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Abstract

We prove that every polycyclic group of nonlinear growth admits a
strongly aperiodic SFT and has an undecidable domino problem. This
answers a question of [5] and generalizes the result of [2].

Subshifts of finite type (SFT for short) in a group G are colorings of the
elements of G subject to local constraints. They have been studied extensively
for the free abelian group Z [14] and on the free abelian group Z

2, where they
correspond to tilings of the discrete plane [13].

One of the main question about SFTs is the existence of strongly aperiodic
SFT, that is finding a finite set of local constraints so that the only way to color
the group G is to do so aperiodically. Strongly aperiodic SFT are known to
exists for the group Z

2 [4] and the author [10] has provided examples on many
groups of the form Z×G.

A related question is the decidability of the domino problem: Given an SFT
X on a group G, decide if X is empty. This question is somewhat related to
the existence of weakly aperiodic SFT, i.e. where no coloring is periodic along
a subgroup of finite index in G. The undecidability of the domino problem has
been established on Z

2 [4], on Baumslag-Solitar groups [1] and on any nilpotent
group of nonlinear growth [2].

In this article we introduce a few elementary techniques that show how to
exhibit strongly aperiodic SFT on any polycyclic group which is not of linear
growth (i.e. not virtually Z), and we also prove that any such group has an
undecidable domino problem. The first result answers a question of Carroll and
Penland [5], while the second generalizes the result of Ballier and Stein from
nilpotent groups to polycyclic groups.

A full characterization of groups (or even finitely presented groups) with
strongly aperiodic SFT is still for now out of reach.
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1 Definitions

We assume some familiarity with group theory and actions of groups. See [6]
for a good reference on symbolic dynamics on groups. All groups below are
implicitely supposed to be finitely generated (f.g. for short).

Let A be a finite set and G a group. We denote by AG the set of all functions
from G to A. For x ∈ AG, we write xg instead of x(g) for the value of x in g.

G acts on AG by
(g · x)h = xg−1h

A pattern is a partial function P of G to A with finite support. The support
of P will be denoted by Supp(P ).

A subshift of AG is a subset X of AG which is topologically closed (for the
product topology on AG) and invariant under the action of G.

A subshift can also be defined in terms of forbidden patterns. If P is a
collection of patterns, the subshift defined by P is

XP =
{

x ∈ AG|∀g ∈ G, ∀P ∈ P∃h ∈ Supp(P ), (g · x)h 6= Ph

}

Every such set is a subshift, and every subshift can be defined this way. If X
can be defined by a finite set P , X is said to be a subshift of finite type, or for
short a SFT.

For a point x ∈ X , the stabilizer of x is Stab(x) = {g|g · x = x}
A subshift X is strongly aperiodic if it is nonempty and every point of X

has a finite stabilizer. Some authors require that the stabilizer of each point is
trivial (rather than finite), this will not make any difference in this article.

A f.g. group G is said to have decidable domino problem if there is an
algorithm that, given a description of a finite set of patterns P , decides if XP

is empty.
In the remaining, we are interested in groups G which admit strongly aperi-

odic SFTs or have an undecidable domino problem.
We now summarize previous theorems:

Theorem 1. • Z does not admit strongly aperiodic SFT and has decidable
word problem

• Free groups have decidable domino problem [12]

• The free abelian group Z
2 [4] has a strongly aperiodic SFT and an unde-

cidable domino problem

• The free abelian group Z
3 [9] has a strongly aperiodic SFT.

• f.g. nilpotent groups have an undecidable word problem unless they are
virtually cyclic [2]

2



We also give a few structural results:

Theorem 2. • Let G,H be f. g. commensurable groups. Then G admits a
strongly aperiodic SFT (resp. has an undecidable domino problem) if only
if H does. [5]

• Let G,H be finitely presented groups that are quasi-isometric. Then G
admits a weakly aperiodic SFT (resp. has an undecidable domino problem)
if and only if H does. [7]

• Finitely presented groups with a strongly aperiodic SFT have decidable
word problem [10].

The first of these results will be used almost everywhere in what follows.

2 Building aperiodic SFTs on G from aperiodic

SFTs on subgroups and quotients of G

2.1 Building blocks

We start by a few easy propositions that explain how to build SFT in G from
a SFT in a subgroup H or a SFT in G/H , provided in the second case that H
is normal and finitely generated.

Proposition 2.1. Let G be a f.g. group and H a f.g. normal subgroup of G.
Let φ : G → G/H the corresponding morphism. Let X be a SFT on G/H over
the alphabet A. Let

Y = {y ∈ AG|∃x ∈ X∀g ∈ G, yg = xφ(g)}

Then Y is a SFT.
Furthermore, for every y ∈ Y , there exists x ∈ X s.t. Stab(y) = HStab(x).

See e.g. [5] for a proof. The idea is to lift the forbidden patterns defined
on G/H to forbidden patterns defined on G, and to use additional forbidden
patterns to force yg = yg′ whenever gg′−1 ∈ H . This is possible asH is supposed
to be finitely generated.

Proposition 2.2. Let G be a f.g. group and H a f.g. subgroup of G.
Let X be a SFT on H over the alphabet A defined by the set of forbidden

patterns P. Using the same forbidden patterns, we obtain a SFT on G that we
call Y .

Then Y is nonempty iff X is nonempty. More precisely, let K be a left
transversal of H in G. Then y ∈ Y iff there exists points (xk)k∈K in X s.t.
ykh = xkh.

In particular, for all y ∈ Y , there exists x ∈ X s.t. Stab(y) ∩H ⊆ Stab(x)
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Proof. Write G = KH for some transversal K. Each element of g ∈ G can
therefore be written in a unique way in the form g = kh.

Let y ∈ Y and let k ∈ K. Define (xk)h = ykh. Let h
′ ∈ H and P a forbidden

pattern of P . We will prove there exists p s.t. (h′ · xk)p 6= Pp which proves that
xk ∈ X .

By definition of Y , there exists p in the support of P s.t. (h′k−1 · y)p 6= Pp.
Therefore ykh′−1p 6= Pp. But (h′ · xk)p = (xk)h′−1p = ykh′−1p, the result is
proven.

Conversely, take some points (xk)k∈K in X and define ykh = xkh. Let g ∈ G.
Write g−1 = kh−1 for some k and h. Let P ∈ P . As xk ∈ X , there exists p ∈ H
s.t. (h ·xk)p 6= Pp. But then (g · y)p = yg−1p = ykh−1p = xk

h−1p
= (h ·xk)p 6= Pp.

Therefore y ∈ Y .

2.2 Applications

We now start with the first proposition that gives a natural way to prove that
a group G has a strongly aperiodic SFT.

Proposition 2.3. Let G be a f.g. group. Suppose that G contains two f.g.
groups H1, H2 s.t.

• H1 ⊆ H2.

• H1 is normal and G/H1 admits a strongly aperiodic SFT X1

• H2 admits a strongly aperiodic SFT X2

Then G admits a strongly aperiodic SFT Y . Furthermore, if each point in X1

and X2 have trivial stabilizers, then every point of Y has a trivial stabilizer.

It is a good but nontrivial exercise to show, under the conditions of the
proposition, that if H1 and H2 have a decidable word problem, then G does.

Proof. Use the two previous propositions to build Y1 and Y2 and consider Y =
Y1 × Y2.

Let y = (y1, y2) ∈ Y and consider its stabilizer K = Stab(y). By definition
of Y1, K ⊆ H1F for some finite set F . By definition of Y2, K ∩H2 is finite. In
particular K ∩H1 is finite.

This implies that K is finite. Indeed, for each f ∈ F , K ∩ fH1 = K ∩H1f
is finite: If x, y ∈ K ∩ fH1, then xy

−1 ∈ K ∩H1.
Furthermore if F is trivial and K ∩H2 is trivial, then K is trivial.

Corollary 2.4. Let G be a f.g. group. If G contains a f.g. normal subgroup H1

s.t. G/H1 admits a strongly aperiodic SFT and H1 admits a strongly aperiodic
SFT, then G admits a strongty aperiodic SFT.

In particular, if G1 and G2 are f.g. groups that admit strongly aperiodic
SFTs, then G1 ×G2 does.
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Therefore groups with strongly aperiodic SFT are closed under direct product.
This seems quite natural but does not seem to have been known.

The second proposition of the previous section explain how an aperiodic SFT
on H ⊆ G give rise to a SFT on G. Usually this SFT will not be aperiodic.
There are however a few conditions in which it will. Here is an obvious one, for
which we do not have any interesting application

Proposition 2.5. Let H be a subgroup of G that admits an aperiodic SFT X.
Suppose that every element of G is conjugate to some element of H (H is said
to be conjugately-dense). Then G admits an aperiodic SFT. Actually, X, seen
as an aperiodic SFT on G, is aperiodic.

3 Aperiodic SFTs on polycyclic and nilpotent

groups

Using the previous proposition, we will be able to prove that nontrivial nilpotent
and polycyclic groups have strongly aperiodic SFT. We start with nilpotent
groups.

First, a few definitions, see [15, Chapter 1] for details.
Let G be a group. The Hirsch number h(G) of G is the number of infinite

factors in a series with cyclic or finite factors. It is defined for nilpotent groups,
and more generally for polycyclic groups. A nilpotent (or a polycyclic) group of
Hirsch number 0 is a finite group. A nilpotent (or a polycyclic) group of Hirsch
number 1 is a finite-by-cyclic-by-finite group, hence virtually Z.

The only thing we will need about nilpotent groups is that (a) they have a
non trivial center (b) quotients and subgroups of nilpotent groups are nilpotent
and finitely generated (c) h(G) = h(G/H) + h(H) (which make sense due to
the previous point) (d) every nilpotent group contains a torsion-free nilpotent
group of finite index.

Note that the rank and the Hirsch number coincide for free abelian groups,
i.e. Zn is of Hirsch number n.

Theorem 3. Let G be a finitely generated group of nonlinear polynomial growth.
Then G admits a strongly aperiodic SFT.

Proof. Such groups are exactly the f.g. virtually nilpotent groups of Hirsch
number different from 1. The proof will use repeatedly that if G is a f.g. group,
and H a subgroup of finite index, then G has a strongly aperiodic SFT iff H
does, see [5] for details. In particular it is sufficient to prove the theorem for f.g.
nilpotent groups to obtain the results for f.g. virtually nilpotent groups.

The result is clearly true for Hirsch number 0. We now prove the theorem
by induction on the Hirsch number h(G) ≥ 2.

We start with Hirsch number 2. A nilpotent group of Hirsch number 2 is
virtually Z

2, hence has a strongly aperiodic SFT.
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Now let G be a nilpotent group of Hirsch number n > 2. Let G1 be a torsion-
free nilpotent subgroup of finite index of G. It is enough to prove the theorem
for G1 to obtain the theorem for G, therefore we will suppose that G1 = G.

G has a non trivial center and torsion-free, hence contains a copy of H1 = Z

in its center. h(G/H1) = h(G)− h(H1) ≥ 2 therefore by induction G/H1 has a
strongly aperiodic SFT.

Furthermore, G/H1 is a nilpotent group, hence contains a torsion-free nil-
potent group of finite index, hence contains a torsion-free element x. Let y be a
representative of x in G. Let H2 be the group generated by H1 and y. AS H1 is
normal in H2, h(H2) = h(H2/H1) + h(H1) = 2 Therefore H2 is by construction
of Hirsch length 2, hence has a strongly aperiodic SFT.

We have produced our required groups H1 and H2 and we can apply Pro-
position 2.3 to finish the induction.

We now proceed to the proof for a polycyclic group. The proof is roughly
similar, except there is an additional case to work out, which is the case of
groups G that admit an exact sequence 1 → Z

n → G → Z → 1. It is not
obvious how to obtain strongly aperiodic SFTs for these groups. Fortunately:

Theorem 4 ([3]). Let G be a group that admits an exact sequence

1 → Z
n → G→ Z → 1

with n ≥ 2.
Then G admits a strongly aperiodic SFT.

This result is highly nontrivial and Z can actually be replaced by any f.g.
group with decidable word problem. We prefer citing the result in this form as
it is likely it admits a simpler proof in this particular case.

Polycyclic groups are groups which admit a series with cyclic factors. All rel-
evant properties of nilpotent groups stated above are still true when nilpotent is
replaced by polycyclic: polycyclic groups are always finitely generated (actually
finitely presented), quotients and subgroups of polycyclic groups are polycyclic,
every polycyclic group contains a torsion-free polycyclic group of finite index.
Moreover polycyclic groups admit a nontrivial normal free abelian subgroup.

Theorem 5. Let G be a virtually polycyclic group of Hirsch number different
from 1.

Then G admits a strongly aperiodic SFT.

Proof. We start with Hirsch number 2. In this case, the polycyclic group G is
virtually Z

2, hence has a strongly aperiodic SFT.
For the induction, consider G a polycyclic group of Hirsch number n > 2.

G contains a torsion-free polycyclic group of finite index so we may suppose as
before that G is torsion free.

G contains an nontrivial normal free abelian subgroup H1 = Z
k.

There are four cases:
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• k = n. In this case, h(G/H1) = h(G)−h(H1) = 0, therefore G is virtually
Z
n and admits a strongly aperiodic SFT.

• k = 1. We use the induction hypothesis on G/H1 of Hirsch number at
least n−1. By taking any element of infinite order in G/H1, we obtain, as
in the nilpotent case, a group H2 ⊃ H1 of Hirsch number 2 and we apply
Proposition 2.3.

• 1 < k < n − 1. We use the induction hypothesis on both G/H1 and
H2 = H1 and conclude by Proposition 2.3.

• k = n− 1. In this case G/H1 is of Hirsch number 1, hence virtually Z.

By taking a finite index subgroup G1 of G we can suppose wlog that G/H1

is exactly Z. We can then apply the theorem of [3].

Note that the full extent of the theorem in [3] covers all cases except the case
k ≤ 1. The reason we stated it only for the case k = n − 1 is that we believe
there is an easier proof in this case.

4 The domino problem

We now prove that the domino problem is undecidable for all virtually polycyclic
groups which are not virtually cyclic (i.e. which are of Hirsch number greater
than 2).

Proposition 4.1. Let G be a virtually polyclic group of Hirsch number greater
than 2. Then G admits a f.g. subgroup H that factors onto Z

2.

Proof. By induction on the Hirsch number, it is sufficient to prove the result for
polycyclic groups. Every polycyclic group of Hirsch number 2 is virtually Z

2,
there is nothing to prove.

Let G be a polycyclic group of Hirsch number at least 3 and let N be a
nontrivial normal free abelian subgroup of G. If N is of rank greater than 2, G
contains a subgroup isomorphic to Z

2, there is nothing to prove.
Otherwise, G/N is a polycyclic group of Hirsch number at least 2, and admits

by induction a subgroupH that factors onto Z2. Therefore G admits a subgroup
(the preimage of H) that factors onto Z

2.
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Corollary 4.2. Every virtually polycyclic group which is not virtually cyclic
has an undecidable domino problem.

Proof. We use the previous proposition to obtain H . As G is polycyclic, H is
polycyclic. Then H/N = Z

2 for a normal subgroup N of H , which is finitely
generated as G (therefore H) is polycyclic.

Therefore H has an undecidable domino problem: Given a SFT X on H/N ,
we may obtain (constructively) a SFT Y on H s.t. X is empty iff Y is empty
by Proposition 2.1.

Therefore G has an undecidable domino problem: Given a SFT X on H , we
may obtain (constructively) a SFT Y on G s.t. X is empty iff Y is empty by
Proposition 2.2.

5 Conclusion

Proposition 2.2 gives a way to transform a SFT X on H to a SFT Y on G ⊇ H .
In many cases, Y will not be strongly aperiodic. However, surprisingly, it is the
case in some situations. We already have used this fact in the proof of our main
theorem. Another example is that Z[1/2]×Z[1/2] has a strongly aperiodic SFT
Y , which is basically obtained from any strongly aperiodic SFT X on Z

2. The
idea is that if g ∈ Z[1/2]×Z[1/2] is nontrivial, then some power of g is in Z×Z,
therefore no nontrivial element of g can be stabilizer of some point of Y .

Of course Z[1/2] × Z[1/2] is an infinitely generated group, and the study
of SFT is primarily interesting in finitely generated groups. However this ob-
servation might be useful for example to produce a strongly aperiodic SFT in
some solvable groups, e.g. BS(1, 2)×BS(1, 2) (BS(1, 2) is basically a semidirect
product of Z[1/2] and Z).

An obvious natural generalization of the main theorem would be to deal with
solvable groups rather than polycyclic groups. The difficulty is that solvable
groups that are not polycyclic always have abelian subgroups which are not
finitely generated. This adds additional cases that we do not know how to
treat. Of particular interest is the lamplighter group, or solvable Baumslag-
Solitar groups (for which only weakly aperiodic SFTs are known). Furthermore,
it is not true that every solvable group has a strongly aperiodic SFT as there
exist solvable finitely presented group with an undecidable word problem [8].

Another possible generalization which is promising is Noetherian groups,
which are groups where every subgroup is finitely generated. The wilder ex-
amples of Noetherian groups, Tarski monsters, do admit strongly aperiodic SFT
X [10] (where points in X might have finite, non trivial stabilizer), so it is quite
possible that all Noetherian groups (which are not virtually cyclic) do admit
strongly aperiodic SFT.
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A Automorphism-free SFT

We finish with a new definition of aperiodicity

Definition A.1. Let G be a group. Let Aut(G) be the group of automorphisms
of G. For φ ∈ Aut(G), let φ(x) be the point defined by φ(x)g = xφ(g).

For a subshift X and a point x, let Div(x,X) = {φ ∈ Aut(G), φ(x) ∈ X}
We say that a nonempty subshift X is automorphism-free if Div(x,X) is

trivial for all x ∈ X.

The interest of automorphism-free SFT is seen by the following remarks:

Proposition A.2. Let G = Z
n with n > 1. Then an automorphism-free SFT

X of G is strongly aperiodic.

Proof. In this proof, we will see Zn as a Z-module and will write the law group
additively and not multiplicatively.

Let x ∈ X . Let u ∈ Z
n. Let v be any nonzero element of Z

n that is
orthogonal to u, that is uvT = 0.

Define φ(g) = g + (gvT )u. Then φ is an automorphism of Zn, the inverse
being given by ψ(g) = g− (gvT )u. (In a basis with some basis vectors collinear
to u and v, φ would be a identity matrix with one other nonzero coefficient).

Suppose that u is a vector of periodicity for x, i.e. u · x = x, therefore
xg−u = xg for all g ∈ Z

n

However, for all g ∈ Z
n, gvT is an integer, therefore φ(g) = g + ku for some

k depending on g. Therefore xφ(g) = xg.
In particular φ(x) = x. Therefore φ(x) ∈ X . Therefore φ is trivial, that is

u = 0.

And the fact that automorphism-free SFT do exist:

Proposition A.3. Let n > 1. Then Z
n admits a automorphism-free SFT.

Proof. Let {e1, e2 . . . en} be the canonical base of Zn. Let Vi be the module
generated by all vectors {ej, j 6= i}.

We will first build, for all i, a SFTXi s.t. if x ∈ Xi and φ is an automorphism
of Zn s.t. φ(x) ∈ Xi, then φ(Vi) = Vi. It is sufficient to do it for i = 1.

To do this, we will start from a SFT Y on AZ
2

built by Kari [11]. On this
SFT, a mapping π : A 7→ {0, 1} can be defined s.t. for any configuration x ∈ Y ,
every column of π(x) (i.e. in direction e2) is monochromatic, and every row
contains a sturmian word of irrational slope. This implies in particular that
every line of the form (kpe1)k∈Z, with p 6= 0, cannot be monochromatic.

We extend this SFT Y to a SFT X1 on Z
n by imposing every configuration

to be periodic in direction e3 . . . en. Doing this, we have built a (nonempty)
SFT with the following property: for every point x ∈ X1:

• π(xp1e1+p2e2+...pnen) = π(xp1e1)

• (π(xp1ke1 ))k∈Z is not monochromatic unless p1 = 0.
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Now, let x ∈ X1 and φ an automorphism of Zn s.t. y = φ(x) ∈ X1. Let
φ(e2) = p1e1+p2e2+. . . pnen. As y ∈ X1, (π(yke2 ))k∈Z must be monochromatic.
But π(yke2 ) = π(φ(x)ke2 ) = π(xφ(ke2)) = π(xkp1e1). Therefore p1 = 0. Doing
the same with e3 . . . en, we have proven that if φ(x) ∈ X1, then φ(V1) = V1.

We build in the same way SFTs X2, X3 . . .Xn with similar properties and
we take X = X1 ×X2 · · · ×Xn.

By the previous discussion, if x ∈ X and φ(x) ∈ X then φ(Vi) = Vi for all i.
This implies in particular φ(ei) = ±ei.

To finish, let Z be the SFT over the alphabet {0, 1, 2}n that consists in the
point z defined by zp1e1+...pnen = (p1 mod 3, p2 mod 3, . . . pn mod 3) and its
3n − 1 other translates.

It is easy to see that if z ∈ Z and φ(z) ∈ Z then it is not possible to have
φ(ei) = −ei for some i.

Therefore X × Z is automorphism-free.
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