
HAL Id: hal-01355365
https://hal.inria.fr/hal-01355365

Preprint submitted on 23 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0
International License

Stability revisited: new generalisation bounds for the
Leave-one-Out

Alain Celisse, Benjamin Guedj

To cite this version:
Alain Celisse, Benjamin Guedj. Stability revisited: new generalisation bounds for the Leave-one-Out.
2016. �hal-01355365�

https://hal.inria.fr/hal-01355365
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Stability revisited: new generalisation bounds for the
Leave-one-Out

Alain Celisse∗
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Abstract

The present paper provides a new generic strategy leading to non-asymptotic
theoretical guarantees on the Leave-one-Out procedure applied to a broad class
of learning algorithms. This strategy relies on two main ingredients: the new
notion of Lq stability, and the strong use of moment inequalities. Lq stability
extends the ongoing notion of hypothesis stability while remaining weaker than
the uniform stability. It leads to new PAC exponential generalisation bounds for
Leave-one-Out under mild assumptions. In the literature, such bounds are available
only for uniform stable algorithms under boundedness for instance. Our generic
strategy is applied to the Ridge regression algorithm as a first step.

1 Introduction

A massive variety of learning algorithms rely upon unknown parameters that crucially influence
the final statistical performance (such as Lasso, Ridge, . . . ). Cross-validation (CV) procedures are
among the most popular data-driven approaches used to assess the performance of estimators, and
calibrate their unknown parameters. We refer for instance to Arlot and Celisse [2010] for a survey on
CV procedures. Among them, the Leave-one-Out [LoO, Stone, 1974] procedure is fairly intuitive,
hence widely used. Yet its popularity contrasts with the few theoretical results often available in
specific settings and derived at the price of strong assumptions [such as boundedness in Bousquet
and Elisseeff, 2002, Example 3].

The present paper has the ambition to provide non-asymptotic theoretical guarantees on the LoO
procedure. We propose a generic strategy to consistently analyse the LoO estimator for learning
algorithms. This strategy is based on two ingredients: stability and moment inequalities, which
provide concentration results when combined [see for example Boucheron et al., 2013, for an
extensive review]. Such concentration results are then precious to derive generalisation bounds, i.e.,
upper bounds on the discrepancy between the LoO estimator and its prediction error (see for instance
McDiarmid, 1989 and Devroye, 1991 for papers in that direction).

The notion of stability has first been introduced by Devroye and Wagner [1979] and further studied
for instance by Kearns and Ron [1999] and Bousquet and Elisseeff [2002]. This concept has emerged
as an effective measure of the ”smoothness” of a learning algorithm with respect to its input data. For
an introduction to stability and connections with other topics such as reproducibility, see Yu [2013].
Over the past decades, the use of stability to derive generalisation bounds has received much attention
in the statistical and machine learning community. Existing results rely upon stability assumptions
such as the hypothesis or uniform stability. For instance, hypothesis stability is used by Devroye
and Wagner [1979, Eq. (7)] to derive an upper bound of order 2 moments of LoO for the k-nearest
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neighbors algorithm. The stronger uniform stability [Bousquet and Elisseeff, 2002, Definition 6]
enables to provide a PAC exponential bound for the LoO estimator.

Further insightful analyses of various notions of stability can be found in Kutin and Niyogi [2002],
Evgeniou et al. [2004], Elisseeff et al. [2005], Rakhlin et al. [2005], Mukherjee et al. [2006], Shalev-
Shwartz et al. [2010], Kale et al. [2011], Kumar et al. [2013] and Villa et al. [2013] to name but a
few.

Our main contributions. The present paper introduces a generic strategy to derive new generalisa-
tion bounds for the LoO estimator applied to a broad family of learning algorithms. This strategy
relies on: (i) a new stability assumption that generalises the existing hypothesis stability [Bousquet
and Elisseeff, 2002, Definition 3] while remaining weaker than uniform stability [Bousquet and
Elisseeff, 2002, Definition 6], and (ii) moment inequalities. Combining those two ingredients leads
to PAC generalisation bounds. For the sake of brevity, we illustrate this strategy by focusing on the
Ridge regression algorithm. As part of our contributions, we develop a thorough analysis of the
LoO estimator applied to the Ridge regression and obtain generalisation bounds under Lq stability
(Theorem 3 and Theorem 4) matching state-of-the-art results earlier established by Bousquet and
Elisseeff [2002, Example 3] under the stronger notion of uniform stability. Let us stress though that
the proposed strategy is in no way limited to this algorithm and calls for future work to extend it to
other algorithms.

The paper is organised as follows: Section 2 contains our notion of Lq stability for learning algorithms.
In particular, we provide an upper bound on the Lq stability of the Ridge regression algorithm
(Theorem 1). Section 3 establishes generalisation bounds in terms of moment inequalities for LoO
(Theorem 2). This allows for PAC exponential generalisation bounds in Section 4, which is the main
achievement of the paper. Specific results in Theorem 3 and Theorem 4 for the Ridge regression
algorithm are also provided. The paper closes with some perspectives in Section 5, and Appendix A
wraps up technical results.

2 Stability of learning algorithms

The main purpose of the present section is to introduce a generalisation of the notion of L1 stability,
also called hypothesis stability [Devroye and Wagner, 1979], to the higher order Lq stability with
q ≥ 2. In particular this new notion turns out to be useful to derive PAC generalisation bounds for the
LoO estimator of various learning algorithms (see Section 3 and Section 4).

2.1 Framework and notation

In what follows, A denotes a learning algorithm (see Section 2.3 for examples). From a training
sampleD = (Z1, . . . , Zn) ∈ (X×Y)n of n independent and identically distributed random variables
with Zi = (Xi, Yi) ∼ P (unknown), A outputs an estimator A(D) : X ⊂ Rd → Y ⊂ R. Here
we only consider symmetric algorithms, i.e., A does not depend on the order of the sample points
Z1, . . . , Zn. We also assume that for any 1 ≤ i ≤ n,

Assumptions. To ease the reading of what follows, we provide simplified results under the follow-
ing (somewhat restrictive) assumptions:

• Boundedness of X:
Let us assume that there exists 0 < BX < +∞ such that

∀ 1 ≤ i ≤ n, |Xi|2 ≤ BX , a.s. (XBd)

• Boundedness of Y :
Let us assume that there exists 0 < BY < +∞ such that

∀ 1 ≤ i ≤ n, |Yi| ≤ BY , a.s. (YBd)

• Sub-Gaussianity of Y :
Let us assume there exists v > 0 such that

∀ 1 ≤ i ≤ n, ‖Yi − E [Yi ]‖q ≤ 2e
√
v
√
q. (SubG)
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However let us emphasize that most of the forthcoming results can be extended at the price of
additional technicalities to the unbounded case (at least for instance to the Gaussian setting for X).

The performance of algorithm A trained from D and evaluated at point X is c(A(D, X), Y ), where
c(·, ·) : Y × Y → R+ is a cost function. The prediction error of the estimator A(D) is the random
variable depending on D given by

LP (A(D)) = E(X,Y )∼P [ c (A(D, X), Y ) ] . (1)

In the sequel we let |·| denote the absolute value in R, |·|2 the Euclidean norm in Rd, ‖·‖op the
operator norm over the set of d× d matricesMd(R), and ‖·‖q the Lq(P)-norm for any q ≥ 1 where

P is a reference probability, i.e., ‖U‖q =
(∫
|U |q dP

)1/q
for any real-valued random variable U .

2.2 A new notion of stability: Lq stability

Our purpose is to bridge the gap between the weak notion of L1 stability [Bousquet and Elisseeff,
2002, Definition 3], which only provides PAC polynomial generalisation bounds [Bousquet and
Elisseeff, 2002, Section 4.1], and the stronger notion of uniform stability [Bousquet and Elisseeff,
2002, Definition 6], which leads to PAC exponential bounds yet may appear too restrictive [Kutin
and Niyogi, 2002, Section 3.1].

To this end the following definition generalises the L1 stability to higher order moments.
Definition 1 (Lq stability). Let A denote any symmetric learning algorithm, and c(·, ·) be any cost
function. Then for every q ≥ 1, A is said γq-Lq stable if there exists γq > 0 such that

∀ 1 ≤ j ≤ n, Sq(A, n)q = E [ |c (A(D, X), Y )− c (A(τj(D), X), Y )|q ] ≤ γqq ,
where the expectation is computed over D and (X,Y ) ∼ P , with (X,Y ) independent of D, and
τj(D) = (Z1, . . . , Zj−1, Zj+1, . . . , Zn) is the sample D where Zj = (Xj , Yj) has been removed.

The above Definition 1 requires to bound the variation of A induced by removing one training
point. This is in accordance with earlier definitions [Devroye and Wagner, 1979, Bousquet and
Elisseeff, 2002 and Evgeniou et al., 2004]. However, controlling high order moments provides more
information on the distribution of c (A(D, X), Y ) than simply considering hypothesis stability, that
is Lq stability with q = 1. Let us also mention that other notions of stability have been introduced,
which replace one training point by an independent copy [Kutin and Niyogi, 2002, Kale et al., 2011
and Kumar et al., 2013]. Finally let us emphasise that uniform stability obviously implies Lq stability
for every q ≥ 1.

2.3 Instances of stable learning algorithms

We now illustrate how the Lq stability notion translates onto two learning algorithms: the k-nearest
neighbors and the Ridge regression algorithms [Friedman et al., 2009, Section 13.3 and Section 3.4].

The k-nearest neighbors algorithm. For 1 ≤ k ≤ n− 1, let Vk(x) be the set of indices of the k
nearest neighbors (kNN) of x among X1, . . . , Xn. For binary classification, the kNN classifier is

Ak(D;x) =

{
1 if

∑n
j=1 Yj1{j∈Vk(x)} ≥ k/2,

0 otherwise.
(2)

Proposition 1 (Devroye and Wagner [1979], Eq. (14)). With the above notation, for every 1 ≤ k ≤
n− 1, Ak is γ1-L1 stable for the 0− 1 cost function c(y, y′) = 1{y 6=y′} with

γ1 =
4√
2π

√
k

n
·

Proof of Proposition 1. For every 1 ≤ j ≤ n, and using Lemma 5 for the last inequality,
E [ |c (A(D)(X), Y )− c (A(τj(D))(X), Y )| ] = E

[ ∣∣1{Ak(D)(X)6=Y } − 1{Ak(τj(D))(X)6=Y }
∣∣ ]

= P [Ak(D)(X) 6= Ak(τj(D))(X) ] ≤ 4√
2π

√
k

n
·
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The Ridge regression algorithm. Let us recall that for any λ > 0, the Ridge estimator is given by

Aλ (D) = arg min
β∈Rd

{
1

n

n∑
i=1

(Yi − 〈Xi, β〉Rd)
2

+ λ |β|22

}
=

1

n

(
Σ̂ + λId

)−1
XTY, (3)

where Σ̂ = XTX/n = 1/n
∑n
i=1XiX

T
i denotes the empirical covariance matrix. Then,

Theorem 1. For any sample size n > 1, η ∈ (0, 1), and λ > [ η(n− 1) ]
−1, let Aλ be given by

Eq. (3) and set c(y, y′) = (y − y′)2. Then, assuming (XBd), Aλ is γq-Lq stable for any q ≥ 1 with

γq = 2 ‖Y ‖22q
B2
X

nλ

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
,

where γq = +∞, if ‖Y ‖2q = +∞.

The Lq stability holds with the Ridge algorithm under the very mild assumption that Y admits finite
moments of order q for some q ≥ 1. Unsurprisingly, the stronger assumption of Bousquet and
Elisseeff [2002, Example 3] leads to a similar upper bound in terms of Lq stability.

The proof of Theorem 1 relies on the two following technical lemmas.
Lemma 1. With the above notation, let us define η ∈ (0, 1) and n satisfy nη > 1. If (XBd) holds
true, then for every λ > B2

X (nη − 1)
−1, it results

|Aλ (D)−Aλ (τj(D))|2 ≤
BX
nλ

|Yj |+ B2
X + λ

λ(1− η)

 1

n− 1

∑
i 6=j

|Yi|

 .

Proof of Lemma 1. Set Σ̂(j) = 1/(n− 1)
∑
i 6=j XiX

T
i .

|Aλ (D)−Aλ (τj(D))|2 ≤
∣∣∣∣ 1n (Σ̂ + λId

)−1 [
XTY − (X(j))TY (j)

]∣∣∣∣
2

+

∣∣∣∣[ 1

n

(
Σ̂ + λId

)−1
− 1

n− 1

(
Σ̂(j) + λId

)−1 ]
(X(j))TY (j)

∣∣∣∣
2

= T1 + T2.

First, Lemma 7 provides

T1 =

∣∣∣∣ 1n (Σ̂ + λId

)−1 [
XTY − (X(j))TY (j)

]∣∣∣∣
2

≤ 1

n

∥∥∥∥(Σ̂ + λId

)−1∥∥∥∥
op

|XjYj |2 ≤
1

nλ
|Yj | |Xj |2 .

Then, (XBd) yields

T1 ≤
1

nλ
|Yj |BX . (4)

Second, it is straightforward to observe that

T2 ≤
1

n

∥∥∥∥∥(Σ̂ + λId

)−1
−
(
n− 1

n
Σ̂(j) + λId −

1

n
λId

)−1∥∥∥∥∥
op

∣∣∣∣∣∣
∑
i6=j

XiYi

∣∣∣∣∣∣
2

.

Further, writing n−1
n Σ̂(j) + λId = Σ̂ + λId + n−1

n Σ̂(j) − Σ̂, we obtain(
Σ̂ + λId

)−1
−
(
n− 1

n
Σ̂(j) + λId −

1

n
λId

)−1
=
(

Σ̂ + λId

)−1
−
(

Σ̂ + λId +Bj

)−1
,

with Bj = n−1
n Σ̂(j) − Σ̂− 1

nλId = −
(
XjX

T
j + λId

)
/n. Then, Lemma 6 and Lemma 7 yield∥∥∥∥∥(Σ̂ + λId

)−1
−
(
n− 1

n
Σ̂(j) + λId −

1

n
λId

)−1∥∥∥∥∥
op
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≤
∥∥∥∥(Σ̂ + λId

)−1∥∥∥∥2
op

∥∥(XjX
T
j + λId

)
/n
∥∥
op

∥∥∥∥∥
(
Id +Bj

(
Σ̂ + λId

)−1)−1∥∥∥∥∥
op

≤
|Xj |22 + λ

nλ2

∥∥∥∥∥
(
Id +Bj

(
Σ̂ + λId

)−1)−1∥∥∥∥∥
op

.

Further assuming that for every η ∈ (0, 1), n > η−1 and λ > B2
X

nη−1 , then Lemma 8 and (XBd) lead
to ∥∥∥∥∥
(
Id +Bj

(
Σ̂ + λId

)−1)−1∥∥∥∥∥
op

≤

(
1−
‖Bj‖op
λ

)−1
≤
(

1− B2
X + λ

nλ

)−1
≤ (1− η)

−1
.

Using (XBd), this allows to conclude that

T2 ≤
B2
X + λ

nλ2
BX

1− η

 1

n− 1

∑
i 6=j

|Yi|

 . (5)

Finally gathering Eq. (4) and (5), one obtains

|Aλ (D)−Aλ (τj(D))|2 ≤
BX
nλ

|Yj |+ B2
X + λ

λ(1− η)

 1

n− 1

∑
i 6=j

|Yi|

 .

Lemma 2. With the above notation, let us define η ∈ (0, 1) and n satisfy nη > 1. If (XBd) holds
true, then for every λ > B2

X (nη − 1)
−1, one has

|2Y −Aλ (D;X)−Aλ (τj(D);X)| ≤ 2 |Y |+BX

 1

nλ

n∑
i=1

|Yi|+
1

(n− 1)λ

∑
i 6=j

|Yi|

 .

Proof of Lemma 2. Combining the Cauchy-Schwarz inequality with (XBd) yields

|2Y −Aλ (D;X)−Aλ (τj(D);X)| ≤ 2 |Y |+ |< X,Aλ (D) >Rd |+ |< X,Aλ (τj(D)) >Rd |
≤ 2 |Y |+BX

(
|Aλ (D)|2 + |Aλ (τj(D))|2

)
≤ 2 |Y |+BX

 1

nλ

n∑
i=1

|Yi|+
1

(n− 1)λ

∑
i 6=j

|Yi|

 ,

since Eq. (3) and (XBd) imply |Aλ (D)|2 ≤
1
nλ |
∑n
i=1XiYi|2 ≤ BX/(nλ)

∑n
i=1 |Yi|.

Proof of Theorem 1. With c(t(x), y) = (t(x)− y)
2, any q ≥ 1, the Cauchy-Schwarz inequality

provides

Sq (Aλ(D)) = ‖c (Aλ (D;X) , Y )− c (Aλ (τj(D);X) , Y )‖q
≤ ‖Aλ (D;X)−Aλ (τj(D);X)‖2q ‖2Y −Aλ (D;X)−Aλ (τj(D);X)‖2q ,

since c(a, y)− c(b, y) = (a− b) (a+ b− 2y).

Another use of the Cauchy-Schwarz inequality combined with Aλ (D;X) = 〈Aλ (D) , X〉2 and the
independence between (X,Y ) and D leads to

‖Aλ (D;X)−Aλ (τj(D);X)‖2q ≤ ‖|X|2‖2q ×
∥∥|Aλ (D)−Aλ (τj(D))|2

∥∥
2q

≤ BX ×
∥∥|Aλ (D)−Aλ (τj(D))|2

∥∥
2q
. (6)

5



Let us notice that Lemma 1 implies∥∥|Aλ (D)−Aλ (τj(D))|2
∥∥
2q
≤ BX

nλ

‖Yj‖2q +
B2
X + λ

λ(1− η)

∥∥∥∥∥∥ 1

n− 1

∑
i 6=j

|Yi|

∥∥∥∥∥∥
2q


≤ BX

nλ

(
1 +

B2
X + λ

λ(1− η)

)
‖Y ‖2q , (7)

where Y denotes an independent copy of the Yis.

Likewise, Lemma 2 results in
‖2Y −Aλ (D;X)−Aλ (τj(D);X)‖2q

≤ 2 ‖Y ‖2q +B2
X

∥∥∥∥∥ 1

nλ

n∑
i=1

|Yi|

∥∥∥∥∥
2q

+

∥∥∥∥∥∥ 1

(n− 1)λ

∑
i 6=j

|Yi|

∥∥∥∥∥∥
2q

 .

Since the Yis are identically distributed, the triangular inequality gives

‖2Y −Aλ (D;X)−Aλ (τj(D);X)‖2q ≤ 2 ‖Y ‖2q

(
1 +

B2
X

λ

)
. (8)

By combining Eq. (6), (7) and (XBd), we obtain
‖c (Aλ (D;X) , Y )− c (Aλ (τj(D);X) , Y )‖q

≤ B2
X

nλ

(
1 +

B2
X + λ

λ(1− η)

)
‖Y ‖2q × 2 ‖Y ‖2q

(
1 +

B2
X

λ

)
≤ 2 ‖Y ‖22q

B2
X

nλ

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
·

3 Deriving moment generalisation bounds from Lq stability

Let us recall that the goal is to upper bound with high probability the discrepancy between the LoO
estimator and the prediction error R̂1(A,D)− LP (A(D)). We now derive generalisation bounds
in terms of moments for the LoO estimator of some learning algorithm A. Recalling that the LoO
estimator associated with A is

R̂1(A,D) =
1

n

n∑
i=1

c(A(τi(D), Xi), Yi),

where τi(D) = (Z1, . . . , Zi−1, Zi+1, . . . , Zn), we now provide the main result of this section. It
upper bounds the moments of R̂1(A,D)−LP (A(D)). The main steps of its proof follow Corollary 1
below.
Theorem 2. For any sample size n ≥ 2 and any symmetric learning algorithm A, let R̂1(A,D) and
LP (A(D)) respectively denote the LoO estimator and the prediction error (see Eq. (1)). Then there
exists a numerical constant 0 < κ ≤ 1.271 such that, for any q ≥ 2,∥∥∥R̂1(A,D)− LP (A(D))−

(
E [LP (A(D)) ]− E

[
R̂1(A,D)

])∥∥∥
q

≤ √κqn
[√

2Sq(A, n) + 4Sq(A, n− 1)
]

+
2
√
κq
√
n

∥∥c(A(τj(D), Xj), Yj)− c(A(τj(D), X ′j), Y
′
j )
∥∥
q
,

where Sq(A, n) is given by Definition 1.

This result implies that R̂1(A,D) is a consistent estimator of LP (A(D)) in Lq(P) provided that
Sq(A, n) = o(1/

√
n) as n → +∞. For instance this holds true for the Ridge estimator with any

q ≥ 2 (Theorem 1).

The proof of Theorem 2 heavily relies on the following generalisation of the Efron-Stein inequality
[see Bousquet and Elisseeff, 2002, Theorem 1 for Efron-Stein inequality].
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Proposition 2 (Boucheron et al. [2013], Celisse and Mary-Huard [2015]). Let X1, . . . , Xn denote n
independent random variables and Z = f(X1, . . . , Xn), where f : Rn → R is any Borel function.
With Z ′j = f(X1, . . . , X

′
j , . . . , Xn), where X ′1, . . . , X

′
n are independent copies of the Xis, there

exists a universal constant κ ≤ 1.271 such that for any q ≥ 2,

‖Z − EZ‖q ≤
√

2κq

√√√√√
∥∥∥∥∥∥
n∑
j=1

(
Z − Z ′j

)2∥∥∥∥∥∥
q/2

.

Proposition 2 is a concentration result of Z around its expectation. This suggests a strategy to prove
Theorem 2 that is based on the triangular inequality and the successive control of R̂1(A,D) and
LP (A(D)) around their expectations. This is done in the following two lemmas.

Lemma 3. With the above notation, for any q ≥ 2,∥∥∥R̂1(A,D)− E
[
R̂1(A,D)

]∥∥∥
q

≤ 2
√
κq

[
2
√
nSq(A, n− 1) +

1√
n

∥∥c(A(τj(D), Xj), Yj)− c(A(τj(D), X ′j), Y
′
j )
∥∥
q

]
.

Proof of Lemma 3. First, note that Proposition 2 gives

∥∥∥R̂1(A,D)− E
[
R̂1(A,D)

]∥∥∥
q
≤
√

2κq

√√√√√
∥∥∥∥∥∥
n∑
j=1

(
R̂1(A,D)− R̂1(A,Dj)

)2∥∥∥∥∥∥
q/2

,

where Dj = (Z1, . . . , Z
′
j , . . . , Zn) and Z ′j is an independent copy of Zj for any j. Moreover,∥∥∥∥∥∥

n∑
j=1

(
R̂1(A,D)− R̂1(A,Dj)

)2∥∥∥∥∥∥
q/2

≤
n∑
j=1

2

 1

n

∑
i6=j

∥∥c(A(τi(D), Xi), Yi)− c(A(τi(Dj), Xi), Yi)
∥∥
q

2

+
2

n

∥∥c(A(τj(D), Xj), Yj)− c(A(τj(D), X ′j), Y
′
j )
∥∥2
q

= 2n

(
n− 1

n

)2

4S2q (A, n− 1) +
2

n

∥∥c(A(τj(D), Xj), Yj)− c(A(τj(D), X ′j), Y
′
j )
∥∥2
q

≤ 8nS2q (A, n− 1) +
2

n

∥∥c(A(τj(D), Xj), Yj)− c(A(τj(D), X ′j), Y
′
j )
∥∥2
q
,

and the proof ends by taking the square root on both sides of the inequality and using
√
a+ b ≤√

a+
√
b, for every a, b ≥ 0.

Lemma 4. Let LP (A(D)) denote the prediction error given by Eq. (1). Then for any q ≥ 2,

‖LP (A(D))− E [LP (A(D)) ]‖q ≤
√

2κq
√
nSq(A, n).

Proof. The proof is similar to that of Lemma 3.

‖LP (A(D))− E [LP (A(D)) ]‖q ≤
√

2κq

√√√√√
∥∥∥∥∥∥
n∑
j=1

[LP (A(D))− LP (A(τj(D))) ]
2

∥∥∥∥∥∥
q/2

≤
√

2κq

√
n
∥∥∥[LP (A(D))− LP (A(τj(D))) ]

2
∥∥∥
q/2
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≤
√

2κq

√
n
∥∥∥[ c (A(D, X), Y )− c (A(τj(D), X), Y ) ]

2
∥∥∥
q/2

=
√

2κq
√
n
∥∥∥[ c (A(D, X), Y )− c (A(τj(D), X), Y ) ]

2
∥∥∥
q

=
√

2κq
√
nSq(A, n).

Proof of Theorem 2. The triangular inequality and Lemmas 3 and 4 lead to∥∥∥LP (A(D))− R̂1(A,D)−
(
E [LP (A(D)) ]− E

[
R̂1(A,D)

])∥∥∥
q

≤ ‖LP (A(D))− E [LP (A(D)) ]‖q +
∥∥∥E [ R̂1(A,D)

]
− R̂1(A,D)

∥∥∥
q

≤ √κqn
[√

2Sq(A, n) + 4Sq(A, n− 1)
]

+
2
√
κq
√
n

∥∥c(A(τj(D), Xj), Yj)− c(A(τj(D), X ′j), Y
′
j )
∥∥
q
.

3.1 Application to Ridge regression

We now extend the result of Theorem 2 to the case of the Ridge regression algorithm.
Corollary 1 (Ridge: bounding the moments). With the notation of Theorem 2, for any sample size
n > 2, η ∈ (0, 1), and λ > [ η(n− 2) ]

−1, let Aλ(D) denote the Ridge estimator from Eq. (3). Then,
assuming (XBd), for any q ≥ 2,

(i) ∥∥∥R̂1(Aλ,D)− LP (Aλ(D))− E
[
R̂1(Aλ,D)− LP (Aλ(D))

]∥∥∥
q

≤
√
q
√
n

(
Γλ,1 ‖Y ‖2q + Γλ,2 ‖Y ‖22q

)
, (9)

(ii) ∥∥∥R̂1(Aλ,D)− LP (Aλ(D))
∥∥∥
q
≤
√
q
√
n

(
Γλ,1 ‖Y ‖2q + Γλ,2 ‖Y ‖22q

)
+

Γλ,3
n
‖Y ‖22q ,

(10)

where Γλ,1 = 8
√
κB2

X/λ, Γλ,2 = 2
√
κB2

X/λ
[

(8 +
√

2)
(

1 +
B2

X+λ
λ(1−η)

)(
1 +

B2
X

λ

)
+

4B2
X

λ

]
, and

Γλ,3 =
2B2

X

λ

(
1 +

B2
X+λ

λ(1−η)

)(
1 +

B2
X

λ

)
.

The first Eq. (9) is a direct consequence of Theorem 2. We recall that our goal is to quantify the
discrepancy between the LoO estimator and the prediction error R̂1(Aλ,D)− LP (Aλ(D)). This
justifies introducing Eq. (10).

With the Ridge estimator, the convergence rate of R̂1(Aλ,D) towards LP (Aλ(D)) is of order 1/
√
n

for any q ≥ 2. The upper bound highlights that the distribution of Y influences the convergence rate,
which deteriorates as ‖Y ‖q and ‖Y ‖2q grow. In particular, the dependence of the rate with respect to
q is strictly

√
q whenever Y is almost surely bounded as in (YBd). Under the weaker assumption

that Y is sub-Gaussian, an additional terms will emerge Note also that this bound allows to derive
PAC polynomial bounds by use of Markov-type inequalities.

The proof of Corollary 1 relies on the following proposition.
Proposition 3. Let Aλ(D) denote the Ridge estimator from Eq. (3) for every λ > 0, and assume
(XBd) holds true. Then, we have∥∥c(Aλ(τj(D), Xj), Yj)− c(Aλ(τj(D), X ′j), Y

′
j )
∥∥
q
≤ 4B2

X

λ
‖Y ‖2q +

4B4
X

λ2
‖Y ‖22q .
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Proof of Proposition 3. From (XBd), it comes∣∣∣〈Aλ(τj(D), Xj −X ′j
〉
2

∣∣∣ ≤ 2BX |Aλ(τj(D)|2 ,

and ∣∣∣Yj − 〈Aλ(τj(D), Xj〉2 + Y ′j −
〈
Aλ(τj(D), X ′j

〉
2

∣∣∣ ≤ |Yj |+ ∣∣Y ′j ∣∣+ 2B |Aλ(τj(D)|2 .

Since Eq. (3) and (XBd) imply |Aλ(τj(D)|2 ≤
BX

(n−1)λ
∑
i 6=j |Yi|, the independence between Yj , Y ′j

and {Yi}i 6=j provides∥∥c (Aλ(τj(D), Xj), Yj)− c
(
Aλ(τj(D), X ′j), Y

′
j

)∥∥
q

≤ 2B2
X

∥∥∥∥∥∥ 1

(n− 1)λ

∑
i6=j

|Yi|

∥∥∥∥∥∥
q

∥∥|Yj |+ ∣∣Y ′j ∣∣∥∥q + 4B4
X

∥∥∥∥∥∥∥
 1

(n− 1)λ

∑
i6=j

|Yi|

2
∥∥∥∥∥∥∥
q

≤ 4B2
X

λ
‖Y ‖2q +

4B4
X

λ2
‖Y ‖22q ,

where Y denotes an independent copy of the Yis and Y ′j .

Proof of Corollary 1. To prove claim (i), note that Theorem 2 and Proposition 3 lead to∥∥∥R̂1(Aλ,D)− LP (Aλ(D))− E
[
R̂1(Aλ,D)− LP (Aλ(D))

]∥∥∥
q

≤
√

2κq
√
nSq(Aλ, n) + 4

√
κq
√
nSq(Aλ, n− 1)

+
2
√
κq
√
n

∥∥c(Aλ(τj(D), Xj), Yj)− c(Aλ(τj(D), X ′j), Y
′
j )
∥∥
q

≤ 2(8 +
√

2)
√
κq
√
n ‖Y ‖22q

B2
X

nλ

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
+

2
√
κq
√
n

(
4B2

X

λ
‖Y ‖2q +

4B4
X

λ2
‖Y ‖22q

)
=

2
√
κq
√
n

B2
X

λ

[
(8 +

√
2) ‖Y ‖22q

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
+ 4 ‖Y ‖2q +

4B2
X

λ
‖Y ‖22q

]
=

2
√
κq
√
n

B2
X

λ

(
4 ‖Y ‖2q +

[
(8 +

√
2)

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
+

4B2
X

λ

]
‖Y ‖22q

)
.

To prove claim (ii), it only remains to notice that
∣∣∣E [LP (Aλ(D)) ]− E

[
R̂1(A,D)

]∣∣∣ ≤ Sq(Aλ, n)

by Jensen’s inequality. It results∥∥∥R̂1(Aλ,D)− LP (Aλ(D))
∥∥∥
q

≤
2
√
κq
√
n

B2
X

λ

(
4 ‖Y ‖2q +

[
(8 +

√
2)

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
+

4B2
X

λ

]
‖Y ‖22q

)
+

2B2
X

nλ

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
‖Y ‖22q .

4 PAC exponential inequalities for the Leave-one-Out estimator

We now state our final results for the LoO estimator. The key ingredient is the following proposition,
which establishes a link between moment inequalities and PAC exponential inequalities.
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Proposition 4 (Celisse and Mary-Huard [2015], Proposition D.1). Let X denote a real valued
random variable, and assume there exist C > 0, λ1, . . . , λN > 0, and α1, . . . , αN > 0 (N ∈ N∗)
such that for any q ≥ q0, E [ |X|q ] ≤ C

(∑N
i=1 λiq

αi

)q
. Then for every x > 0,

P

[
|X| >

N∑
i=1

λi

(
ex

minj αj

)αi
]
≤ Ceq0 minj αj · e−x.

The following two final results are our most refined PAC exponential inequalities for the LoO
estimator, and follow from Corollary 1 (derived for the Ridge algorithm) combined with Proposition 4
where q0 = 2, C = 1 and minj αj = 1/2.
Theorem 3. With the setting of Corollary 1 and assuming (YBd), we have for every x > 0, with
probability at least 1− e · e−x,∣∣∣R̂1(Aλ,D)− LP (Aλ(D))

∣∣∣ ≤√2ex

n
B2
Y (Γλ,1 + Γλ,2 + Γλ,3) , (11)

where
Γλ,1 = 8

√
κB2

X/λ,

Γλ,2 = 2
√
κB2

X/λ

[
(8 +

√
2)

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
+

4B2
X

λ

]
,

Γλ,3 =
2B2

X

λ

(
1 +

B2
X + λ

λ(1− η)

)(
1 +

B2
X

λ

)
.

This result establishes with high probability that the LoO estimator is 1/
√
n close to the prediction

error when applied to the Ridge regression estimator.

This rate of convergence is preserved when (YBd) is relaxed to (SubG) as shown below.
Theorem 4. With the setting of Corollary 1 and assuming (SubG), we have for every x > 0, with
probability at least 1− e · e−x∣∣∣R̂1(Aλ,D)− LP (Aλ(D))

∣∣∣ ≤ M1(E [Y ])2
√
x+M2 v x

3/2

√
n

, (12)

where M1 = 2
√

2e (Γλ,1 + Γλ,2 + Γλ,3), and M2 = 16e2(2e)3/2 (Γλ,1 + Γλ,2 + Γλ,3).

Both Eqs. (11) and (12) lead to deviations for the LoO estimator of order 1/
√
n, which is similar to

that of Bousquet and Elisseeff [2002, Theorem 18, Eq. 18], but derived under weaker assumptions (in
particular Lq stability instead of uniform stability). Note also that relaxing (YBd) to (SubG) results
in an additional term of magnitude x3/2.

Proof of Theorem 3. Using Assumption (YBd) and Corollary 1, apply Proposition 4 with N = 1,
α1 = 1/2 and λ1 = B2

Y (Γλ,1 + Γλ,2 + Γλ,3) /
√
n to obtain Eq. (11).

Proof of Theorem 4. From Assumption (SubG), the triangular inequality yields
‖Y ‖2q ≤ 2 (E [Y ])

2
+ 2 ‖Y − E [Y ]‖2q ≤ 2 (E [Y ])

2
+ 2(2e)2vq

‖Y ‖22q ≤ 2 (E [Y ])
2

+ 2 ‖Y − E [Y ]‖22q ≤ 2 (E [Y ])
2

+ 4(2e)2vq.

To simplify the derivation, we use ‖Y ‖2q ≤ 2 (E [Y ])
2

+ 4(2e)2vq and 1/n ≤ 1/
√
n. From

Corollary 1,∥∥∥R̂1(A,D)− LP (A(D))
∥∥∥
q
≤
√
q
√
n

(Γλ,1 + Γλ,2 + Γλ,3)
[

2 (E [Y ])
2

+ 4(2e)2vq
]

≤
√
q
√
n

(Γλ,1 + Γλ,2 + Γλ,3)
[

2 (E [Y ])
2

+ 4(2e)2vq
]

To achieve the proof, it only remains to apply Proposition 4 with N = 2, (α1, α2) = (1/2, 3/2), and

λ1 = 2
√

2e (Γλ,1 + Γλ,2 + Γλ,3) (E [Y ])
2
,

λ2 = 16e2(2e)3/2 (Γλ,1 + Γλ,2 + Γλ,3) v.
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5 Perspectives

We introduced a new stability notion—Lq stability—which generalises existing hypothesis stability
while remaining weaker than uniform stability. It provides PAC exponential generalisation bounds
similar to those originally derived under the stronger uniform stability assumption. This has been
achieved using a new generic strategy relying on moment inequalities.

In the present paper, this strategy has been successfully applied to the Ridge regression algorithm. A
natural next step is to explore the collection of learning algorithms falling into the scope of our Lq
stability notion.

From both practical and theoretical perspectives, it is crucial to provide a thorough analysis of CV.
On the basis of our generic analysis of LoO, we intend to investigate other CV procedures such as
V -fold CV, Leave-v-Out, and so on.

A Technical results

Lemma 5 (Devroye and Wagner [1979], Eq. (14)). For any 1 ≤ k ≤ n, let Ak defined by Eq. (2),
and let Z1, . . . , Zn denote n independent and identically distributed random variables such that for
any 1 ≤ i ≤ n, Zi = (Xi, Yi) ∼ P . Then for any 1 ≤ j ≤ n,

P [Ak(D;X) 6= Ak(τj(D);X) ] ≤ 4√
2π

√
k

n
·

Lemma 6 (Henderson and Searle [1981], Eq. (18)). Let A and B denote two symmetric matrices in
Md(R) for some integer d > 0 such that A and A+B are invertible. Then,

A−1 − (A+B)
−1

= A−1BA−1
(
Id +BA−1

)−1
.

Lemma 7. Let M ∈Md(R) be any symmetric positive semidefinite matrix. Then for every λ > 0,∥∥∥(M + λId)
−1
∥∥∥
op
≤ 1

λ
·

Lemma 8 (Bhatia [2013], Theorem VIII.3.1). Let D ∈ Md(R) be a diagonal matrix and M ∈
Md(R) denote any matrix. Then,

max
1≤j≤d

min
1≤i≤d

|σi(D)− σj(M)| ≤ ‖D −M‖op ,

where σ1(N) ≥ . . . ≥ σd(N) denote the d eigenvalues of matrix N in nonincreasing order, and
‖·‖op is the operator norm.
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