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Abstract

One of the main challenges in shape matching is overcoming intra–class variation where objects
that are conceptually similar have significant geometric dissimilarity. The key to a solution around this
problem is incorporating the structure of the object in the shape descriptor which can be described
by a connectivity graph customarily extracted from its skeleton. In a slightly different perspective,
the structure may also be viewed as the arrangement of protruding parts along its boundary. This
arrangement does not only convey the protruding part’s ordering along the anti clockwise direction,
but also relates these parts on different levels of detail. In this paper, we propose a shape matching
method that estimates the distance between two objects by conducting a part-to-part matching anal-
ysis between their visual protruding parts. We start by a skeleton-based segmentation of the shape
inspired by the Chordal Axis Transform. Then, we extract the segments that represent the protruding
parts in its silhouette on varied levels of detail. Each one of these parts is described by a feature vector.
A shape is thus described by the feature vectors of its parts in addition to their angular and linear
proximities to each other. Using dynamic programming, our algorithm finds a minimal cost correspon-
dence between parts. Our experimental evaluations validate the proposition that part correspondence
allows conceptual matching of precisely dissimilar shapes.

Keywords: Shape descriptors, shape matching, salient features, ordered part correspondence,
Chordal Axis Transform, dynamic 2D shape segmentation, Dynamic Programming.

1. Introduction

Shape descriptors and similarity measures have been a central research issue for decades. One of the
main motivations is to obtain a retrieval mechanism over a database of images. Proposed approaches
fall into numerous categories [46] such as contour–based, region–based, transforms, moments, scale
space, or spatial interrelation. Many challenges and requirements withstand shape descriptors. One
with vital importance and considerable difficulty is tolerance for intra–class variety. Objects may be
labeled the same whilst having disparate geometries (see Fig. 1). While the tails of the two airplanes
in Fig. 1 (or the backs of the two chairs) have dissimilar shapes, they match within their contexts.
Their geometric properties such as size and angle of protrusion become relative to the other protruding
parts of the shape. This part alignment process allows matching conceptually similar but precisely
dissimilar shapes. Although the part correspondence shown in Fig. 1 is trivial for a human, it is a
composite process of dynamic segmentation, numeric representation, and search for an optimal solution
when it comes to machines. The part that is concerned with dynamic segmentation also belongs to
human intuition. In fact, many studies in cognitive science support the theory that humans visually
segment objects into simpler parts [10, 27]. Propositions concerning the visual segmentation process
draw relations with geometric primitives [8], negative minima of curvature along the boundary [7, 44],
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or skeleton–based segmentation [35] of the shape 1. Moreover, these studies grant theories concerning
numeric representations that contribute in the segmentation process. Cohen and Singh [10] conducted
a series of psychophysical experiments to quantify the influences of segment length, turning angles
at part boundaries, and part protrusion on segment identification. De Winter and Wagemans [44]
analyzed the role of curvature singularities, symmetry, elongation, proximity, good continuation, and
cognitive influences on rules of part formation. Bertamini and Wagemans [7] presented a review on
evidence from behavioral, neurophysiological, imaging, and developmental studies to conclude that
“convexity and concavity information along a contour is something that the visual system computes
and represents as part of how shape is analyzed”.

Figure 1: Matching shapes by aligning their visual parts allows corresponding parts that are conceptually similar
but precisely dissimilar.

Human perception is known to easily overcome imprecision and occlusion [30]. Hence, we presume
a role for these theories while attempting to match the silhouettes of objects taken from different
perspectives, with part occlusion, or intra–class diversity. This role helps analyze shapes from the same
perspective in which they are perceived by a human inspector: part–based representation independent
of level of detail. In this paper, we propose a shape matching scheme inspired by the aforementioned
theories and validate its correctness on benchmark datasets. We compute both a skeletal description
and a dynamic 2D shape decomposition.

The input data is a binary image representing the silhouette of a single object. We extract the
contour, locate corner points, and sample the in–between contour fragments uniformly. The advantage
of locating corner points is the inclusion of the sharp features in the sample set. The region is then
triangulated using constrained Delaunay triangulation (CDT). The rectified chordal axis transform [29]
(CAT) which is a descendant of the medial axis transform, and a set of pruning and merging operations
provide a skeleton with an association between skeletal segments and subregions. Using this skeleton,
we segment the shape and embed the segmentation in a hierarchy where the leaves are the protruding
parts corresponding to the terminal segments defined by the CAT.

The subtrees in this hierarchy group terminal segments with their adjacent internal ones. After
pruning away larger subtrees using some heuristics, the remaining ones represent the features of the
shape on different levels of detail. We refer to all such subtrees and leaves as the visual parts that may

1Hoffman and Richards [20] introduced the ‘minima rule’ which states that human vision defines part boundaries at
negative minima of curvature on silhouettes. Biederman [8] proposed a recognition–by–components theory that assumes
the existence of a finite set (total of 36) of simple geometric components that make up an object-part vocabulary. Cave
and Kosslyn [9] questioned whether the segmentation is performed prior to recognition and aggravate the role of spatial
relations among components. Neri [27] presented experimental evidence to support the recognition-by-part hypothesis
as opposed to recognition-as-a-whole. Delorme et al. [13] studied the influence of the presence of diagnostic animal parts
and their relative spatial configuration on visual processing. Higgins and Stringer [19] proposed a role for independent
motion of body parts in its segmentation.
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contribute to the matching process.
Visual Parts are always arranged in their anti–clockwise order of appearance along the boundary

of the object. Their spatial and angular distances comprise an inter–distance matrix relating every
pair of them. Each visual part is described by a set of geometric attributes including relative size,
eccentricity, circularity, and convexity in addition to a shape signature. The geometric attributes are
multiplied by weights and assembled into a feature vector. The distance between two visual parts
is then defined by the Euclidian distance between feature vectors plus the squared distance between
signatures. The matching process is performed by topologically rotating the position of the ‘first part’
in the shape. Consequently, more acceptable segmentations of an object will result from matching it
to those in the same class. For every configuration, we employ dynamic time warping (DTW) to find
a minimal cost match.

Basically, the components of our work are a skeleton–based segmentation, geometric salience mea-
sures to describe visual parts and their spatial relations, and a matching scheme built on a part–to–part
correspondence between shapes. The shape descriptor is invariant under affine transformations such
as scaling, translation, and rotation. It has also demonstrated tolerance for occlusion, articulation,
and minor deformations. The contributions of our work are as follows:

• We bring the CAT into shape description and strengthen some of its weaknesses that are revealed
by dissimilarities between skeletons of objects of the same class. It is worth mentioning that
Prasad [29] does not provide a matching technique adapted to the CAT representation method.

• We alter the customary practice followed when using DTW in closed shapes by rotating visual
parts instead of sample points to find the best match.

The matching process based on the protruding parts is simple and visually intuitive compared with
the ones based on skeleton matching. Moreover, this matching process can compare two shapes at
different levels of detail or with different topology in a unified way.

The rest of the paper proceeds as follows. We discuss related work that describe shapes by parts or
use their skeletons in the process in Section 2. We present our contribution to the CAT segmentation
in section 3, whereas the topological structure that embeds different levels of details is discussed in
Section 4. The geometric properties, saliency, and distance measure of parts are detailed in section
5. In section 6, we describe the DTW method, and present the retrieval results obtained on Kimia-99
and Kimia-216 datasets [33]. Section 7 presents a brief conclusion of the work presented in this paper.

2. Related Work

Hoffman and Richards [20] introduced the ‘minima rule’ which states that human vision defines part
boundaries at negative minima of curvature on silhouettes. Following the ‘minima rule’ [20], most of
the fragment–based shape descriptors [12, 23, 25, 36, 43] extract boundary segments by locating critical
points based on convexity or curvature variations. Latecki et al. [23] partition the contour of a shape
into an ordered set of convex and concave boundary arcs. In a somewhat similar way to our approach,
they assume that a single visual part of one curve can correspond to a sequence of consecutive parts
of the second curve and employ dynamic programming to find a minimal cost correspondence. Sun
and Super [36] extract redundant and overlapping contour segments between all the pairs of critical
points at extremal curvature values. They represent the segments in a vector space where, after
applying PCA, they note that the first few basis ‘approximately capture height, sideways shearing,
diagonal stretching, and inflation/deflation of a segment.’ Daliri et al. [12] extract critical points from
the local extrema of the scale invariant curvature profile and construct a dictionary of 11 symbols
representing types of contour fragments. The symbols signify curve parts, straight lines, sharp angles,
concave and convex parts and such. Guo et al. [18] introduced the notion of ‘part importance’ based
on reconstruction quality, variation, and uniqueness and measured by some conditional entropy. Ma
and Latecki [25] propose a shape descriptor with basic geometric units similar to the shape context [6]
and suitable for matching of edge fragments. Applying discrete contour evolution [2], Wang et al. [43]
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locate critical points to fragment the shape’s contour. They use the bag of words model to represent a
shape described by 400 overlapping fragments with a shape context descriptor of 300 bins each. Laiche
et al. [22] explore the least squares model to represent a shape by a set of normalized cubic curves.

Skeleton–based shape descriptors either require a tree or graph matching method [14, 31, 32, 34,
37, 39, 40] or escape the incurred instabilities by just drawing on topological characteristics provided
by the skeleton. Instead of directly matching skeletons, Xie et al. [45] use the MAT to find an
optimal point correspondence between two shapes. Goh [17] presents a discussion on strategies that
should be adopted in skeleton–based shape matching. Namely, he stresses on the importance of
dynamic part–decomposition, visual saliency measures, and the use of both global and local measures.
Aslan et al. [1] represented symmetry branches by vectors from an origin located by an evolution
process to the disconnection points where the limbs connect to the body. Supported by perceptual
motivation, Temlyakov et al. [38] propose strategies to improve shape classification. They identify thin
and elongated strand structures and their base structure and measure similarity between shapes on
these structures separately. Feldman et al. [15] propose a skeleton that implies part decomposition.
Similarity is estimated by the probability that one shape would ‘grow’ from the skeleton of the other.
Lin et al. [24] propose a hybrid shape descriptor that draws on skeletal and contour properties of the
shape.

Bai et al. [4] propose a matching method that views the skeleton as a set of shortest paths between
pairs of end points. They apply a skeleton pruning process on the medial axis based on discrete curve
evolution [2]. In a subsequent publication [3], the skeleton paths shape descriptor is used in conjunction
with contour fragments to design a shape classifier. Using a similar endpoints representation for the
shape skeleton, Giang et al. [16] further compare tuples of terminal nodes. They define a hyper–graph
that relates a node to its k–nearest neighbors.

It is quite evident that the skeleton embeds crucial information about the shape. The above methods
provide a rich set of ideas in this regard. In addition to Goh’s elaborate study [17] on important features
that should be incorporated in any matching method, it seems that there is a general consensus on
the distinguished role of endpoints of the skeleton or the terminal parts of the shape.

3. Skeletonisation and Segmentation

The skeleton that we seek is different from the medial axis transform (MAT) of a shape. This
skeleton is not only used to depict the axial representation of the shape, but must also provide an
intuitive segmentation. In other words, we seek a skeleton–based segmentation where the main visually
protruding parts correspond to regions or to union of regions of this segmentation. Although the MAT
does not provide such a part–to–axial segment correspondence, the CAT, which is based on principles
borrowed from the MAT construction, provides a skeleton and an associated segmentation conjointly.
In this section, we give a brief explanation on how the CAT segments and skeletonizes 2D shapes.
We also shed some light on inadequacies of the CAT in its current form [29] and propose various
amendments to qualify it for shape description and matching.

3.1. The CAT in Its Present Form

The medial axis transform (MAT) of a 2D shape bounded by its contour line C is the locus of the
centers of disks interior to the shape and tangent to C in two or more points. The formation of the
chordal axis transform (CAT) is based on the observation that the maximal discs used in MAT identify
the triangles of the constrained Delaunay triangulation (CDT) of the shape’s interior. In a CDT, all
vertices lie on the boundary of the shape, giving rise to three types of triangles: terminal, sleeve, and
junction (see Fig 2). A terminal triangle has two of its edges on the shape’s boundary in addition to
an interior edge. Sleeve and junction triangles have two and three internal edges respectively. The
term chord is used to refer to internal or non-boundary edges in the CDT.

In its primitive form, the CAT is constructed by joining the midpoints of the chords and the cen-
troids of junction and terminal triangles of the CDT. In addition to the lack of an evident segmentation,
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Figure 2: Left to right: the constrained delaunay triangulation (CDT), junction (red), sleeve (green), and
terminal (blue) triangles, the chords in the strength profile shown in a darker color, and the segmentation of
the shape to three types of segments: junction (red), sleeve (green), and terminal (blue).

the main problem with this version of the CAT is the exclusive third degree topology of junction points
located at the centroids of junction triangles. The rectified CAT [29] approaches a solution to this
problem by using polygonal elements instead of triangular elements. These polygons are defined by a
subset of the chords of the CDT, denoted by the chords strength profile (CSP), and are classified into
three types (see Fig 2). Terminal and sleeve polygons have one and two chords respectively amongst
their edges. Junction polygons have three or more chords where the number of chords is equal to the
degree of the junction point located at the centroid of the polygon. The skeleton is formed by the
segments connecting mid points of the chords in addition to the centroids of junction and terminal
polygons. In addition to the skeleton, these polygonal elements provide a segmentation of the shape.
In what follows we describe how the subset of chords, the CSP, is selected in order to construct the
skeleton and a segmentation of the shape. From here on, we will use the term “segment” or “region”
to refer to the polygonal elements.

Prasad’s [29] idea for selecting the CSP is based on quantifying the notion of the strength of chords.
A chord’s strength is measured by estimating how far the quadrilateral formed by its flanking triangles
is from being cyclic. The chords in the triangulation are ordered in an anti-clock wise traversal of the
boundary. A local maximum in this set is a chord whose strength is greater than both of its neighbors
and strictly greater than one of them. These local maxima make the CSP. Once the CSP is formed,
the segmentation and the skeleton follow trivially (see Figs. 3(a), 4(a), and 5(a)).

3.2. Extended Chordal Axis Transform

Employing the CAT in shape representation and matching incurs additional requirements of its
segmentation and skeletonisation. It also reveals some weaknesses exposed by dissimilar topologies
of similar objects. Trivially, it is necessary to have tolerance for an extent of boundary variation
where similar objects tend to have similar skeletons. Moreover, some objects are visually segmented
into a centralized structure with one junction segment connected to most of the terminal parts (see
Fig. 3(a)). Due to its reliance on the CDT, the CAT tends to preclude such junction segments favoring
a distributed topology. As we want to keep only significant protruding parts, excessive branching on
terminal segments should be avoided and visually unimportant segments should be merged. Nonethe-
less, in certain instances, terminal segments recede and adjacent junction segments take parts of what
visually belong to protruding parts (see tail and fin in Fig. 4(a)).

In general, the qualifying properties for a shape descriptor are the invariance to scale, translation,
and rotation and tolerance for occlusion, articulation and minor deformations. The CAT is evidently
invariant to the affine transformations. However, the second batch of properties is more difficult to
accomplish. In our version of the CAT, we tweak its formation phases so as to reduce its sensitivity to
minor deformations. Figs. 3, 4, and 5 show multiple examples of objects from the same classes (star,
fish, and hand) illustrating the difference between the CAT in [29] and the CAT that we construct in
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(a) The CSP (the chords of the CDT that are highlighted in red) as proposed in [29] (first row) and the consequent
skeleton and segmentation (second row).

(b) The expanded CSP where added chords are the compactness chords shown in green and the enclosing disk
chords in blue (first row) and the consequent skeleton and segmentation (second row).

(c) The skeleton and segmentation after applying the pruning, merging, and trimming operations on the segments
shown in (b).

Figure 3: The CAT of objects with centralized skeletal topology.
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(a) The CSP (the chords of the CDT that are highlighted in red) as proposed in [29] (first row) and the consequent
skeleton and segmentation (second row).

(b) The expanded CSP where added chords are the compactness chords shown in green and the enclosing disk
chords in blue (first row) and the consequent skeleton and segmentation (second row).

(c) The skeleton and segmentation after applying the pruning, merging, and trimming operations on the segments
shown in (b).

Figure 4: The CAT after expanding the CSP and applying the pruning, merging, and trimming operations results in
more restrained junction areas than that proposed in [29]
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(a) The CSP (the chords of the CDT that are highlighted in red) as proposed in [29] (first row) and the consequent
skeleton and segmentation (second row).

(b) The expanded CSP where added chords are the compactness chords shown in green and the enclosing disk
chords in blue (first row) and the consequent skeleton and segmentation (second row).

(c) The skeleton and segmentation after applying the pruning, merging, and trimming operations on the segments
shown in (b).

Figure 5: The CAT proposed in this paper results in closer skeletal structures for similar objects than the CAT in [29].
Despite the sever part occlusion in the left most object, its CAT retained most of the structure of the un-occluded object.
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Figure 6: From left to right: chords selected into the CSP in red, the concave region in dark red and the
salient parts with round geometry in dark green, the chords with maximal measure of compactness in green
and maximal enclosing disk in blue, and the resultant segmentation.

this paper. The figures also show the reduced difference between instances of the modified version of
the CAT in the same class of shapes. In particular, the structure of the CAT withstands the sever
part occlusion in Fig. 5(c). In the original settings (see Fig. 5(a)) every instance of the CAT relates
the four fingers of the hand in a different topology. The previously mentioned shortcomings of CAT
can be addressed by interjecting the CAT formation process in two main phases:

1. In the first phase, we expand the CSP to include compactness chords and the enclosing disk
chords that will be introduced shortly (see Figs. 3(b), 4(b), and 5(b)).

2. In the second phase, we prune insignificant terminals and analyze blocks of adjacent junction
segments for possible merging into fewer higher degree junction segments (see Figs. 3(c), 4(c),
and 5(c)).

The two phases added to the CAT formation process allow creating an intermediate finer segmenta-
tion that undergoes conditional merging operations. In what follows, we will describe these procedures
in detail.

3.2.1. Extended CSP

In certain cases, some visually important chords are not selected into the CSP. This may result in
undesirably concave segments (see the dark red segments of the bug in Fig. 6) or neglected salient parts
with round geometry (see the dark green segments of the instrument in Fig. 6). The disadvantage of
such cases is amplified by the vital role of the visual protruding parts in the shape’s description. It is
important to associate all visually protruding parts to a segment or a union of adjacent segments. The
concave junction segment in the bug and the bulging sleeve of the instrument (Fig. 6) occupy parts of
salient visual features. Such cases motivate searching for criteria to segment the shape other than the
strength of the chord introduced in [29].

The strength of a chord is an estimation of how the associated quadrilateral is cyclic. We incorporate
the inverse of its circularity ratio denoted as measure of compactness in the CSP selection. In effect,
we added more search criteria and expand the CSP to include local maxima of the following values:

1. Maximal compactness:
The measure of compactness of the quadrilateral formed by its flanking triangles as defined in [5].
This is the square of its perimeter divided by its area.

2. Maximal enclosing disk:
The chord splits the boundary of the shape into two parts. Let the chord’s boundary segment be
the smaller part. The value that we seek here is the number of points on the chord’s boundary
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Figure 7: The chord colored in green is a local maximum since its neighbors either have a smaller number of
boundary points belonging to their half disks (blue chord) or have some points on their boundary segment
outside their half disk (red chord).

segment such that all of them are interior to the disk formed by rotating the chord around its
midpoint. Having one point outside this disk sets this value to zero (see Fig. 7).

Having established the CSP, the shape is easily segmented by the chords belonging to this set (see
Figs. 3(b), 4(b), and 5(b)).

3.2.2. Insignificant Terminals

Generally speaking, terminal segments represent the parts protruding from the shape with a certain
degree of saliency. If a terminal segment, adjacent to a junction segment, does not have sufficiently
sharp diversions represented by negatively oriented angles around its boundary, it is tested for insignif-
icance (see Fig. 8). Such a terminal is considered insignificant if the ratio of the length of its chord to
the length of its boundary segment exceeds values relative to its size as follows:

1. The area of the terminal segment is smaller than ϵ and the chord length ratio is greater than µ0.

2. The chord length ratio is greater than µ1.

where values of ϵ, µ0, and µ1 are 1%, 0.75, and 0.9 respectively. Terminal segments with such properties
have a flat–like geometry and are thus merged to their neighboring junction segments.

3.2.3. Junction Blocks

Junction segments determine the topology of the skeleton. Whether this topology is centralized
or contains symmetrical parts depends on the degrees and connectivity of its junctions. In general,
shapes with rotational symmetry have a central junction segment connecting the rather similar visual
protruding parts. Nevertheless, the skeleton of a shape with reflectional symmetry is expected to carry
the same symmetry as well where mirrored parts have symmetric skeletons. These requirements are not
always met by CAT in its original form [29]. For example, the skeleton of the leaf in Fig. 9(a) is deviated
from its axis of symmetry by the quasi central sixth degree junction. As such, this junction should
be split in a way that allows more symmetry in the skeleton (see Fig. 9(c)). On the other hand, the
octopus in Fig. 9(a) has a partial rotational symmetry where approximately similar protruding parts
connect to a central unit. Thus, the block of adjacent neighboring junction segments is better merged
to one higher degree junction producing a skeleton with a centralized topology (see Fig. 9(c)). The CAT
presented in this paper handles these cases by expanding the CSP thus refining the segmentation and
then traversing blocks of adjacent junction segments (see Fig. 9(b)) to test possible merge operations.
In this section we explain the merging process in detail.
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Figure 8: The result of merging insignificant terminal segments shown on two objects belonging to the same
class. The topological dissimilarity between the two objects decreased significantly after the merging.

The relation between a chord
−→
C and a junction point J can be described by the length of the

skeletal segment ∥
−→
S ∥ connecting J and the mid point of

−→
C in addition to θ, the angle between

−→
C and

−→
S . A small θ or a long

−→
S are indications of weakly related chord and junction point. In a block of

adjacent junctions, the properties that need to be balanced out for all chords and junction points are
the following:

1. Minimum difference between θ and π/2.

2. Minimal skeletal segment length ∥
−→
S ∥. This property prioritizes relating chords to proximal

junction points.
3. Minimal junction segments degree.

4. Minimal chord lengths ∥
−→
C ∥.

In a block of adjacent junctions, an optimal setting for the first two properties can always be
reached by merging all junctions to one. For example, the largest block of junctions in the leaf in
Fig. 9(b) would be merged to one degree 10 junction segment since the collected values of ten skeletal
segments and ten angles will definitely be less than that of 24 skeletal segments an 24 angles. To
prevent forming this large degree junction segment, we infuse the third condition that is to minimize
the degree of produced junction segments. On the other hand, if the block contains a relatively large
chord such as the highlighted chords in the octopus of Fig. 9(b), it means that merging its two junctions
will produce a junction segment that has less disparate dimensions. For this reason and to balance
out the tendency towards smaller junction degrees created by the third condition, we also incorporate
the chords’ lengths in the fourth condition. To formulate a numerical representation for the above
properties, we define the strain of a junction segment. Let n be the number of chords of a junction

segments and θi the angle between the ith chord
−→
Ci and the ith skeletal segment

−→
Si. The strain of this

junction is quantified by the following formula:

n×
n∑

i=1

(θi −
π

2
)2 × ∥

−→
Ci∥ × ∥

−→
Si∥

Since these blocks are normally sets with small cardinalities, it is easy to test all possible combi-
nations of merging. The set that we consider for every attached block of junctions is that of their
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(a) The CAT as proposed in [29] may fail to depict important shape properties such symmetry and centr.

(b) The segmentation resulting form the extended CSP produces junction segments with smaller degrees. The
junction blocks that are considered for different configurations by potential merge operations are 3 blocks for
the leaf (with 7, 3, and two junction segments in each block respectively) and one block in the octopus (with 3
junction segments).

(c) The optimal setting for the leaf sustains all smaller degree junctions whereas in the octopus it is achieved by
merging the whole block into one 8 degree junction segment.

Figure 9: Analyzing blocks of junctions produced by the extended CSP for possible merge operations. A comparison
between 9(a) and 9(c) show how the skeleton produced by our method is more successful in reflecting shape properties
such as symmetry.
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Figure 10: Similar shapes with different topologies and terminal segments.

connecting chords (see highlighted chords in Fig. 9(b)). Each chord has the possibility to be included
in the final configuration. If it is not included, it means that the segments on either of its sides are
merged to one. We generate all possible configurations, compute the total strain measure for each,
and select the one with minimal strain. While the minimal strain setting in the leaf is achieved by
sustaining all chords, it requires merging the junction block in the octopus to one 8 degree junction
segment (see Fig. 9(b)).

Furthermore, since the role of a junction is more topological than geometric, we try to reduce
its size by trimming away triangles from the CDT that, if removed, neither change the topology nor
produce more strain.

4. The Topological Structure of CAT Segments

Although insignificant terminal parts are pruned, the remaining ones still differ in their level of
importance as to what identifies a shape. In Fig. 10 we show similar objects that have different sets
of terminal segments. A part–based matching in such cases is expected to match the wing terminal
segment in one object to the set of all segments that make up the wing in the other. In order to
allow this, without losing detailed features when present, we seek a hierarchical topology where levels
correspond to levels of detail.

We first describe the topological structure and connectivity of the segments produced by the CAT
skeletonisation. The graphical structure is evident (see Fig. 11). For each segment we associate a node
in the graph where terminal, sleeve, and junction nodes have, one, two, and three or more neighbors
respectively. Since our data is comprised of silhouettes without holes, the graph connecting these nodes
cannot have any cycles.

The relation between features across different levels of detail within the same object is to a certain
extent, a node/subgraph relation. For example, while the feathers on the wing in Fig. 10 are terminal
nodes, the wing can be represented as a subgraph that includes these nodes. However, not any subgraph
is a feature in a higher level of detail representation of the object.
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Figure 11: The topology of the CAT segments resulting in a graph structure.

A tree structure of the CAT nodes may resolve this issue provided that the hierarchy is based on
geometric as well as topological properties. It is quite obvious that the leaves of a tree representation
are the terminal nodes. However, tracing the leaves back to a root is not quite as simple. Our scheme
is based on simulated merge operations involving the less salient terminals with their neighborhoods in
a recursive manner. At every merging stage, a new set of compound terminals emerge. These terminals
are comprised of nodes constituting subgraphs that represent potential features.

4.1. Finding the root

The tree construction is based on the node depth computation. Since the node connectivity is
already there, it suffices to find a root and the tree structure will follow. The root is expected to
have a central position in the shape. So, in addition to the topology of the nodes, their geometry has
to be incorporated in the depth computation process. We start from the terminal nodes and assign
them zero height values. In an iterative process, smaller terminals are merged with their connecting
nodes. For example, in the first iteration, all terminals with area and perimeter values less than σ,
a percentage of the whole shape, are merged with their neighbors. Consequently larger terminals are
formed and the next iteration merges terminals smaller than σ×2. When all the terminal neighbors of
an interior node (sleeve or junction) are merged, it becomes a terminal if it has only one non–terminal
neighbor. In this case, it is assigned a height value equal to the index of the current iteration. The
remaining one interior node is the root (see Algorithm 1).

Data: sigma
Result: Only one internal node: the root.
while number of interior nodes > 1 do

forall the interior nodes N do
forall the terminal neighbors T do

if areaOfT < sigma AND perimeterOfT < sigma then
merge T into N;
NeighborsOfN = NeighborsOfN - 1;

end

end
if NeighborsOfN = 1 then

change N into a terminal;
end

end
sigma = sigma × 2

end

Algorithm 1: Locating the root of the tree.
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Figure 12: The bottom up tree shows the iterative process that assigns different levels of depth to junction
nodes. The wings (compound terminals) build up as the process proceeds starting at the terminals towards
the sought root. The top-down tree shows the hierarchical structure of the CAT nodes.
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This virtual merge operation yields a new entity which we will use the term ‘wing’ to refer to. The
perimeter and area threshold is increased at every iteration and the remaining interior nodes are tested
for merging again (see Fig. 12). The last remaining junction note is considered the root.

4.2. Visual parts’ representation in the tree

Visual parts, i.e. the distinctive features in the silhouette of a shape, are not strictly the terminal
nodes. This is a consequence of the level of detail of the shape at hand where terminals are the visual
parts in the finest level. In Fig. 13 we show two similar objects but which are represented by trees
with different topologies. The figure shows two differently sized and placed subtrees that abstractly
represent the same part in these objects. So, to have all possible visual parts contribute in the matching
process, we need to include some subtrees in addition to the leaves.

However, the size and complexity of the visual parts must be limited so as to preserve the part–
based characteristic of the method. To that effect, and as a heuristic measure, we avoid having more
than two salient features in a visual part. Salience is a visual property related to the part’s size and
eccentricity. We will introduce the set of conditions that determine the salience of a visual part in the
next section after we introduce the geometric parameters describing it.

Each subtree viable for representing a visual part is collected in a new entity that we call a wing
node (see Fig. 14). The wing construction process resembles that which finds the root. Subtrees with
smaller sizes are tested first. If the number of salient visual parts that a subtree contains is equal to
or less than 2, a new wing node is formed and added to the set of visual parts representing the shape.

5. The Shape Descriptor

The shape is described by its sequence of visual parts represented as terminal or wing nodes. Each
visual part occupies a fragment in the boundary of the silhouette. It is described by a set of shape
parameters expressing visual characteristics such as size, degree of protrusion, and eccentricity. Some
of these parameters are only derived from the geometry of the terminal parts whereas others are
measures taken relative to the whole shape. In addition to the set of numeric values computed for
visual parts are:

1. The percentage of its area.

2. The percentage of perimeter it occupies along the boundary.

3. The eccentricity is the ratio of its height away from the shape to the ratio of its width along
the shape. In order to compute this, we obtain the minimal bounding box using the rotating
calipers algorithm around its convex hull. Then we project the edges of the shape segment on
the two sides of the minimal rectangle. The side with the greater sum of projections is the one
selected to be aligned with the shape. (see Fig. 15)

4. The circularity defined by 4π × p2/a, p and a being perimeter and area respectively.

5. Rectangularity is the ratio of the area of the segment to that of its minimal bounding rectangle.

6. Convexity is the ratio of the perimeter of the convex hull to that of the shape segment. The
more convex the shape the higher its convexity. To give a greater weight to objects with lower
convexity, we reversed the formula as follows:

Convexity(reversed) = (1− Convexity)×Nshape/Nhull

where Nshape is the number of vertices of the node and Nhull is the number of vertices of its
convex hull polygon.

7. Solidity is the ratio of the area of the shape segment to that of the convex hull. Similar to
convexity:

Solidity(reversed) = (1− Solidity)×Nshape/Nhull
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Figure 13: The depth of the interior nodes starting from 0 at the root and increasing as nodes get topologically
away from it. Interior nodes are arranged according to depth which is color coded from zero to 6 (horizontal
legend). Terminals are color coded according to their clockwise order (vertical legend). The yellow boxes mark
subtrees corresponding to equivalent parts in different objects.
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Figure 14: Subtrees that are geometrically accepted for wing node generation.
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B

Figure 15: The minimum bounding boxes of terminal nodes. Note that terminals A and B have similar bounding
boxes, but the eccentricity of A is less than 1 whereas that of B is closer to 3.
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8. Bending energy is the sum of curvature values of each point on the boundary segment of this
node. To compute the curvature, the whole object is scaled by the reciprocal of the maximal
distance to the objects centroid. The discrete curvature at a boundary point B preceded by A
and followed by C is:

|(B −A)× (C −B)|
|B −A||C −B||A− C|

9. The chord length ratio (CLR) is the ratio of the length of the chord connecting the node to
the main object to the perimeter of its boundary segment.

10. The radial distance signature of re-sampled points. We re-sample the boundary parts of polygonal
segments into Ns points and compute the distance to the segments centroid. We then divide this
signature by the unit length which is the ratio of the perimeter of the segment by its number of
points.

In addition to their role in part to part dissimilarity measure, these parameters serve two other
purposes. They are used to estimate visual saliency in the wing nodes construction phase. They also
constitute the penalty added to the matching cost when the associated visual part is excluded from
the correspondence. In what follows we detail out the formulae that evaluate the distance between
two visual parts, the penalty, and visual salience assessment.

5.1. The distance between visual parts

Each terminal or wing node is described by two vectors: the assembly of the parameters p and the
radial distance signature r. The distance between any two nodes is given by the following formula:

d(v1, v2) = sqrt

[
CLR∑

I=AREA

(p1[I]− p2[I])
2

]
+

Ns∑
i=1

(r1[i]− r2[i])
2 (1)

Similarly, the penalty of excluding a node is given by:

sqrt

[
CLR∑

I=AREA

p[I]2

]
+

Ns∑
i=1

r[i]2 (2)

The visual parts are not independent of their context in the object. To represent this context, an
inter-distance matrix (iDM) saves proximity and angular relations between nodes. Every entry (i, j)
in this matrix is a 3 dimensional vector where:

1. The first dimension is the ratio of the Euclidian distance between the end point of node i and
the start point of node j to the perimeter of the object.

2. The second dimension is the percentage of the bending energy along the boundary segment
between nodes i and j.

3. For every node, we compute the direction vector which is the average of the vectors connecting
the midpoint of its chord to the points on the boundary. The third dimension is the angle between
the direction vector of node i and node j.

The contribution of inter-distances in the computation of the cost of the match between two shapes
involves 4 nodes. For every consecutive pairs of visual parts in the correspondence between shapes A
and B, (vAi , v

B
s ) and (vAj , v

B
t ), the squared Euclidian distance between iDMA(i, j) and iDMB(s, t) is

added to the total cost.

5.2. Part salience

During the wing node formation process, if the subtree contains more than two nodes with any
salient feature property, the subtree is discarded. We assess the saliency of a visual part by the
following tests:
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Figure 16: The pockets of void areas between a shape and its convex hull (shaded with color).

1. Relatively large size: Area or perimeter percentages greater than a threshold thlarge

2. Relatively long shaped terminals: For perimeter values smaller than thlarge, if multiplying the
perimeter by the eccentricity of the visual node is larger than klong, then it is considered long
node.

3. Bent terminals: We estimate this for perimeter greater than thbent and convexity less than
cbent. If the connected pockets of void areas created between the convex hull’s perimeter and the
terminal’s perimeter have areas larger than thlarge (see Fig. 16), we consider that the feature is
salient enough.

6. Matching Shapes

We employ dynamic time warping [26] to find a minimal distance correspondence between parts
of matched shapes. Roughly, the idea is to alternatively rotate one shape and fix the other while
calculating a distance matrix for every obtained alignment (Algorithm 2). The rotation is topological,
i.e. it is performed by shifting the starting point of the terminal parts. The valid start points are
terminals that are the first to appear in constituting wing nodes along the counter clockwise direction
(Algorithm 3). The number of possible start points in an object is analogous to the number of skeletal
branches connected to its root. Each row in the matrix is the distance between a terminal in the first
shape and all terminals in the other. A minimal distance path is calculated for every matrix resulting
in one-to-one, one-to-many, many-to-one, or many-to-many pairing. The matrix that produces the
minimal distance among others represents the best alignment. We show some examples in Fig. 17 of
the first 11 retrievals and the associated correspondence of terminal segments in each match.

6.1. Parameters

The 2D shape databases that we use are sets of binary images. We extract each object’s contour
and sample it to 100 points for triangulation. Adaptive sampling where the number of sample points
is deducted from the shape as in [28] can be applied. However, since the subsequent triangulation
will affect skeleton generation, a uniform sampling of the boundary is more preferable. The visual
parts’ radial distance signature is taken on 12 uniformly sampled points on each part. The geometric
attributes presented in section 4 have varying ranges of values. While the area and perimeter are
percentage values , the convexity or solidity are less than 1. This gives much more weight in the
distance computation to larger valued parameters. To amend this, we apply weights and balance their
values into more reasonable ranges. For the same reason, we apply weights to the energy and angle
components (second two dimensions) of the vectors of the iDM . These weights are shown in Table 1.
Some parameters mentioned through out the paper are listed in Table 1. These values were deducted
by inspecting the dataset where terminals with areas less than ϵ (1%) look insignificant and those with
areas greater then thlarge (20%) of the shape look relatively large. As will be shown in the next section,
these parameters do not affect the retrieval results as much as they affect the timing performance.
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Data: Shape A with n terminals and Shape B with m terminals
Result: A pairing between the visual parts of the shapes and a cost estimate for the match.
minCost = infinity; forall the terminal nodes T in A do

if T NOT valid start point (Algorithm 3) then
continue;

end
rotate the list of terminals so that T is the first;
Algorithm 4: setup an n × m matrix of Options ;
for i = n; i > 0; i– do

for j = m; j > 0; j– do
Algorithm 5: select the minCostOption at entry (i, j);

end

end
if minCost > minCost at entry (1,1) then

minCost = minCost at entry (1,1);
end

end
/*Now minCost contains the estimated cost of the optimal correspondence between shapes A
and B*/
return minCost;

Algorithm 2: A rough pseudocode describing the dynamic time warping method that finds a min-
imal cost correspondence between the visual parts of two shapes A and B.

Data: Terminal node TNode
Result: Boolean indicating if this terminal is a valid start point.
forall the Wing nodes W containing TNode do

if TNode NOT first terminal of W then
return false;

end

end
return true;

Algorithm 3: Pseudocode that determines if a terminal is a valid start point. Terminals are always
ordered in their anti-clock direction appearance along the boundary of the shape.
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Data: Shape A with n terminals and Shape B with m terminals
Result: A matrix of options where every entry contains the options of matching terminal to

terminal, terminal to wing, wing to terminal and wing to wing.
forall the entry i, j in the matrix do

add option pair: terminal i of A and terminal j of B;
forall the wing nodes w of terminal i do

add option pair: wing w of A and terminal j of B;
end
forall the wing nodes w of terminal j do

add option pair: wing w of B and terminal i of A;
end
forall the wing nodes w1 of terminal i do

forall the wing nodes w2 of terminal j do
add option pair: wing w1 of A and wing w2 of B;

end

end
//options to discard each terminal:
add option: penalty(terminal i in A);
add option: penalty(terminal j in B);

end

/*An “Option” contains information about matching two nodes (nodeAOption and

nodeBOption)from the two shapes. It also saves information about the disjoint previous and next
entries in the matrix. This information is essential to avoid having intersecting wings in the
resultant correspondence*/

Algorithm 4: The pseudocode that sets up the matrix of options

Data: A list of options at entry (i, j).
Result: The minimal cost option “minCostOption” at this entry. This code also collects a path

of pairs that constitutes the correspondence in the block [(i, j), (n, m)] of the matrix of
options where (n×m) are the dimension sizes of the matrix.

minCostOption = -1;
minCost = infinity;
forall the Option O at entry i, j do

// the pair of nodes of O are nodeAO from shape A and nodeBO from shape B;
fetch Prev-i and Prev-j;//subsequent disjoint entry in the matrix
subOption = minCostOption in (Prev-i, Prev-j);
cost of O = distance(nodeAO, node

B
O) + cost of subOption;

cost of O = cost of O + (iDMA(nodeAO, node
A
subOption)− iDMB(nodeBO, node

B
subOption))

2

if cost of O < minCost then
minCost = cost Of O;
minCostOption = O;
path to O = (nodeAO, node

B
O)

∪
path to subOption;

end

end
/*The set of pairs of the minimal cost correspondence are found in the path to minCostOption
at entry (1,1) in the matrix of options.*/

Algorithm 5: A rough pseudocode describing the optimal option selection at entry (i, j) of the
matrix of options. Details related to the code that prevents intersections between wings that are
selected into the correspondence are dropped to make the code more readable.
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Figure 17: Sample retrieval results on Kimia-216. The top row is the query shape. Each match is illustrated
by the query object and the retrieved one where pairs of corresponding terminal segments are shaded by the
same color.
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circularity 40 eccentricity 10 chord length ratio 10
convexity 25 rectangularity 40 energy of iDM 100
solidity 25 bending energy 0.5 angle (in degrees) of iDM 0.1

Table 1: The parameters’ and distances’ weights.

ϵ 1% thlarge 20% klong 10
µ0 0.75 thbent 7% cbent 0.9
µ1 0.9

Table 2: Threshold values

6.2. Complexity

The feature vector of each terminal or wing node is made of 22 numeric values representing the
parameters and the signature. Table 3 shows statistics about the average number of terminals and
wings per object using both the original CAT [29] and the extended CAT on the datasets that we
used. The object is also described by the inter-distance matrix which is a 3 dimensional matrix of
size: (NT +NW ) × (NT +NW ) × 3 where NT and NW are the numbers of terminal and wing nodes
respectively.

The matching algorithm constructs a matrix for every start point in the two matched objects. The
dimensions of each matrix is N1

T × N2
T where N1

T and N2
T are the numbers of terminal nodes of the

objects. Every entry in the matrix is responsible for computing the cost of all possible matches relating
the associated terminals. The number of options at each entry is analogous to the number of wings
the terminals belong to. Table 3 shows the average number of wings of the terminals belonging to all
the objects in the testing datasets. Having said that, the total number of node distance computations
as specified in Eq. 1 is:

(N1
start +N2

start)× (N1
T ×N2

T )× (N i
WoT ×N j

WoT )

where Nstart is the number of start point of an object and N i
WoT is the number of wings associated

with the ith terminal. As such, the time complexity of the whole algorithm is O(N2
start×N2

T ×N2
WoT ).

The number of wings of a terminal NWoT is regulated by the condition on the maximal number of
salient parts allowed in a wing. Table 3 shows how the average values of NWoT in both datasets and
for both original and extended CAT are roughly the same. This is an indication that we may consider
the N2

WoT ) factor in the time complexity notation as a constant. Nstart is analogous to the number of
major parts of a shape. It is class related and independent of the level of detail of the silhouette. On
the other hand, the finer the level of detail the greater NT becomes. Since all objects in our system are
resampled to a fixed number of points, even NT becomes under control. Moreover, the average number
of start points Nstart and terminals NT in the extended CAT and those of the original CAT [29] (see
Table 3) show that our pruning and merging operations achieved a more than five times faster average
retrieval time for both dataset.

6.3. Results

We tested our algorithm on two benchmark databases: Kimia–99 and Kimia–216 [33]. The percent-
ages obtained for the datasets are 98.18 % and 95.83% for the nearest 10 and 11 retrievals respectively.
To show the effectiveness of our algorithm in the presence of occlusion, we selected examples from
Kimia–99 well known for such cases and showed their retrieval results in Fig. 18. Comparisons of re-
trieval rates for algorithms tested on these sets are shown in tables 4 and 5. Our method is positioned
first on Kimia–216 and obtains the second best score on Kimia–99 dataset. The results show that
our method outperforms the skeleton–based methods proposed in [4, 17, 33, 38]. In addition, there is
considerable improvement over using the segmentation of the original CAT.

The effectiveness of each part of the feature vector in the distance estimation can be made sense of
by a few experiments. We first set all parameter weights to zero. The average precision for Kimia–99
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Terminals (NT ) Wings (NW ) Start points (Nstart)
Wings of Terminal

(NWoT )

Extended CAT 6.91 8.81 4.68 3.66

Original CAT 9.00 19.49 8.06 3.70

Extended CAT 7.19 9.54 5.29 3.45

Original CAT 10.44 18.65 8.70 3.60

Table 3: Mean values of the factors that affect the complexity of our algorithm. The first two rows are for
Kimia-99 and rows 3 and 4 are for Kimia-216 dataset.

and Kimia–216 are 92.5% and 90.5% respectively. When all weights are set to 1, the obtained results
are 93.7% and 90.6%. Turning the computations around by discarding the radial distance signature
from the feature vector and resetting the weights to those in Table 1, the results drop to 90.7% and
86.9% for the two datasets.

The weights of the geometric parameters (eccentricity, circularity, bending energy, rectangularity,
convexity, solidity, and chord length ratio) are tuned to balance their effect with respect to each other
and improve the retrieval results. Setting the weight of each parameter to zero in turn, we rerun the
experiments to obtain the average precision for each dataset. The 9 precision values for Kimia–99 and
Kimia–216 are in a close range around 95% and 92% respectively. Moreover, the precision recall plots
for the 9 runs show how the parameters with their current weights have a somewhat similar effect on
the retrieval results.

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Total

Shape context [6] 97 91 88 85 84 77 75 66 56 37 76.36

Shock graph [33] 99 99 99 98 98 97 96 95 93 82 96.56

Path similarity [4] 99 99 99 99 96 97 95 93 89 73 94.84

Symbolic representation [11] 99 99 99 98 99 98 98 95 96 94 98.48

MGVF [17] 99 99 99 99 99 99 99 98 90 87 97.77

Two strategies [38] 99 99 99 98 99 99 99 97 96 84 97.87

Height functions [42] 99 99 99 99 98 99 99 96 95 88 98.08

Our method with the original CAT 98 95 95 90 89 84 78 67 66 50 82.02

Our method with the extended CAT 99 99 99 99 99 99 99 98 96 85 98.18

Table 4: The precision table for Kimia-99 dataset. It is made of 9 classes with 11 objects each. The total
retrieval result is 98.18% in the nearest 10 matches. The highest two retrieval results are highlight in boldface.

7. Conclusion and Future Work

We propose a new shape descriptor inspired by human vision and cognition. Our descriptor is
comprised of the arrangement of visually salient parts along its boundary. Based on an extended version
of the chordal axis transform, we segment the shape and embed the segmentation in a hierarchical
structure. This allows capturing parts on different levels of detail. Based on a part representation
by radial distance signature, and using a set of simple geometric properties, we devised a dynamic
programming approach to find a minimal cost correspondence between two shapes. We show that
a redundance-prone representation of overlapping boundary fragments can be avoided. Balanced on
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Figure 18: The retrieval results of objects selected from Kimia-99 with occluded parts. Each match is illustrated
by the query object and the retrieved one where pairs of corresponding terminal segments are shaded by the
same color.
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Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th Total

Shape context [6] 214 209 205 197 191 178 161 144 131 101 78 76.13

Shock graph [33] 216 216 216 215 210 210 207 204 200 187 163 94.44

MGVF [17] 216 216 216 216 216 214 211 209 205 187 160 95.37

Path similarity [4] 216 216 215 216 213 210 210 207 205 191 177 95.79

Our method with the original CAT 214 215 211 207 200 198 190 178 164 158 123 86.61

Our method with the extended CAT 216 216 216 214 215 212 213 208 204 195 168 95.83

Table 5: The precision table for Kimia-216 dataset. It is made of 18 classes with 12 objects each. The total
retrieval result is 95.83% in the nearest 11 matches. The highest two retrieval results are highlight in boldface.
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Figure 19: The precision recall plots of Kimia–99 (right) and Kimia–216 (left) obtained by setting the weight of
each parameter to zero one at a time. The graphs show how the weights distribute the effect of the parameters
uniformly.

rather simple building blocks of shape representation and matching, our approach produces good
retrieval results on benchmark databases.

Having assessed the validity of our method on 2D image datasets, our future direction is to apply it
on sketch–based 3D object retrieval. Generalizing this part correspondence matching to 3D [41] is an
interesting problem. A possible direction for future work is to build a classifier based on the codebook
of visual parts learnt from matching objects of the same class. A similar idea has been proposed by
Kim et al. [21] in the context of 3D objects.
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