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Abstract. Effective representation of the diffusion signal’s dependence
on diffusion time is a sought-after, yet still unsolved, challenge in diffusion
MRI (dMRI). We propose a functional basis approach that is specifically
designed to represent the dMRI signal in this four-dimensional space –
varying over gradient strength, direction and diffusion time. In particu-
lar, we provide regularization tools imposing signal sparsity and signal
smoothness to drastically reduce the number of measurements we need to
probe the properties of this multi-spherical space. We illustrate a novel
application of our approach, which is the estimation of time-dependent
q-space indices, on both synthetic data generated using Monte-Carlo
simulations and in vivo data acquired from a C57Bl6 wild-type mouse.
In both cases, we find that our regularization approach stabilizes the
signal fit and index estimation as we remove samples, which may bring
multi-spherical diffusion MRI within the reach of clinical application.

1 Introduction

Effective representation of the diffusion signal’s dependence on diffusion time
is a sought-after, yet still unsolved challenge in diffusion MRI (dMRI). Recent
literature is increasingly emphasizing the need for such a representation, where
accounting for the diffusion time dependence of the extra-axonal diffusion sig-
nal [1, 2] has already resulted in a more accurate estimation of the axon density
and diameter [3]. To measure the four-dimensional dMRI signal it is necessary to
go beyond a multi-shell q-space acquisition – which only varies gradient strength
and direction – and also vary the diffusion time. This multi-spherical acquisition
is hardly feasible in a clinical setting due to a large number of sample points in
this four-dimensional space-time framework.

To reduce the number of required samples, we propose to leverage the re-
cently proposed representation of the multi-spherical signal in terms of an or-
thogonal functional basis inspired by Fick et al. [4]. Particularly, we will show
that the multi-spherical dMRI signal is sparse when represented in terms of this
basis. Different sparse signal reconstruction frameworks, e.g. [5, 6], have shown
that signal sparsity allows for a significant reduction in the number of acquired
samples. Furthermore, sparse signal reconstruction has been successfully used in
different dMRI protocols, see e.g. [7–10]. However, to the best of our knowledge,



we are the first to facilitate microstructural measurements by leveraging the
sparsity of the spatial and temporal dMRI signal using a novel functional basis.
We demonstrate that we are able to reduce the number of required samples for
a multi-spherical dMRI acquisition and derive time-dependent microstructural
features on both simulated data and in-vivo mouse data.

This paper is structured as follows: first, we present the theory behind our
estimation method in Section 2. We then describe our methods of generating in-
silico multi-spherical data and the parameters of our in vivo dMRI acquisition
of C57Bl6 wild-type mouse in Section 3. In section 4 we then show the results
of our method, we discuss our findings and present our conclusions in Section 5.

2 Theory

We first provide the relation between the measured multi-spherical diffusion sig-
nal and the four-dimensional ensemble average propagator (EAP) in section 2.1.
We then explain the properties that we would like our multi-spherical represen-
tation to have, and provide the details on the functional basis representation and
regularization which are used to impose the desired properties in Section 2.2.

2.1 The Four-Dimensional Ensemble Average Propagator

In dMRI, the EAP describes the probability density that a spin diffuses a certain
distance in a given diffusion time. The EAP is estimated by obtaining diffusion-
weighted images (DWIs). A DWI is obtained by applying two sensitizing diffusion
gradients of pulse length δ to the tissue, separated by separation time ∆. The
resulting signal is ‘weighted’ by the average particle movements along the applied
gradient direction. When these gradients are considered infinitely short (δ → 0),
which can only be approximated in practice, the relation between the measured
signal S(q, τ) and the EAP P (r; τ) is given by a Fourier transform [11] as

E(q, τ) =

∫
R3

P (R; τ)e−2πiq·rdR with q =
γδG

2π
and τ = ∆− δ/3, (1)

where E(q, τ) = S(q, τ)/S0 is the normalized signal attenuation measured at
diffusion encoding position q, and S0 is the baseline image acquired without
diffusion sensitization (q = 0). We denote q = |q|, q = qu and R = Rr, where
u and r are 3D unit vectors and q, R ∈ R+. The wave vector q on the right
side of Eq. (1) is related to pulse length δ, nuclear gyromagnetic ratio γ and the
applied diffusion gradient vector G.

The four-dimensional EAP has boundary conditions with respect to {q, τ}:

– {q, τ = 0}: When τ = 0 the spins have no time to diffuse and the EAP is a
spike function at the origin, i.e, P (R; τ = 0) = δ(R). Following Eq. (1), the
signal attenuation will not attenuate for any value of q, i.e., E(q, τ = 0) = 1.



– {q, limτ→∞}: When limτ→∞E(q, τ) the signal attenuation is in the long dif-
fusion time limit and only signal contributions from restricted compartments
remain [16]. In this case, given infinite gradient strength and some assump-
tions on tissue composition [12, 13], q-space indices such as the Return-To-
Axis Probability (RTAP) are related to the mean apparent axon diameter.

– {q = 0, τ}: When q = 0 there is no diffusion sensitization so E(q = 0, τ) = 1.
With Fourier relationship in Eq. (1), this point also corresponds to the zeroth
harmonic of the EAP, which as a probability density integrates to one.

– {limq→∞, τ}: limq→∞E(q, τ) = 0, as even an infinitesimally small spin
movement will attenuate the signal completely.

2.2 Multi-Spherical Signal Representation

In dMRI, functional basis approaches have been used to efficiently represent the
diffusion signal with little assumptions on its shape. Following this methodology,
we represent the measured multi-spherical signal E(q, τ) in terms of a continu-
ous functional basis Ê(q, τ ; c), where the signal is now represented in terms of
coefficients c ∈ RNc . An effective representation Ê(q, τ ; c) should be able to

1. closely approximate the measured multi-spherical dMRI signal,

2. smoothly interpolate between and outside the measured {q, τ} points,

3. have a sparse representation in c,

4. be able to reconstruct the EAP from the fitted signal.

Requirements 1–3 are described in Eq. (2), while the fourth will follow by choos-
ing a functional basis that is also a Fourier basis.

argminc

(1)DataFidelity︷ ︸︸ ︷∫∫ [
E(q, τ)− Ê(q, τ ; c)

]2
dqdτ +

(2) Smoothness︷ ︸︸ ︷∫∫ [
∇2Ê(q, τ ; c)

]2
dqdτ +

(3) Sparsity︷ ︸︸ ︷
||c||1

subject to E(0, τ ; c) = 1, E(q, 0; c) = 1, P̂ (R, τ ; c) = IFT
(
Ê(q, τ ; c)

)
(2)

Note that the integrals over three-dimensional q have limits [−∞,∞ ] and those
over τ have limits [0,∞]. As stated in Section 2.1, the boundary constraints are
important to respect the Fourier relationship between the fitted signal attenua-
tion and the EAP.

Functional Basis Signal Representation We represent the multi-spherical
signal using an orthogonal basis that allows for the implementation of all our
previously stated requirements. As we assume an infinitely short gradient pulse
(δ → 0), we follow Callaghan et al.’s description of time-dependent diffusion in
pores and assume separability in the dependence of the dMRI signal to q and
τ [16]. Following this hypothesis, we can independently choose any representation



for these two spaces. We represent the combined space Ê(q, τ ; c) using the cross-
product between the spatial basis Φ(q) and temporal basis T (τ) as

Ê(q, τ ; c) =

Nq∑
i

Nτ∑
k

cik Φi(q)Tk(τ), (3)

where Nq and Nτ are the maximum expansion order of each basis and cik weights

the contribution of the ikth basis function to Ê(q, τ ; c).

A plethora of functional bases to represent q have been proposed, e.g. [8, 9, 12,
14]. Of these bases, we use the Mean Apparent Propagator (MAP) basis [12] as
it neatly fulfills all four previously stated requirements; (1) being an orthogonal
basis, it can accurately represent any signal over q using few coefficients; (2)
it allows to impose smoothness using analytic Laplacian regularization [13]; (3)
the isotropic MAP implementation was successfully used to obtain sparse signal
representation [8] and (4) MAP is a Fourier basis. It is worth noting that this
basis is different than Fick et al.’s basis, who used the isotropic implementation
(3D-SHORE) to represent q [4].

MAP’s signal basis is a product of three orthogonal Simple Harmonic Oscillator-
based Reconstruction and Estimation (SHORE) functions φn(u) [15]:

ΦN(i)(q,A) = φn1(qx, ux)φn2(qy, uy)φn3(qz, uz)

with φn(q, u) =
i−n√
2nn!

e−2π
2q2u2

Hn(2πuq)
(4)

with its Fourier transform, the EAP basis as

ΨN(i)(R,A) = ψn1
(Rx, ux)ψn2

(Ry, uy)ψn3
(Rz, uz)

with ψn(R, u) =
1√

2n+1πn!u
e−R

2/(2u2)Hn(R/u)
(5)

where H is a physicist’s Hermite polynomial of order n and u is a data-dependent
scale factor. As in MAP [12], before fitting, the data is rotated such that the
DTI eigenvectors are aligned with the coordinate axis and we can use the data-
dependent scaling matrix A = Diag(u2x, u

2
y, u

2
z) to scale the MAP basis functions

according to the anisotropy of the data. The zeroth order is a purely Gaussian
function while higher orders use the Hermite to correct this approximation to the
true shape of the data. For a given radial order Nrad the number of coefficients
is Nq = (Nrad + 2)(Nrad + 4)(2Nrad + 3)/24.

Our functional basis to describe τ was introduced in Fick et al. [4]. As a
limiting case the diffusion signal dependence on τ is exponential for pure Gaus-
sian diffusion and constant for diffusion in restricted geometries. To represent
τ we, therefore, choose a product of the negative exponential and a Laguerre
polynomial L, which together form an orthogonal basis over τ

Tp(τ, ut) = exp(−utτ/2)Lo(utτ) (6)



with basis order p and temporal scaling factor ut. The zeroth order is a pure
exponential function and higher orders use the Laguerre polynomials to correct
this approximation to the true shape of the signal.

For the rest of this work we will linearize the ordering of our multi-spherical
basis such that we use one basis index i with notation

Ê(q, τ ; c) =

Nc∑
i

ciΞi(q, τ,A, ut) =

Nc∑
i

ci ΦN(i)(q,A)Tp(i)(τ, ut) (7)

where the total number of fitted coefficients is Nc = (Nτ + 1)(Nq + 2)(Nq +

4)(2Nq + 3)/24. Using this notation, the fitted signal Ê(q, τ ; c) in the Data
Fidelity term in Eq. (2), with measured signal y ∈ RNy and Ny the number

of samples, can be represented as ŷ = Φc with Φ ∈ RNy×Nc with values Φij =
Ξj(qi, τi,A, ut).

The multi-spherical EAP can be reconstructed using MAP’s Fourier proper-
ties [12]. The Fourier transform only concerns the q-space, so the EAP is found
simply by switching Φ(q,A) in Eq. (7) by its Fourier transform in Eq. (5).

Analytic Laplacian Regularization We impose smoothness in the multi-
spherical signal reconstruction by using the squared norm of the Laplacian of
the reconstructed signal as a regularizer. We define the Smoothness term in Eq.
(2) as Laplacian functional U(c) as

U(c) =

∫∫ [
∇2Ê(q, τ ; c)

]2
dqdτ (8)

where, due to our choice of basis, the Laplacian of the reconstructed signal can
be estimated as ∇2Ec(q, τ) =

∑
i ci∇2Ξi(q, τ,A, ut). Eq. (8) can be further

rewritted in quadratic form as U(c) = cTUc with

Uik =

∫∫
∇2Ξi(q, τ,A, ut) · ∇2Ξk(q, τ,A, ut)dq dτ (9)

where the subscript ik indicates the ikth position in the regularization matrix. We
use the orthogonality of the basis functions (standard inner product on [0,∞])
to compute the values of the regularization matrix to a closed form depending
only on the basis orders and scale factors. We provide U in Appendix A.

Coefficient Estimation from Multi-Spherical Data We represent the multi-
spherical signal E(q, τ) in terms of a sparse coefficient vector c as y = Φc + ε
with Φ the observation matrix, y the signal values and ε the acquisition noise.
We frame the numerical implementation of our approach in the same way as we
did continuously in Eq. (2):

argminc

(1)DataFidelity︷ ︸︸ ︷
||y− Φc||2 +

(2) Smoothness︷ ︸︸ ︷
β||cTUc||2 +

(3) Sparsity︷ ︸︸ ︷
α||c||1

subject to Φconstraintsc = 1

(10)



where we described the Data Fidelity and Smoothness term in Section 2.2, and
the Sparsity term and constraints are imposed by framing our problem as a con-
vex optimization using the open-source package CVXPY [17]. We find optimal
values for regularization weights α and β using cross-validation and implemented
the surrounding code infrastructure inside the DiPy framework [18].

2.3 Estimation of τ -dependent q-space Indices

Once coefficients c are known, our basis allows us to freely explore, for any
diffusion time, all previously proposed scalar metrics for the three-dimensional
EAP [12, 13], also known as q-space indices. We can do this because our basis
reduces to the MAP basis when the temporal basis is evaluated for a particular
diffusion time. In this work we illustrate this using the τ -dependent Return-To-
Origin Probability (RTOP) and Mean Squared Displacement (MSD):

MSD(τ) ,
∫
R3

P̂ (R, τ ; c)R2dR and RTOP (τ) , P̂ (0, τ ; c) (11)

3 Data Set Specification

Acquistion Scheme We will use the same acquisition scheme for both our syn-
thetic and in vivo mouse experiments. An illustration of this scheme is given
in Fig. 1. We acquire 32 different “shells” with 21 uniformly spread DWIs and
one b0 each using pulse duration δ = 5ms. Over these shells, we measure four
equispaced “τ -shells” ∆ = {8.7, 12.2, 15.8, 19.4}ms and eight approximately eq-
uispaced “gradient shells” between {50 − 520}mT/m. The minimum b-value is
bmin = 48s/mm2 and maximum b-value is bmax = 8590s/mm2.
In Silico Data Sets with Camino We use Camino [19] to reproduce diffusion
signals originating from tissues containing realistic axon diameter distributions
and packings. As we illustrate in Table 1, we use 5 gamma distributions from
Aboitiz et al. [20] and 6 from Lamantia et al. [21]. Similarly as in Alexander et
al. [22], we simulate the overall diffusion signal from these 11 distributions from
the same distributions with doubled axonal diameters and two different packing
densities, resulting in a total of 44 distributions.
Mouse acquisition data A spin echo sequence was acquired from a C57Bl6
wild-type mouse on an 11.7 Tesla Bruker scanner. The data consists of 96 ×
160 × 12 voxels of size 110 × 110 × 500µm. We manually created a brain mask
and corrected the data from eddy currents and motion artifacts using FSL’s
eddy correct [23]. We then drew a region of interest consisting of 72 voxels in
the middle slice in the corpus callosum, see Fig. 4, where we know the tissue is
reasonably coherent.

4 Experiments and Results

Radial and Temporal Order Fitting In this noiseless experiment, we find the
optimal choice of radial and temporal order to accurately fit the diffusion signal
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Fig. 1: Acquisition scheme for multi-
spherical acquisition. Every dot repre-
sents a shell with 21 DWIs and one b0
image. The contours represent b-value
isolines, whose values are given in the
colorbar.

Table 1: Simulated Gamma distribu-
tions, sorted by mean axonal diameter
〈D〉.

Origin shape (α) scale (β) 〈D〉 [µm]

Aboitiz 3.2734 2.4563e-07 1.60
Aboitiz 2.8771 2.4932e-07 1.43
Aboitiz 4.8184 1.3008e-07 1.25
Aboitiz 3.5027 1.6331e-07 1.14
Aboitiz 5.3316 1.0242e-07 1.09
Lamantia 5.2051 1.0227e-07 1.06
Lamantia 5.2357 9.3946e-08 0.98
Lamantia 10.1960 3.6983e-08 0.75
Lamantia 8.5358 3.7369e-08 0.64
Lamantia 5.9242 5.3249e-08 0.63
Lamantia 16.2750 1.4282e-08 0.46

with the lowest number of coefficients. We fit our multi-spherical basis to the
Camino data using different radial and temporal orders and calculate the mean
squared error (MSE) of the fitted signal to the original signal. We show the result
in Fig. 2a. We find that the mean absolute error of the signal over all distributions
falls below 1% at a radial order of 6 and temporal order of 2, resulting in 150
coefficients. We will use this combination in our next experiments.

Comparison with DTI Approximation In Fig. 2b we compare the MSE
of fitting DTI, the basis of Fick et al. [4] and our multi-spherical approach to
subsets of the noiseless data with increasing maximum b-values. As the maximum
b-value increases, data with higher gradients strengths and diffusion times are
included (see Fig 1). Our approach fits diffusion restriction over q and τ best of
the three methods regardless of b-value.

Multi-spherical Signal Reconstruction and q-space Index Estimation
To reduce the number of measurements, we regularize the basis fitting with
a combination of imposing smoothness in the fitted signal and sparsity in the
basis coefficients. To study its effectiveness, we first add Rician noise to the
Camino data such that the signal-to-noise (SNR)-ratio is 20. We then randomly
subsample, fit and then recover the data from our model and estimate the MSE
with the noiseless data. The experiment for every chosen number of samples
is repeated 50 times for all 44 voxels with each a different noise instance. The
result can be seen in Fig. 3a, where our combined approach (yellow) has the
lowest MSE, followed by using only the Laplacian (green) and the worst is least
squares (red). We also show the effects of using between 600 samples (green) and
100 samples (blue) on the estimation of the Mean Squared Displacement (MSD)
and the q-space index Return-To-Origin probability (RTOP) in Figs. 3b and 3c.
We see that MSD increases as time increases, while its profile does not change
much until the profile flattens for 100 samples. In contrast, we see that RTOP
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Fig. 2: (a) Noise free fitting of Camino data set using different radial and time or-
ders using our multi-spherical basis. The color intensity shows the mean squared
error and the green dots indicate orders for which the mean absolute error of
the reconstruction is smaller than 1% of the b0 value. (b) Comparison of the
fitting error between DTI, the approach of Fick et al. [4] and our multi-spherical
approach over maximum b-value.

decreases over time and as the number of samples reduces, the overall RTOP
values decrease. Again for 100 samples, the profile flattens out.
Application to in-vivo Mouse Acquisition Finally, we apply our method
to in vivo acquired data from a C57Bl6 wild-type mouse. The results are shown
in Fig. 4. First, we estimate MSD and RTOP for the whole data and show
their values for different diffusion times on the top left. RTOP decreases as time
increases, which corresponds with the in-silico experiments. In MSD we first find
an overall increase, after which a small decrease is seen. The latter phenomenon
does not correspond with what we previously found. We then again randomly
subsample the data for all voxels in the ROI and estimate the MSE, together
with the MSD and RTOP for a chosen diffusion time of τ = 14ms. The trends for
all markers correspond with the synthetic data: MSE increases, RTOP decreases,
and MSD stays the same as the number of samples decreases.

5 Discussion and Conclusion

In this work, we proposed a novel functional basis to efficiently represent the
multi-spherical diffusion signal over both three-dimensional q-space and diffusion
time. We regularized this basis by imposing both smoothness in the fitted signal
using Laplacian regularization and sparsity in the fitted coefficients. Compared
to the work by Fick et al. [4], the main methodological differences are the q-
space representation, where we use the MAP basis instead of 3D-SHORE, and
the sparsity term. As Figure 2b shows, using MAP allows us to fit the multi-
spherical signal better than [4] using the same number of coefficients. We remark
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Fig. 3: Effect of random subsampling at SNR=20 on (a) mean squared error
(MSE) for different regularization techniques, (b) the time-dependent Return-
To-Origin Probability (RTOP) and (c) Mean Squared Displacement (MSD). (a)
Our combined sparsity and Laplacian regularization (yellow) has lower MSE
than only Laplacian (green) and least squares (red). (b) and (c) show the MSD
and RTOP using 600 samples (green) to 100 samples (blue).

that DTI fits the multi-spherical signal worst as it cannot describe diffusion
restriction over q or τ . This limitation becomes more apparent at higher b-
values, which is exactly where the diffusion signal is most characterizing of the
underlying tissue.

This work is also the first to estimate and study the progress of three-
dimensional q-space indices over diffusion time. Our basis is especially well-
suited for this exploration. For any evaluated diffusion time the basis reduces
to MAP, which allows us to calculate all of its previously proposed indices [12,
13]. For now, we focused on the well-known Mean Squared Displacement (MSD)
and Return-to-Origin Probability (RTOP). We found that the recovered trends
in synthetic data correspond with what we expect from theory (Figs. 3b,3c).
As diffusion time increases, spins get more time to diffusive, so MSD increases
and RTOP decreases. Decreasing the number of samples did not influence MSD
trends so much, but RTOP trends did lower, possibly related to removal of sam-
ples along the “restricted” direction in the signal. Overall, a lower bound of
reliable index estimation seems to be around 200 samples using random sub-
sampling, as both profiles flatten out at this point.

Applying our method to real multi-spherical data from a mouse produces
mostly coherent results with the simulated data. Again we find that RTOP drops
as diffusion time increases, and lowering the number of samples decreases the
RTOP and leaves MSD mostly unaffected. As fewer samples were used, we found
more negative (infeasible) RTOP values. To avoid this, our framework could still
be improved by adding a positivity constraint like in Özarslan et al. [12].

Regardless, our multi-spherical basis is the first of its kind in being specif-
ically designed to represent the four-dimensional EAP and analyzing its prop-
erties. Our proposed regularization allows us to significantly reduce the number
of measured samples, which may eventually bring multi-spherical diffusion MRI
within the reach of clinical application.
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A Analytic Laplacian Regularization

We provide the analytic form of the Laplacian regularization matrix in Eq. (9).
As our basis is separable in q and τ , the Laplacian of our basis function Ξi is

∇2Ξi(q, τ, us, ut) =
(
∇2

qΦi(q, us)
)
Ti(τ, ut) + Φi(q, us)

(
∇2
τTi(τ, ut)

)
(12)

with ∇2
q and ∇2

τ the Laplacian to either q or τ . We then rewrite Eq. (9) as

Uik =

∫
R

(∇2
qΦi)(∇2

qΦk)dq

∫
R
TiTkdτ +

∫
R
ΦiΦkdq

∫
R

(∇2
τTi)(∇2

τTk)dτ

+

∫
R

(∇2
qΦi)Φkdq

(∫
R
Ti(∇2

τTk)dτ +

∫
R

(∇2
τTi)Tkdτ

) (13)

Eq. (13) can be calculated to a closed form using the orthogonality of physicists’

Hermite polynomials with respect to weighting function e−x
2

on [−∞,∞]. Let
us first consider the integrals with respect to q, which all parts of the Laplacian



regularization functional of the MAP basis [13]. Writing the second order deriva-
tive as a double apostrophe ′′, the Laplacian of the spatial basis is given in terms
of the 1D-SHORE functions as ∇2

qΦi = φ
′′

nxφnyφnz + φnxφ
′′

nyφnz + φnxφnyφ
′′

nz .
The integral of the product of two Laplacians therefore becomes a sum of 9
terms, but can be described using the following three equations:

Um
n (u) =

∫
R
φ
′′
nφ
′′
mdq = u32(−1)nπ7/2

(
δmn 3(2n2 + 2n+ 1) + δm+4

n

√
n!/m!

+ δmn+2 (6 + 4n)
√
m!/n! + δmn+4

√
m!/n! + δm+2

n (6 + 4m)
√
n!/m!

)

Vm
n (u) =

∫
R
φ
′′
nφmdq = u(−1)n+1π3/2

(
δmn (1 + 2n) +δm+2

n

√
n(n− 1) + δmn+2

√
m(m− 1)

)
(14)

Wm
n (u) =

∫
R
φnφmdq = u−1δmn (−1)n/(2π1/2)

Using the functions in Eq. (14) we define the q-dependent parts of Eq. (13):∫
R
(∇2

qΦi)(∇2
qΦk)dq =

u3
x

uyuz
Uxk
xi Wyk

yi Wzk
zi +2

uxuy
uz

Vxk
xi Vyk

yi Wzk
zi +

u3
y

uzux
Uyk
yi Wzk

zi Wxk
xi

+ 2
uyuz
ux

Vyk
yi Vzk

zi Wxk
xi +

u3
z

uxuy
Uzk
zi Wxk

xi Wyk
yi +2

uxuz
uy

Vxk
xi Vzk

zi Wyk
yi∫

R
(∇2

qΦi)(Φk)dq =
ux
uyuz

Vxk
xi Wyk

yi Wzk
zi +

uy
uxuz

Vxk
xi Wyk

yi Wzk
zi +

uz
uxuy

Vxk
xi Wyk

yi Wzk
zi∫

R
ΦiΦkdq =

1

uxuyuz
Wxk
xi Wyk

yi Wzk
zi

For terms with τ , we denote the operator Mx2
x1

= min(x1, x2) for the minimal
value of x1, x2 and Hx the Heaviside step function with Hx = 1 iffx ≥ 0.∫

R
(∇2

τTi)(∇2
τTk)dτ =

(
1

4
|o(i)− o(k)|+ 1

16
δ
o(k)

o(i) +M
o(k)

o(i)

+
∑M

o(k)
o(i)

+1

p=1 (o(i)− p)(o(k)− p)H
M
o(k)
o(i)
−p +Ho(i)−1Ho(k)−1

(
o(i) + o(k)− 2

+
∑M

o(k)−2
o(i)−1

p=0 p+
∑M

o(k)−1
o(i)−2

p=0 p+M
o(k)−1

o(i)−1 (|o(i)− o(k)| − 1)H(|o(i)−o(k)|−1)

))
(∫

R
Ti(∇2

τTk)dτ +

∫
R
(∇2

τTi)Tkdτ

)
= ut

(
1

2
δ
o(k)

o(i) + (1− δo(k)o(i) ) · |o(i)− o(k)|
)

∫
R
TiTkdτ = 1/utδ

o(i)

o(k)

References

1. Novikov, Dmitry S., et al. ”Revealing mesoscopic structural universality with diffu-
sion.” PNAS 111.14 (2014): 5088-5093.



2. Burcaw, Lauren M. et al., ”Mesoscopic structure of neuronal tracts from time-
dependent diffusion.” NeuroImage 114 (2015): 18-37.

3. De Santis, Silvia et al., ”Including diffusion time dependence in the extra-axonal
space improves in vivo estimates of axonal diameter and density in human white
matter.” NeuroImage 130 (2016): 91-103.

4. Fick, Rutger, et al. ”A unifying framework for spatial and temporal diffusion in
diffusion MRI.” IPMI. Springer International Publishing, 2015.

5. Candès, Emmanuel J., and Michael B. Wakin. ”An introduction to compressive
sampling.” IEEE Signal Proc Mag 25.2 (2008): 21-30.

6. Candès, Emmanuel J. et al. ”Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information.” IEEE T Inform Theory 52.2
(2006): 489-509.

7. Paquette, Michael, et al. ”Comparison of sampling strategies and sparsifying trans-
forms to improve compressed sensing diffusion spectrum imaging.” MRM 73.1
(2015): 401-416.

8. Merlet, Sylvain L., and Rachid Deriche. ”Continuous diffusion signal, EAP and ODF
estimation via compressive sensing in diffusion MRI.” MIA 17.5 (2013): 556-572.

9. Rathi, Yogesh, et al. ”Multi-shell diffusion signal recovery from sparse measure-
ments.” MIA 18.7 (2014): 1143-1156.

10. Bilgic, Berkin, et al. ”Accelerated diffusion spectrum imaging with compressed
sensing using adaptive dictionaries.” MRM 68.6 (2012): 1747-1754.

11. Stejskal, E. O. ”Use of spin echoes in a pulsed magneticfield gradient to study
anisotropic, restricted diffusion and flow.” J Chem Phys 43.10 (1965): 3597-3603.
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