at mostXi(τ1+1,0)·n·Xi(τ1+1,0)=O
(
ρ3n
)
.

Repeating this for a constant number of phases (note that we can use our high probability bounds
to guarantee that the configuration stays alive and the plurality gap high enough) and applying
the geometric distribution, we get that the probability for an opinion i≥2 to survive c more phases
is at most O

(
ρ3cn

)
. The probability that even one of the k−1≤

√
n negligible opinions survives

these c phases is O
(
ρ3c·n3/2)=o

(
n−(c−1)·5/4). The claim’s statement follows for c=2. J

Our last lemma shows that once we reached a configuration that is alive and only the plurality
opinion is left, (w.h.p.) all nodes adopt the plurality in O(loglogn) phases.

I Lemma 9. For x with
∑
i≥2xi = 0 and ‖x‖1 = x1 ≥ 1− e−1 let τ3 := τ2 + lnlogn+ 1 =

τ2+O(loglogn). Then Pr[X1(τ3,0)=1 |X(τ2,0)=x]≥1−n−2.
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Proof. We will show that the number of undecided nodes decreases exponentially from phase
to phase, until their number is so low that (w.h.p.) they vanish within a constant number of
decision-accumulation rounds. To this end, we use two basic high probability bounds: for cleanup
rounds of a phase τ on any configuration x′ with

∑
i≥2x

′
i=0 and ‖x′‖1 =x′1≥2/3, we use

Pr
[
Y (τ,1)≥max(ρ2,2.05·y′)

∣∣X(τ,0)=x′]≤n−a. (24)

To see this, first note that2 we have Pr[Y (τ,1)≥(1+δx′1)·y′·(1+x′1) |X(τ,0)=x′] ≤ n−a for
δ′ :=

√
13a·logn/(x′1y′·n) and δ := max(δ′,δ′2). Equation (24) then follows by distinguishing

whether y′≥ρ2/4 or not.
To show the exponential decrease of the undecided nodes, assume we are given a con-

figuration x′′ with y′′ < max(ρ2, 2.05 · y′) after the cleanup round of a phase τ . We ap-
ply Claim 4(b) to the first t∗ := 5 ≤ T − 1 decision-accumulation rounds of phase τ and
use a union bound to get Pr

[
Y (τ,1+t∗)≥max

(
ρ2,y′′(3/2)t∗

)∣∣∣X(τ,1)=x′′
]
≤ t∗ · n−a. Since

y′≤e−1, we get (2.05·y′)(3/2)5≤y′2. Combining these observations with Equation (24) we get
Pr
[
Y (τ+1,0)≥max

(
ρ2,y′2

)∣∣X(τ,0)=x′]≤ 6n−a. In particular, the resulting configuration is
still alive at the start of phase τ+1, so we can iterate to get

Pr
[
Y (τ2+t,0)≥max

(
ρ2,y2t

)∣∣∣X(τ2,0)=x
]
≤6t·n−a. (25)

Since y≤e−1, for t=lnlogn we get max
(
ρ2,y2t)=ρ2. Now, consider a configuration x′ with y′<ρ2.

Equation (24) yields Pr
[
Y (τ2+t,1)≥2.05ρ2

∣∣X(τ2+t,0)=x′] ≤ n−a. If Y (τ2 + t,1) < 2.05ρ2,
then the probability that even one undecided node remains undecided after the first decision-
accumulation round is at most Y (τ2+t,1)n·Y (τ2+t,1)≤5ρ4n≤n−3/4. Similar to the proof of
Lemma 8, we boost this probability using a geometric random variable by considering the first
4≤T−1 consecutive decision-accumulation rounds, such that Pr[Y (τ2+t,5)≥0 |X(τ2+t,0)=x′]≤
n−a+n−3. Combined with Equation (25), we get the desired statement. J

4 Plurality Consensus with logk+4 Bits

The non-constant memory overhead of RepeatedCleanup is due to the round counter used to
synchronize phases. We now present a protocol that avoids this counter. Each node u stores its
opinion opu∈ [k], a phase counter pu∈N, and a state variable su∈{S,(U,I),(D,I),(U,A),(D,A)}.
Our description and analysis assume pu to be an arbitrary integer. While this would result in
a non-constant memory overhead, we will prove that (w.h.p.) |pu−pv|≤1 for any two nodes u,v
and any round. Thus, the actual implementation can restrict pu to {0,1,2}, such that we get a
memory overhead of log(3·5)≤4 bits. We call this protocol ConstOverhead. Our main result
is the following theorem:

I Theorem 10. ConstOverhead has a local memory overhead of 4 bits (15 states). If started
on a biased configuration x̄ with relative plurality gap γ :=γ(x̄), then (w.h.p.) plurality consensus
is achieved in O

(
logn·loglogγn

)
rounds.

The rest of this section describes the protocol as well as the underlying idea and gives a sketch
of the analysis. More details can be found in the full version.

2 This follows exactly like Claim 4(a) when switching xi for y′ and y for x′
1. If only one opinion is left,

undecided nodes in cleanup rounds increase exactly as decided nodes in decision-accumulation rounds.
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1 sample a random node v
2 if su =S: {cleanup}
3 if pv≥pu or (pv =pu−1 and sv =(D,A)):
4 if opv =opu: su←(D,I)
5 else : su←(U,I)
6 elseif su∈{(U,I),(D,I)}: {slow transition}
7 if (pv =pu and v active) or pv>pu or Ber(1/n)=1:
8 become active
9 elseif su =(U,A): {decision−accumulation}

10 if (pv =pu and v decided) or pv>pu:
11 opu←opv and become decided
12 elseif su =(D,A): {slow transition}
13 if pv>pu or Ber(1/n)=1: (pu,su)←(pu+1,S)

Listing 2 Protocol ConstOverhead as executed by node u in round t∈N. This description
assumes pu to be an arbitrary integer.

Phase τ :

S U, I D, I

U,A D,A

SD, I

D,A

Phase τ + 1:

U, I D, I

U,A D,A

S U, I

U,A

Figure 1 Illustration how nodes transition through phases. Red (thick) state transitions highlight
slow transitions that ensure that nodes do not get out of sync too much.

Protocol Overview. Initially, each node u starts with pu=1 and su=S. We call u undecided
if su=(U,·), decided if su=(D,·), inactive if su=(·,I), and active if su=(·,A). At the start of
a round, each node u samples a random node v and uses v’s data to transition through its phase.
Listing 2 gives the formal protocol description and Figure 1 an illustration.

We start with a high level description of the protocol which we gradually refine. Basically,
ConstOverhead mimics the synchronized behavior of RepeatedCleanup. As in our first
protocol, there are two ways to transition through a phase: if a node u samples another node
v of the same opinion, it keeps its opinion and has to wait for the other nodes to catch up.
While RepeatedCleanup implemented this waiting via a counter, ConstOverhead uses slow
transitions (highlighted red/thick in Figure 1). Otherwise, if u samples a node v of a different
opinion, it becomes undecided and keeps sampling nodes until it finds a new opinion.

Becoming decided or undecided is modeled by entering the inactive decided state (D,I) or
inactive undecided state (U,I), respectively. This transition from S to one of these inactive states
corresponds to cleanup rounds of RepeatedCleanup. Now, there is a slow transition to the
active decided state (D,A) and active undecided state (U,A). This transition from inactive to
active ensures that (a) decided nodes do not enter the next phase too early (which could require a
large phase counter) and (b) undecided nodes do not sample decided nodes too early (which could
result in a skewed distribution, since the number of decided nodes might be too small). Once
an undecided node u becomes active, it keeps sampling nodes until it finds a new opinion. This
corresponds to decision-accumulation rounds of RepeatedCleanup. Note that the transition
from (D,A) to S (at which the phase counter is increased) is slow. This ensures that not too
many nodes enter the next phase before all undecided nodes found a new opinion (which could,
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as before, require a large phase counter).

Some Subtleties. While the above reflects the basic behavior of our protocol, we omitted some
details. Let us make a few important and useful observations:

A node u always checks whether the sampled node v is not too far behind.
Nodes do not explicitly forget their opinion when becoming undecided but simply overwrite their
old opinion when they find a new opinion. In particular, if a node from an earlier state asks for
u’s opinion while u is undecided, u answers with its most recent opinion (the provision of which
does not cost us extra in terms of memory as we simply retain the information where it was;
the undecided state is seperately encoded in the already accounted-for Θ(1) additional bits).
Slow transitions s→s′ between two states s and s′ basically simulate Pull-rumor spreading [18]:
Nodes in state s′ or later are “informed”, while all other nodes are “uninformed”. When u
samples an informed node (a node in s′ or beyond), it can cross the slow transition (independent
of the sampled opinion). The Bernoulli trial Ber(1/n) in slow transitions ensures that,
eventually, at least one node is “informed”. Without it, no node could cross such a transition.

Analysis Overview. Given that ConstOverhead is based on the same principle as Repeat-
edCleanup, namely employing synchronized cleanup rounds to increase the relative plurality
gap exponentially from phase to phase, it is natural to use a similar analysis. The major difficulty
stems from the fact that our synchronization primitive is now probabilistic (slow transitions)
instead of deterministic (counter). In particular, in the case of ConstOverhead there is no
guarantee that nodes wait at slow transitions for other nodes to catch up; in fact, there will
typically be a few nodes that proceed early on over slow transitions. This might disturb our
analysis in two ways: (a) if nodes could proceed arbitrarily far ahead, their phase counter could
become arbitrarily high, resulting in a non-constant memory overhead, and (b) if a small group
of nodes with a non-plurality opinion were “lucky” and proceeded fast, these nodes might cause
more and more latecomers to adopt a non-plurality opinion.

The major tool to address both of these issues are two probabilistic synchronization results.
The first shows that (w.h.p.) there is a period/stage of O(logn) consecutive rounds such that:

If n−polylog(n) nodes are in state (D,A) of phase τ − 1 or state S of phase τ , and all
remaining nodes are in one of the two inactive states (·,I) of phase τ ,
then at the end of this period, n−polylog(n) nodes are in one of the two inactive states (·,I)
of phase τ , and all remaining nodes are in one of the two active states (·,A) of phase τ .

The second result shows that (w.h.p.) there is a period/stage of O(logn) consecutive rounds such
that:

If n−polylog(n) nodes are in one of the two inactive states (·,I) of phase τ , and all remaining
nodes are in one of the two active states (·,A) of phase τ ,
then at the end of this period, n−polylog(n) nodes are in state (D,A) of phase τ or state
S of phase τ+1, and all remaining nodes are in one of the two inactive states (·,I) of phase τ .

Note that the final condition of the first stage fits perfectly into the assumption of the
second stage and vice versa. We call the first stage the cleanup stage and the second stage the
decision-accumulation stage (in the style of the corresponding round in RepeatedCleanup).
Since these stages are well-sparated, we can prove an analogue of Claim 3 and an analogue of
Claim 4. Equipped with these, the remainder of the proof is basically identical to the proof of
RepeatedCleanup (which was completely based on these concentration bounds).
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