
HAL Id: hal-01356012
https://hal.inria.fr/hal-01356012

Submitted on 24 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PoLAR: a Portable Library for Augmented Reality
Pierre-Jean Petitprez, Erwan Kerrien, Pierre-Frédéric Villard

To cite this version:
Pierre-Jean Petitprez, Erwan Kerrien, Pierre-Frédéric Villard. PoLAR: a Portable Library for Aug-
mented Reality. 15th IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
IEEE Sep 2016, Merida, Mexico. pp.4. �hal-01356012�

https://hal.inria.fr/hal-01356012
https://hal.archives-ouvertes.fr

PoLAR: a Portable Library for Augmented Reality

Pierre-Jean Petitprez∗ Erwan Kerrien† Pierre-Frederic Villard‡

Universite de Lorraine, LORIA, UMR 7503, Vandoeuvre-les-Nancy F-54506, France
Inria, Villers-les-Nancy F-54600, France

CNRS, LORIA, UMR 7503, Vandoeuvre-les-Nancy F-54506, France

3D model

3D manipulator

2D markers

Soft shadow on

phantom object

Camera flow

Figure 1: PoLAR tracking application showing the use of 2D objects,
camera flow and real-time scenegraph interaction

ABSTRACT

We present here a novel cross-platform library to facilitate research
and development applications dealing with augmented reality (AR).
Features include 2D and 3D objects visualization and interaction,
camera flow and image manipulation, and soft-body deformation.
Our aim is to provide computer vision specialists’ with tools to fa-
cilitate AR application development by providing easy and state of
the art access to GUI creation, visualization and hardware manage-
ment.

We demonstrate both the simplicity and the efficiency of cod-
ing AR applications through three detailed examples. PoLAR can
be downloaded at http://polar.inria.fr and is distributed
under the GPL licence.

Index Terms: 1.3.4 [Computer Graphics]: Graphics Utilities—
Application packages; I.4.9 [Image Processing and Computer Vi-
sion]: Applications— [I.6.8]: Simulation and Modeling—Types of
SimulationAnimation;

1 INTRODUCTION

Augmented Reality (AR) application development involves master-
ing many advanced topics to:

• design and implement a user friendly Graphical User Interface
(GUI);

• implement an efficient graphics engine with features such as
texture mapping, animation, ambient occlusion and shadow
maps;

• interface various devices, especially cameras and GPS or
other external tracking devices;

∗e-mail:pj.petitprez@gmail.com
†e-mail:erwan.kerrien@inria.fr
‡e-mail:pierrefrederic.villard@loria.fr

• implement a large diversity of Computer Vision (CV) algo-
rithms to track moving targets, recognize objects and recon-
struct scenes.

Most current AR Software Development Kits (SDK)1 target de-
velopers with general or even little programming skills and there-
fore primarily provide high quality implementations of CV algo-
rithms. ARToolkit [3] grounded its success on its powerful marker
tracking and recognition, and strong camera calibration support.
Vuforia2 platform sets forward its object and scene recognition ca-
pabilities. Tracking and recognition technologies are also at the
core of Metaio3 that addressed customers with absolutely no pro-
gramming skill through its Creator drag and drop application cre-
ation tool. Moreover, the latter two are commercial SDKs. This
focus misses CV specialists’ whose aim in developing AR applica-
tions is to test or demonstrate their own CV algorithms.

PoLAR (Portable Library for Augmented Reality) is motivated
by offering those latter developers an easy access to state of the
art GUI creation, image interaction, graphics engine implementa-
tion and camera interfaces, in a few lines of code, portable across
both desktop and mobile platforms through an API designed to
meet their needs. PoLAR defines a framework for simple and fast
prototyping of graphical applications for augmented reality, and
more general image visualization, in both classical CV and Med-
ical Imaging contexts. No tracking or other image processing ca-
pabilities are offered, but instead an API to easily plug in custom
tracking processing. The framework is written in C++ and pub-
lished under the GNU GPL license. PoLAR can be downloaded at
http://polar.inria.fr.

PoLAR’s main contributions are i) portability: PoLAR has been
tested and used on Linux, Windows, MacOS and Android; ii) sim-
plicity: an API designed for CV specialists with detailed user guide
including tutorials and examples; iii) deformation capability: Po-
LAR provides an API to manage physics engines; iv) sustainabil-
ity: PoLAR depends on well-established Qt and OpenSceneGraph
libraries, and is open source software.

2 METHODS

Supporting libraries
PoLAR depends on two main libraries: the GUI-oriented frame-

work Qt4 and the graphics engine OpenSceneGraph5. Qt allows
for fast GUI development, powerful 2D graphical drawings, and
high-level, cross-platform, access to hardware components, includ-
ing cameras. Besides, OpenSceneGraph is a powerful 3D graphics
toolkit, compatible with OpenGL6 on desktop environments, and
OpenGL ES on mobile platforms. Its scenegraph implementation
enables graph nodes to be shared between multiple views, dynami-
cally loaded or deleted, and manipulated interactively.

1http://socialcompare.com/fr/comparison/

augmented-reality-sdks
2http://www.vuforia.com
3https://en.wikipedia.org/wiki/Metaio
4http://www.qt.io/
5http://www.openscenegraph.org/
6https://www.opengl.org/

 Viewer

manager

2D objects

Scenegraph

3D objects

Image and

 camera

Physics

Bullet - VegaFEM

External lib:

Tracking, ...

Qt app

PoLAR

Figure 2: Library components and dependencies

Both libraries were chosen for their sustainable development
framework. Middle to long term support is indeed grounded on:
their portability since both are available on Linux, Windows, Mac
OS and Android, their open source licence for non-commercial us-
age and their compliance with the GNU GPL, their very active com-
munity of users and developers, their active development state with
frequent updates.

Software architecture

PoLAR encapsulates calls to Qt and OpenSceneGraph in a nor-
malized API that makes it straightforward to implement classical
features required in AR application development. Yet, particular
care was taken in keeping the API fully compliant with both Qt and
OpenSceneGraph coding standards so that any advanced developer
can still benefit from the full APIs of these libraries.

The main class of PoLAR (Viewer) inherits from a Qt widget,
leading to an easy and straightforward integration of PoLAR into
any Qt-based application. This widget manages an OpenScene-
Graph viewer with one orthographic camera to enable pan, zoom
and window-level capabilities on the display, and a perspective
camera to render the 3D scene. Qt 2D graphical objets are ren-
dered as overlay. Fig. 2 shows the various main classes of PoLAR
and its links to external libraries. Fig. 3 depicts the different layers
that compose a PoLAR Viewer. We briefly focus on the design of
these layers.

2D graphical objects Many existing libraries (e.g. Cairo7,

GTK+8, SDL9 , Qt) already offer powerful 2D drawing tools that
generally require to understand the notion of a graphical context,
or to manage by oneself the painting events, or even to implement
the mathematical representations of the needed effects. PoLAR is
targeted for users who prefer to avoid dealing with such technical
aspects. PoLAR wraps the Qt graphics items into a level of abstrac-
tion where paint events and drawing methods are hidden to the user,
though still reachable when needed.

The creation of a new 2D object (polygon, spline, marker points
(see Fig. 1) or text) takes only one line of code with default options,
and up to three to set some particular options (including color, size
or shape). For comparison, Qt-native objects require dealing with
the paint event method and need to be manually added to the viewer,
for a total of a few tens of lines. New classes of 2D objects can be
implemented through a factory mechanism.

7https://cairographics.org
8http://www.gtk.org
9https://www.libsdl.org

Qt window

Bac kground image

3D scene

2D objects

Figure 3: Composition of a PoLAR application

Real-time interaction with a complex scenegraph PoLAR
supports user interaction thanks to the powerful Qt interaction man-
agement. Default interaction methods are implemented and users
can add theirs. Interaction with images, 2D objects, and 3D objects
is made possible in real-time within a running application.

Multiple helper classes are provided to create and manipulate
3D objects. Each 3D object is added as a node of a scene graph
which allows for fast access and manipulation of the objects in a
very transparent and simple way. AR-oriented features are imple-
mented in PoLAR, including easy access to scene lights and cam-
eras, facilitated replacement and deletion of objects, rapid switch of
objects visibility or state (normal vs phantom), phantom objects to
handle occlusions of virtual objects by real objects (see the virtual
chair occluded by the real table in Fig. 4, right), and high quality
shadow casting. Two lines of code are needed to add a manipula-
tor to a 3D object and use it for translating, rotating or scaling (see
Fig. 1, which makes PoLAR particularly suitable for WYSIWYG
applications. Interaction with a 3D object can also be made pro-
grammatically, as PoLAR offers all the methods needed to access
the graph nodes.

Camera flow and images PoLAR offers tools to manipulate
textures, from bitmap textures loaded from a file, to dynamic tex-
tures displaying a camera flow. Texture creation from a file or a
video flow is made as simple as possible. This abstract level of
management allows for texture manipulation regardless of its na-
ture. In only two lines of code (three in the case of a dynamic
texture), a texture can be loaded and applied to a 3D object, or dis-
played in full size in the viewer, just like in an image editor. PoLAR
provides basic image manipulation features particularly suitable for
medical imaging applications: pan and zoom for easy navigation on
the image, and window/level interactive contrast enhancement tool.

Portability

We have designed PoLAR to be compatible with all current ma-
jor platforms, namely Linux-based distributions, Microsoft Win-
dows, MacOS and Android systems. Support for Apple iOS is
currently under development. This has been possible thanks to
the availability of Qt and OpenSceneGraph on said platforms, and
thanks to the use of C++11-compliant standard code.

All interaction methods and shortcuts are fully customizable
though default values are always provided. Mouse and keyboard
are the main interaction methods on desktop environments, while
on mobile systems Qt-based gesture recognition allows interacting
through the touchscreen.

GPU computing

We have developed a fully functional shader system compatible

Raw video flow Augmented video flow

Figure 4: Basic AR application: image without and with augmentation

with both desktop OpenGL and OpenGL ES specifications. It offers
a proper per-pixel Phong reflection model [4] to objects added in
the virtual scene. This shader system takes advantage of the Open-
SceneGraph shadow computation features to provide soft shadows
in the scene (see Fig. 1). On older desktop environments which
are only compatible with previous OpenGL specifications, it is still
possible to use a fixed-function rendering which uses a per-vertex
Blinn-Phong lighting model [1].

Deformations
AR applications in the medical context often need to include de-

formations. Various methods exist to simulate deformations. They
often consist of a trade off between fast and accurate simulation.
The mass-spring method [2] is a real-time method consisting of
modeling soft bodies as a discrete system of mass points linked
together with springs and dampers. The finite element method [9]
is a numerical technique for solving mechanical equations (conser-
vation laws, balance equations, constitutive laws, etc.) considering
the soft bodies as a continuum through a matrix representation.

We propose to offer both capabilities by interfacing our library
with two physical engine libraries: 1) a mass-spring system based
on Bullet10 and 2) a finite element method based on VegaFEM
[7]. Our strategy was to factorize the common operations linked
to the physics engine (apply boundary conditions, define mechani-
cal parameters, iterate in the system resolution of the physical laws,
etc.) as well as to use our core library functionalities (display and
position of a 3D mesh in an AR environment). Furthermore, we
optimized the object deformation display process such as, if the
topology remains constant, the mesh vertex positions are directly
updated by references to the physical engine data.

PoLAR relies on the robust Qt threading API to provide multi-
threading computation. The chosen architecture ensures the physics
computations do not interfere with the GUI and the graphical ren-
dering.

3 RESULTS

The main outcome of using PoLAR is a simple and efficient way
of implementing AR applications. We present in this result section
three kinds of application examples that highlight the code simplic-
ity as well as the possibilities of our library.

Basic AR application
The first result example (whose source code is available in the

PoLAR repository) is a basic AR application consisting of reading
a camera flow, defining a projection matrix M and displaying 3D
objects projected on the video flow with M. The result is displayed
on Fig. 4. The initial camera image is on Fig. 4.left and the aug-
mented image is on Fig. 4.right. A phantom object (the table) is
used to hide a part of a 3D object (the orange chair) and to allow
another 3D object (the camera) to cast a shadow on the table.

10http://bulletphysics.org/

Listing 1 shows the code corresponding to this application. L4
creates the Qt application. L5-7 create a viewer with light and shad-
ows. L8-13 add video stream (a webcam on /dev/video0) on
the viewer background. A video manager is created, then a texture
from it and then this texture is displayed on the viewer background.
L14 enables pan and zoom and window/level on the display. L15-21
set up the 3D scene: L15-16 load and add a first 3D object (the cam-
era) L17-18 load and add a second 3D object (the orange chair),
and L19-21 create a ground plane (the table), set it as a phantom
object and add it to the scene graph. With L22-27, every time a new
frame is captured, the video manager sends a Qt signal with the im-
age data and connect it to a custom Qt slot function which computes
the related projection matrix. In this example a lambda function is
used (L23-27) which should be completed on L24 with the code of
a custom tracking algorithm that updates the projection matrix M.
L26 applies the computed projection matrix to the viewer. Conver-
sion from vision-oriented matrices to OpenGL-oriented matrices is
managed by PoLAR. L28 shows the widget, L29-30 ensures the
application correctly quits when the viewer is closed, and runs the
application.

Listing 1: Basic AR application code

1 typedef osg::ref_ptr<PoLAR::Object3D> Obj3Dptr

2 int main(int argc, char** argv)

3 {

4 QApplication app(argc, argv);

5 PoLAR::Viewer viewer;

6 viewer.setShadowsOn();

7 viewer.addLightSource(5,-5, 5.5, true);

8 osg::ref_ptr<PoLAR::VideoPlayer> videoStream

= new PoLAR::VideoPlayer(0);

9 osg::ref_ptr<PoLAR::Image_uc> myImage = new

PoLAR::Image_uc(videoStream);

10 viewer.setBgImage(myImage);

11 viewer.bgImageOn();

12 videoStream->play();

13 viewer.setResizeOnResolutionChanged();

14 viewer.startEditImageSlot();

15 Obj3Dptr obj = new PoLAR::Object3D("data/

reflex_camera.obj");

16 viewer.addObject3D(obj);

17 Obj3Dptr obj2 = new PoLAR::Object3D("data/

plastic_chair.obj");

18 viewer.addObject3D(obj2);

19 Obj3Dptr ground = new PoLAR::Object3D("data/

table.obj");

20 ground->setPhantomOn();

21 viewer.addObject3D(ground);

22 QObject::connect(videoStream.get(), &PoLAR::

VideoPlayer::newFrame, [=](unsigned

char* data, int w, int h, int d)

23 {

24 /* tracking code here */

25 osg::Matrix M = /* set the computed

projection matrix */;

26 viewer.setProjection(M);

27 });

28 viewer.show();

29 app.connect(&app, SIGNAL(lastWindowClosed())

, &app, SLOT(quit()));

30 return app.exec();

31 }

This first example shows how the core visualization tools have
been encapsulated. Writing the same application using a 3D visual-
ization library such as OpenGL or out-of-the-box OpenSceneGraph
would have been cumbersome and many functionalities would be
missing (e.g.: window/level, webcam management).

OpenCVPoLAR

Video
input

Screen
output

Background image

Projection matrix

+ 3D scene + Projection

newFrame()

setProjection()

Figure 5: Workflow of the advanced AR application

Advanced AR application including tracking

As studied in the previous application example, PoLAR aims to
facilitate the creation of graphical applications, and does not pro-
vide any projection matrix update method, but provides suitable in-
puts and outputs to link it to e.g. a tracking library. To validate
the efficiency of PoLAR in real use cases, we have developed an
AR application (the source code is available in the PoLAR repos-
itory, under the runPolar application) where PoLAR is bound
to the OpenCV library [5] to implement the tracking of an image
marker. PoLAR API defines two functions to implement this bind-
ing: newFrame sends the current camera frame to the tracking
algorithm, and setProjection applies the computed projection
matrix to the 3D scene.

Thanks to these very generic methods, it is very easy to re-
place the current OpenCV tracking algorithm by any other track-
ing method either user-defined or available from another tracking
library. Fig. 5 shows the workflow corresponding to the code inter-
action between the PoLAR-based class and OpenCV tools.

AR application with deformations

Finaly, we tested the VegaFEM-based deformation module by
building physical objects that can significantly deform, i.e. the de-
flection could easily be observed by human eyes. These objects are
3D-printed cubic-shaped objects with a very soft polymer material.
The experiment consisted of placing a cube at the origin corner of
a chessboard and applying different weights (250g and 500g) on it,
taking a picture at every step, including the rest state. The same
experiment was reproduced within PoLAR. The projection matrix
was computed via the camera calibration method presented in [8]
and provided by OpenCV. The initial 3D models without deforma-
tion and projected on the pictures can be seen on the left of Fig. 6.
The deformation simulation was done using the PoLAR physics
plugin. The cubes were meshed with tetrahedrons using tetgen [6].
The boundary conditions were a Dirichlet boundary condition (zero
displacement) applied on the bottom of the cube complemented by
a Neumann condition that imposed a force on the top of the cubes to
reproduce the weight. The integration was done using the implicit
Newmark scheme with a time step of 0.02 and the two Newmark
constants were β = 0.25 and γ = 0.5. The corotational formula-
tion was used to provide with large and stable deformations. The
material was defined with a linear constitutive law characterized by
a Young’s modulus around 1 MPa found by trial-and-errors and a
Poisson’s ratio of 0.49 to set the material incompressible.

Our tests consisted of comparing the real experiment and the
PoLAR-based simulation. The deformations were observed in both
virtual and real worlds. Two cubes with different cross-section
shapes were tested. Results are illustrated on Fig. 6. In order to
better appreciate how the simulation matched with the reality, half
of the virtual cube has been hidden. Qualitatively, one can observe
that it is feasible to reproduce both the pose and the deformation
in an augmented environment. Quantitatively, the outcome was
twofold: Coding simplicity: we implemented this application in ap-
proximatively 200 lines, with 150 lines required by the simulation

0g 250g 500g

Figure 6: Real and virtual cubes deformed under various weight. Two
shapes were tested with no weight, 250g and 500g. Half of the virtual
cube is displayed to better appreciate the deformed shape.

with VegaFEM, and only 50 lines for the full display using PoLAR.
This is due to the higher abstraction level in both the visualization
and the deformation functions. ii) Efficiency: our simulation runs at
20 fps. This experiment is available on our GIT server.

4 CONCLUSION

We have presented PoLAR, a new open-source library that helps
with building AR applications. It contains a set of tools to display
images or video flows, to add 2D and 3D objects via a scenegraph
environment with 3D deformation capabilities.

PoLAR is cross-platform (MacOS, Linux, Windows and An-
droid), takes advantage of modern GPU capabilities, handles com-
mon hardware constraints (e.g.: camera flow and tactile device in-
teractions) and provides with real-time applications.

PoLAR has been tested on many examples and basic applications
all available on the website http://polar.inria.fr. Three
of them are described in this paper to show the simplicity and the
efficiency of coding AR applications compared to other available
tools: low number of lines of code, self-explanatory methods, fast
computing time, interaction simplicity with external libraries and
virtual soft-body deformation simulation.

ACKNOWLEDGEMENTS

PoLAR was funded by an Inria Tecnhnology Development Action
grant (2014-2016).

REFERENCES

[1] J. F. Blinn. Models of light reflection for computer synthesized pictures.

SIGGRAPH Comput. Graph., 11(2):192–198, July 1977.

[2] M. Desbrun and A. Barr. Interactive animation of structured deformable

objects. In Proceedings of Graphics Interface (GI), pages 1–8, 1999.

[3] H. Kato, K. Tachibana, M. Billinghurst, and M. Grafe. A registration

method based on texture tracking using artoolkit. In Augmented Reality

Toolkit Workshop, 2003. IEEE International, pages 77–85, Oct 2003.

[4] B. T. Phong. Illumination for computer generated pictures. Commun.

ACM, 18(6):311–317, June 1975.

[5] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov. Realtime com-

puter vision with opencv. Queue, 10(4):40:40–40:56, Apr. 2012.

[6] H. Si. Tetgen, a delaunay-based quality tetrahedral mesh generator.

ACM Trans. Math. Softw., 41(2):11:1–11:36, Feb. 2015.

[7] F. S. Sin, D. Schroeder, and J. Barbic. Vega: Non-Linear FEM De-

formable Object Simulator. Computer Graphics Forum, 2013.

[8] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans.

Pattern Anal. Mach. Intell., 22(11):1330–1334, Nov. 2000.

[9] O. Zienkiewicz, R. Taylor, and J. Zhu. In The Finite Element Method

Set. Butterworth-Heinemann, Oxford, sixth edition edition, 2005.

